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The machinery of quantitative genetics relies heavily on having sets of known relatives.
This is not a problem in controlled experiments or when one has access to pedigrees, but
these are special settings, and their requirement significantly constrains the universality
of these methods. Our recent ability to score tens of thousands of DNA markers rapidly,
cheaply, and accurately has opened up essentially any population to a quantitative-genetic
analysis, as we can estimate relatedness from this marker information alone.

The idea behind using marker information to estimate the relationship between a pair of
individuals is straightforward in concept: relatives should share alleles that are identical by
descent (IBD; Chapter 7). Alas, in most settings we cannot directly score IBD alleles, but rather
must infer the fraction of IBD alleles from information on alike in state (AIS; Chapter 7) alleles.
IBD alleles are AIS, but the converse is not necessarily true. The amount of IBD sharing can
be estimating using either an excess of AIS alleles relative to some neutral expectation
or as a correlation between AIS alleles shared by individuals. Implicit in this idea is the
notion of some base population, from which deviations are measured. Given a randomly
mating and unstructured base population, estimated allele frequencies can be used to obtain
the expected AIS similarity between two unrelated individuals. The challenging issue with
marker data is not simply declaring that two individuals are related, but rather in estimating
their actual degree of relationship, typically by estimating the coefficient of coancestry, Θ
(Chapter 7).

One of the earliest uses of markers was in paternity testing. A famous case from 1943
was the paternity suit of the actress Joan Barry, who claimed that her child was fathered
by fellow actor Charlie Chaplin. Chaplin’s blood type was AB, while both Joan and her
child were both O. In a tribute to the scientific acumen of juries, Chaplin was declared to
be the father. The early crude level of resolution for paternity and forensic issues offered
by blood-type testing (serology) has since been replaced by highly accurate assessment
using DNA markers. In particular, paternity testing and crime scene analysis (whether a
biological sample came from a specified person) is now based (in the US) on just 20 highly
polymorphic loci (the CODIS markers), which (roughly speaking) tend to have around ten
alleles per locus, all at roughly equal frequencies. Hence the chance of a random individual
matching a crime scene DNA profile is (very crudely) on the order of [2(1/10)2]20 ' 10−34.
With a small number of such highly polymorphic markers, we can also assess whether
two individual are very close relatives (parent-offspring, full versus half sibs). Detecting
more distant relationships requires significantly more markers, as the expected fraction of
IBD alleles scales as (1/2)t, where t is the total number of generations that separate the
individuals from their shared ancestor (Chapter 7). A further complication is that there is
considerable variation about this expected value, such that many distant relatives will share
no IBD regions.

Even with a known pedigree, markers are still very useful. First, the veracity of the
pedigree can be checked, as incorrectly ascertained paternities are not uncommon, even
in systems with apparently strong control over matings. For example, Visscher at al. (2002)
estimated a sire error rate of ∼10% for UK dairy cattle, despite the very widespread use
of artificial insemination, while Leroy et al. (2012) found rates of 1–9% for dogs, 1–10% for
sheep, and 4% for a French cattle population. Recording errors, as well as the ingenuity of
organisms searching for mates, should never be underestimated! Likewise, especially in
natural populations, it may be unclear if the offspring from a female are full- or half-sibs.
Such close-relative uncertainties can be easily dealt with using a modest number of highly
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polymorphic markers. Second, a more subtle issue (first discussed in Chapter 7) is the notion
of expected versus realized relatedness. Θ values computed from pedigrees represent expected
values, while the realized or actual relatedness is a random variable distributed around this
expected value. For example, while the expected value of Θ for noninbred full sibs is 1/4
(all pairs of full sibs in a pedigree are assigned this value), the actual relationship for any
pair of full sibs can deviate, potentially quite significantly, from 0.25 (Figure 7.5). As we will
see in later chapters, this variation around the expected value can be powerfully exploited
in a variety of settings. Accurate estimates of such realized relatedness requires at least a
few thousand markers.

Our presentation is as follows. We start with some general comments about marker
classes and their associated assays. Next, we examine the use of markers to assign individ-
uals into a few discrete relationship categories, such as paternity assessment and whether
offspring in a family are half- or full-sibs. These approaches require only a modest number of
markers, and formed the basis for much of the early work on marker-based estimates of re-
latedness. As marker density greatly increased, so did the ability to detect much more distant
relatives. Rather than trying to assign pairs of such relatives into discrete relationship cate-
gories, we instead describe their associations using continuous relatedness measures, such
as Θxy, fx, and ∆xy . We first consider a few foundational issues of relatedness measures,
such as setting a base population, IBD probability versus allelic correlation frameworks,
and the variance in relatedness before considering estimation strategies.

MOLECULAR MARKERS AND GENOMICS

A marker is simply a locus with scorable genetic variation. Markers are used in quantitative
genetics for estimating relatedness (the focus of this chapter), an idea that can be extended to
marker-based BLUP and genomic prediction (Chapters 30 and 31). Their other important use
is in providing linkage information for either linkage-based QTL mapping (such as with a line
cross) or association studies (GWAS) that exploit population-level linkage disequilibrium
(Chapters 17–20). Our discussion here of different marker systems will consider their impact
on both of these objectives.

The ideal class of markers would be: (i) codominant (heterozygotes and homozygotes
can be distinguished), (ii) easy and cheap to score, (iii) generally not impacting any trait,
(iv) numerous (the more markers the better), (v) scattered throughout the genome, and
(vi) easily obtainable (a set of markers can be generated for any population of interest). As
we detail shortly, molecular markers (such as SNPs and STRs) nicely satisfy most of these
requirements.

In the classical genetics era, markers were usually morphological, impacting the phe-
notype, such the recessive hairy eye allele and its dominant normal (wild type) allele in
Drosophila melanogaster. As in this example, many of these morphological markers are dom-
inant, complicating their use. Such markers were used in very early (and crude) QTL map-
ping studies in Drosophila (Chapter 18). There were also a few early molecular markers, such
as blood groups (where alleles A and B are dominant to i, with ii being type O). The first
widespread molecular markers used were allozymes (also known as isozymes), protein
variants detected by differences in migration on starch gels in an electric field. The resulting
band positions are then revealed using protein-specific stains (Hubby and Lewontin 1966;
Lewontin and Hubby 1966). Since the late 1960s, this class of markers has been extensively
applied to a variety of population-genetic problems (Lewontin 1974; Charlesworth et al.
2016), and were used in some of the early QTL mapping experiments (Chapter 18). As
methods for evaluating variation directly at the DNA level became more widely available
during the mid-1980s, DNA-based markers largely replaced allozymes. Given that a set of
markers tends to be population-specific (or at least largely species-specific), a key feature
beyond the scoring of markers is in generating them in the first place. Namely, given a novel
population or species without any existing marker information, a new set of can markers
be quickly and cheaply generated. Modern genomics solves this problem.
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Properties of DNA Variation

Before briefly reviewing a few legacy systems for scoring markers based on DNA variation
(RFLPs, RAPDs, etc.), it is worthwhile to consider the different types of variation that one
might see a population sample of fully-sequenced genomes. The key properties of any such
DNA-level variation can be divided into two categories. First, properties that are intrinsic to
a class of markers (their stability, genome abundance, levels of polymorphism, and potential
restrictions in their genomic coverage, such as coding versus noncoding regions). Second,
properties that arise as a result of the assays used to score such makers; most notably,
whether heterozygotes can be distinguished from homozygotes (whether the markers are
codominant when scored by a particular assay). We group sources of DNA variation as
follows:

1. Single nucleotide polymorphisms (SNPs). These reflect base-pair differences
(polymorphisms) at a specific single nucleotide in our sample. While in theory up
to four alleles could be segregating at any single site (representing the four potential
DNA bases), most SNPs are biallelic. For these, we code the two alleles as 0 or 1,
with the allele coded as 1 denoted as the reference allele, which is usually taken
as the more frequent allele. The minor allele frequency, or MAF, denotes the fre-
quency of allele 0. SNP alleles are stable, with mutation rates for nuclear-encoded
genes on the order of no greater than 10−9 per nucleotide per generation, and often
much less (WL Table 4.2). SNPs are abundant and widely dispersed throughout the
genome, although they tend to be underrepresented in genomic regions of greatly
suppressed recombination (such as around centromeres), likely reflecting the action
of both positive and negative selection at linked sites (WL Chapter 8). Their one (mi-
nor) deficiency is that a single biallelic SNP is usually not very informative, with a
maximum heterozygosity of 1/2 (the maximum value occurs at p = 1/2). Further, the
minor allele for neutral SNPs is often expected to be rare (WL Equation 2.34), so that
most SNPs have a heterozygote frequency far less than 50%. This limitation is easily
overcome as one can score a vast number of SNPs, obtaining, in aggregate, a signif-
icant amount of polymorphic information. Additionally, there is an ascertainment
bias in how SNP are generally chosen, such that common SNPs tend to be greatly
overrepresented. Common SNPs are defined as having intermediate allele frequen-
cies: MAFs of greater than one to five percent, giving heterozygosities of at least
two to ten percent. Finally, most SNPs are regarded as anonymous DNA markers
(usually—but not always—expected to have no direct impact on a phenotype).

2. Microsatellites. A second common category of DNA variation is the tandem
repetition of small blocks (motifs) of sequence, such as AGGAGGAGGAGG. Such
tandem arrays are often referred to satellites (a holdover from the early days of DNA
analysis, when repetitive DNA sequences often formed a distinct band, or satellite,
when extracted DNA was centrifuged in a salt gradient). The genotype of a tandem
array is typically scored as its number of repeats, so that a 4,7 heterozyote contains
one 4-unit repeat and a 7-unit repeat in the same location on the two homologous
chromosomes. The size of the repeat unit forming the array can range from a few
bases to thousands of bases, leading to microsatellites, minisatellites, and so on.
The most commonly scored are those involving repeating units of just a few bases,
and these are called simple sequence repeats (SSRs) or simple tandem repeats
(STRs). Their major advantage is that any given SSR usually consists of a number of
alleles, often of roughly equal frequency. For this reason, the markers used in forensic
DNA are well-chosen SSRs that typically contain around 10 alleles of roughly equal
frequency, for a heterozygosity of around 90% per SSR (with k equally frequent
alleles, the heterozygosity is [1 − 1/k]). As a result, just a few SSRs can contain
as much polymorphic information as a dozens, or even hundreds, of SNPs. The
highly polymorphic nature of SSRs arises because of their very high mutation rates
(on the order of 10−2 to 10−4 per generation). This makes SSR alleles much more
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unstable than SNP alleles, resulting in signals from distant relationships being partly
obscured by mutations changing the allelic state. As a result, SSRs are excellent for
close relatives, but become increasingly problematic as the most recent common
ancestor for a pair of relatives moves further back in time. The same concern arises
when using SSRs for linkage information when the common ancestor is several
generation back. An association between a particular SSR allele and a nearby QTL
can be broken by mutation rather than recombination. For example, if initally a 5 allele
at an SSR and a Q allele at a QTL are together in a single linkage block (haplotype), an
SSR mutation can change this to a 6 – Q haplotype. Hence, SSRs may be suitable for
linkage mapping (one or a few generations following a cross), but not for association
analysis (which uses signals from common relatives that are potentially hundreds
of generations back; Chapter 20).

3. Insertion and deletions (indels). While the most widely used DNA markers
in quantitative genetics are either SNPs or SSRs, the genome is a highly dynamic
structure, and our final three classes concern such structural variation. One common
feature are insertions and deletions of various sizes. As with satellites, the scale of
such insertions and deletions can vary dramatically, although the larger the indel,
the more likely it is to be deleterious (and thus rare in a sample). Indels of just a
few bases are rather common, as are indels generated by mobile genetic elements,
which are abundant in most genomes. Given that such elements can jump into a
gene (disrupting its function) and often contain long-range acting cis regulatory
factors, mobile elements have the potential to influence the expression of nearby
QTLs. Mobile elements can also self-excise (jump-out), either cleanly, or leaving
some residual sequence behind.

4. Copy number variation (CNV). Potential contributors to quantitative-genetic
variation are differences in the number of copies of a particular gene among individ-
uals within a sample. Such copy number variation is not uncommon, and involves
more than just individuals that posses extra copies of the same gene (e.g., Frazer et
al. 2009; Zhang et al. 2009; Conrad et al. 2010). More dramatically, CNV can involve
presence/absence differences of entire genes, as has been seen between maize lines
by Fu and Dooner (2002). Hence, the actual composition of unique genes can vary
over individuals. As a result, the notion of a single reference genome for a species
is now replaced with the notion of a pan genome, the aggregate of several sampled
genomes to capture all of the distinct genes within a population.

5. Large scale variation. Finally, very large-scale structural variation (at least at the
level of moderately sized chromosomal segments)—such as inversions, large dupli-
cations, or translocations—can be seen within a sample. Such features are usually
over a scale that is not useful for mapping beyond the crude chromosomal assays
discussed at the beginning of Chapter 17.

While all of the above classes of DNA variation have been employed for linkage map-
ping, relationship estimation is almost entirely based on SNPs and SSRs. When possible,
SNPs are the markers of choice in most settings, because of their genome-wide abundance,
their ease of rapid scoring in very large numbers using modern approaches (e.g., DNA chips
and various next-generation sequencing approaches), and their stability.

Legacy Marker Systems

While whole-genome sequences contain all of the available relationship and linkage in-
formation in a sample, much of this variation is entirely redundant due the complete
correlation of tightly-linked markers (LD r2 values of one; Chapter 5). Hence, for many
quantitative genetic applications, scoring only a subset of genome variation is sufficient.
For example, with linkage-based mapping (such as a traditional line-cross QTL analysis;
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Figure 8.1 A variety of mutational events generate variation in restriction fragment lengths,
scored by the distances between adjacent restriction sites. Single (or multiple) base-pair
changes can create or destroy restriction sites, (A) vs. (B). Insertions of mobile genetic ele-
ments can create dramatic size differences (C). DNA sequences often exist as tandem arrays of
short repeated sequences. Unequal crossing over and/or replication slippage creates variation
in the size of such arrays, (D) vs. (E).

Chapter 18), the expected block size of nonrecombining regions is large enough that only a
modest number of markers are needed to cover the genome. Thus, while we have the ability
to score massive numbers of SNPs and STRs, this scale is often not required, and a number
of other approaches for scoring DNA variation were used in early marker-based studies. We
refer to these older approaches as legacy marker systems, as they are occasionally (albeit it
diminishingly) still used today by researchers due to the legacy impact of having an existing
set of markers on hand and ready to deploy.

One of the simplest approaches is to digest DNA with a variety of restriction enzymes,
each of which cuts the DNA at a specific sequence or restriction site (commonly four to
six bases). When the digested DNA is run on a gel under an electric current, the fragments
separate out according to size. As Figure 8.1 shows, a variety of mutational events can
generate fragment length variation. If we attempted to score the entire genome for fragment
lengths, the result would be a complete (and uninformative) smear on the gel. Instead,
individual bands are isolated from this smear by using labeled DNA probes that have
base-pair complementarity to particular regions of the genome (often chosen at random).
This approach is the basis for assays of restriction fragment length polymorphisms or
RFLPs (Figure 8.2). Each RFLP probe generally scores a single marker locus with alleles
being codominant, as heterozygotes and homozygotes can be distinguished. The number
of detectable RFLPs is impressive (Botstein et al. 1980; Doris-Keller et al. 1987; Beckmann
and Soller 1983, 1986a, 1986b; Soller and Beckmann 1988).

A particularly interesting RFLP approach involves the use of tissue-specific cDNA
clones as the probes. cDNAs are generated from the mRNAs of genes being expressed
in that tissue, and probes that detect cDNAs are often called expressed sequence tags
(ETS). This procedure can allow for enrichment of genes of potential interest in the marker
pool, enabling observed differences to be treated as potential candidate loci. For example,
Kinzer at al. (1990) used 19 ripening-specific cDNA clones from the tomato (Lycopersicon
esculentum) to detect polymorphisms in these loci between L. esculentum and a wild relative
L. pennellii. One limitation with using ETS is that much of quantitative-genetic variation
may be regulatory in nature, with causative sites residing outside of (and potentially very
far away from) coding regions. This is less of an issue with linkage mapping due to the large
size of the LD blocks generated by a cross, but may be a serious issue in settings where LD
blocks are expected to be rather small (such as in a population-level GWAS).
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Figure 8.2 Top: RFLPs, restriction fragment length polymorphisms, variable lengths of re-
striction fragments in a particular region of the genome, are revealed by use of a probe for
that region. This marker system is codominant (all marker genotypes can be distinguished),
as an RFLP heterozygote shows fragments of both lengths. Middle: RAPDs, randomly ampli-
fied polymorphic DNAs, are revealed by the use of a random primer sequence. A successful
PCR reaction requires sequences complementary to the primer in opposite orientation at suffi-
ciently close distance. Running these products out on a gel, both AA and Aa exhibit a fragment
and the site is scored as present, while the fragment does not amplify in aa individuals and
the site is scored as absent. Hence, RAPDs are dominant markers. Bottom: Microsatellite
DNAs exhibit variation in the array lengths of short sequences of tandemly repeated DNAs.
Fragment length is scored, so that these markers are also codominant.

A rather different molecular marker assay uses short primers for DNA replication
via the polymerase chain reaction (PCR) to delimit fragment sizes. A region flanked (in
opposite orientation) by primer binding sequences that are sufficiently close together allows
the PCR reaction to replicate this region, generating an amplified fragment. If primer binding
sites are missing or are too far apart, the PCR reaction fails and no fragments are generated
for that region. This procedure is the basis for randomly amplified polymorphic DNAs or
RAPDs (Williams et al. 1990), sequence polymorphisms detected by using random short
sequences as primers (Figure 8.2). RAPDs have an advantage over RFLPs in that a single
probe (here, a particular random primer) can reveal several loci at once, each corresponding
to different regions of the genome with the appropriate primer sites. However, by their very
nature, RAPDs are generally dominant, as they indicate presence/absence of a particular
site, so marker genotypes can be ambiguous (see Figure 8.2).
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These basic components of generating markers—scoring the length of various DNA
fragments and either amplifying or detecting a specific sequence using DNA hybridization
generated by the base-pair complementarity—have been used to generate a number of other
legacy marker systems (reviewed in Rafalski and Tingey 1993; Semagn et al. 2006; Grover
and Sharma 2016). For example, several mapping studies have used mobile genetic elements
(such as retroviruses) as markers (e.g., Rise et al. 1991; Nuzhdin et al. 1993; Keightley and
Bulfield 1993; Ebert et al. 1993; Long et al. 1995). Due to the high rates of movement of some
transposable elements, individuals often differ in the presence or absence of elements at
particular sites. Scoring their presence/absence by simple hybridization yields dominant
markers.

Rapid Scoring of a Large Number of SNPs

As mentioned, the current markers of choice are generally SNPs. One common approach for
simultaneously, and inexpensively, scoring a very large number of SNPs is to use chip tech-
nology, which refers to a number a microarray approaches for scoring tens-of-thousands to
millions of individual SNPs via hybridization technology. Once such a chip is constructed,
the same panel of SNPs can be easily scored repetitively over large numbers of individuals.
The main limitation is in the set of SNPs chosen to construct the chip, which tend to be
biased towards SNPs with MAFs ≥ 0.05 (i.e., common SNPs). A second approach is geno-
typing by sequencing (GBS), a hybridization and amplification technology that can score
a large number of random SNPs in an inexpensive fashion (Elshire et al. 2011; Poland and
Rife 2012). Likewise, a variety of next-generation whole-genome sequencing approaches
are available (e.g., Day-Williams and Zeggini 2010). Inevitably, quicker and cheaper new
technologies will have appeared by the time this book is in print.

Marker information from SNP chip arrays and whole genome sequences has some
fundamental differences (Browning and Browning 2013). The former scores up to a few
millions SNPs, with a bias toward common SNPs (MAFs ≥ 0.01 to 0.05), and relatively
modest error calling rates. The latter scores hundreds of millions of SNPs (in humans), the
majority of which are rare (MAF ≤ 0.005), and with a much higher error rate, which is
especially problematic in that a detected rare variant could be a true SNP or a sequencing
error. Common alleles tend to be older mutations, while rare alleles tend to be newer
mutations (WL Chapter 2). Hence, the two assay systems, arrays versus sequencing, may
be interrogating mutations of different age classes, with common alleles shared by more
distant relatives, and rare alleles shared by more recent relationships.

MARKER-BASED ASSIGNMENT OF CATEGORICAL RELATIONSHIPS

Methods estimating relationships from marker data can be grouped into two approaches:
those that are hypothesis-driven (e.g., tests for paternity from a pool of candidate males, or
determining whether family members are half- or full-sibs) and those that make no prior as-
sumptions about relatedness. These two approaches can be restated as a focus on categorical
relationships (assigning pairs of individuals into discrete classes such as parent-offspring, or
full- or half-sibs) versus continuous measures of relatedness (such as estimating the coeffi-
cient of coancestry, Θ). Relationship assignment is typically based on maximum likelihood
methods (Appendix 4) and places individuals into a small number of distinct relationships,
such as half sib, full sib, or unrelated (Thompson 1975, 1986a; Thompson and Meagher
1987; Boehnke and Cox 1997; Painter 1997; Broman and Weber 1998; Epstein et al. 2000;
Sieberts et al. 2002; Wang 2004; Wang and Santure 2009). These approaches are commonly
used in human genetics and forensics. They are also used in the quantitative genetics of
natural populations when family units are observed, but with uncertainty about paternity,
and the related issue of whether sibs are half or full. This approach is typically used to verify
connections or fill in missing links in a suspect or incomplete pedigree (Blouin 2003; Pem-
berton 2008; Huisman 2017). We first consider these assignment methods before turning
our attention to estimation of relatedness in the remaining sections.
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Paternity Assignment

In the study of natural populations (including humans), one can often assign offspring to
a specific mother, forming a natural family unit. Examples include species with extensive
maternal care (such as birds, mammals, and some invertebrates) and seeds recovered from
an individual plant or tree. When more than one offspring occurs in a family, they could have
a single father (full sibs) or multiple fathers (half sibs). A related issue, when applicable,
is whether offspring are selfed or outcrossed. A variety of approaches have been proposed
for paternity testing, many for the challenging situation where family units may not be
obvious. Our focus here is on likelihood-based methods, while variants and other strategies
are reviewed by Blouin (2003), Jones and Ardren (2003), Jones et al. (2010), Walling et al.
(2010), and Harrison et al. (2013).

We use markers to assess candidate fathers by a two-step process. First, the marker data
may exclude a candidate. For example, if the mother is M2M2 and her offspring is M2M3,
then any candidate father who does not contain an M3 allele is immediately excluded (short
of a genotyping error). One common approach is to simply use exclusion alone, especially
if all but one of the candidates is so excluded (e.g., Dodds et al. 1996; Wang 2007). Second,
under failure to exclude, we can assign a likelihood ratio of being the father, as opposed
to being unrelated to the offspring. We consider four settings for paternity analysis. In
increasing order of complexity, these are: (i) known mother and single candidate father, (ii)
unknown mother and single candidate father, (iii) known mother and multiple candidate
fathers, and (iv) unknown mother and multiple candidate fathers.

We follow Meagher (1986) and Marshall et al. (1998), whose work builds on a large
previous literature (see Meagher and Thompson 1986, 1987; Thompson 1986b; Thompson
and Meagher 1987; Pena and Chakraborty 1994, and references there in), and uses likelihood
ratios (Appendix 4). The basic idea is to contrast the probability (likelihood, L) of the data
(D) under two alternate settings—H1 (the candidate is the father) and H2 (he is not)—
considering the ratio

LR(H1, H2 |D) =
L(D |H1)
L(D |H2)

(8.1)

This ratio quantifies how much more probable the offspring marker genotype is given that
the candidate is the father, as opposed to the candidate being unrelated to the offspring. As
stressed by Thompson (1986b), this ratio is “not a comparison of individuals (fathers and
non-fathers) but to two genealogical hypotheses (‘father’ and ‘unrelated’) about a given
man.”

We build the likelihoods for Equation 8.1 as follows. Let the data D = (gm, go, gf )
denote, respectively, the single locus marker genotypes for the trio of mother, offspring, and
candidate father (a pair of relatives, such parent and offspring, is called a dyad). Recalling
from conditional probability (Chapter 3) that Pr(x, y) = Pr(x | y) Pr(y), we have

L(gm, go, gf |H1) = T (go | gm, gf ) P (gm) P (gf ) (8.2a)
L(gm, go |H2) = T (go | gm) P (gm) P (gf ) (8.2b)

Note that we have assumed random mating, so that P (gm, gf ) = P (gm) P (gf ). The key
element of Equation 8.2 is the transmission probability, T , of obtaining the offspring geno-
type go given the genotype of one (mother, gm, H2) or both (mother and candidate father,
gf , H1) parents. This is the trio transmission probability T (go | gm, gf ) under H1 and the
dyad transmission probability T (go | gm) under H2.

To see how these transmission probabilities are computed, consider a biallelic SNP with
alleles 0 and 1. For such a marker, homozygotes are denoted by 00 and 11, and heterozygotes
by 10. If the mother is 00 and her offspring is 10, then the transmission probability associated
with a 11 father is Pr(1 from father)·Pr(0 from mother) + Pr(0 from father)· Pr(1 from mother)
= 1·1 + 0·0 = 1. In contrast, the associated transmission probability for a random father
becomes p·1 + (1-p)·0 = p, where p denotes the frequency of the 1 allele. Hence,

T (go = 10 | gm = 00, gf = 11) = 1
T (go = 10 | gm = 00) = p
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Note that this requires accurate reference population allele frequencies, p. Marshall et al.
(1998) presents tables of these transmission probabilities for all possible combinations of
marker genotypes for the trio, T (go | gm, gf ), and for a mother and her offspring, T (go | gm).

Substituting Equations 8.2a and 8.2b into Equation 8.1,

LR(H1, H2 |D) =
T (go | gm, gf ) P (gm) P (gf )

T (go | gm) P (gm) P (gf )
=

T (go | gm, gf )
T (go | gm)

(8.3a)

which yields a value of 1/p for our trio data of go = 10, gm = 00 and gf = 11. Assuming loci
assort independently and are in linkage equilibrium, the total likelihood ratio is simply the
product of Equation 8.3a over all markers. This resulting product is often called the paternity
index, PI (Pena and Chakraborty 1994). A common convention (e.g., Slate et al. 2000) is to
take an LR value in excess of 20 as strong evidence for paternity (the candidate is 20 times
more likely to generate the offspring if he is the father as opposed to being unrelated). This
is often stated as a LOD score (natural log of the LR; Chapter 18) in excess of 3, which
follows by noting that that ln(20) ' 3. As a technical aside, the more sophisticated reader
might wonder why we simply do not perform a standard LR test, using the large-sample
approximation that Equation 8.3a asymptotically follows a χ2

1 (Appendix 4). The problem
is that the null hypothesis (the probability that a specified state is one) lies on the boundary
of the parameter space, which compromises the standard χ2 approximation (Appendix 4).

Using similar logic to that leading to Equation 8.2, when the mother is unknown, the
likelihood ratio becomes

LR =
T (go | gf ) P (gf )

P (go) P (gf )
=

T (go | gf )
P (go)

(8.3b)

Consider the example from above, where the offspring is 10 and the father is 00. Here
P (go) = 2p(1−p)andT (go | gf )= Pr(1 from father)·Pr(0 from mother) + Pr(0 from father)·Pr(1
from mother) = 1 · (1− p) + 0 · p = 1− p, giving LR = (1− p)/[2p(1− p)] = 1/(2p). As these
examples illustrate, the known mother setting is more powerful than the unknown mother
setting. They also show power is a function of marker allele frequencies, with the signal for
IBD increasing as the allele becomes rarer. Hence, sharing of rare alleles is a strong signal
for IBD sharing.

While our examples have used SNPs for ease of exposition, paternity testing is generally
done using SSRs, as the latter are highly polymorphic and consist a constellation of alleles
of roughly equal frequency. Meagher (1986) and Meagher and Thompson (1986) noted that
the power of a marker locus increases with its number of alleles and the evenenss of its
allele frequencies (higher power when the frequencies are more equal). Hence, a typical
SSR has more power than a typical SNP. Indeed, Städele and Vigilant (2016) estimated that
one SSR has roughly the power of 6 well-choosen SNPs.

Example 8.1 Suppose we have an offspring, its mother, and two potential candidates for
the father (male 1 and male 2), which have all been scored at four biallelic SNPs. The resulting
genotypes are as follows:

Marker locus 1 2 3 4

Offspring (go) 00 10 11 10
Mother (gm) 00 11 11 10
Male 1 (gf1) 11 10 11 10
Male 2 (gf2) 00 00 11 10

T (go | gm, gf1) 0 0.5 1 0.5
T (go | gm, gf2) 1 1 1 0.5

The transmission probabilities, T, follow using the logic above. For example, consider marker
locus 4 and male 1. The parental genotypes are 10 and 10 and the offspring is also 10. This can
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occur via two paths: 1 from mom and 0 from dad, each with probability 0.5, or 1 from dad
and 0 from mom, giving T = (0.5· 0.5) + (0.5· 0.5) = 0.5. Note (short of a genotyping error) that
marker locus 1 excludes male 1, as this male has transmission probability of zero.

To compute the LRs, we need the allele frequencies in the reference population, which
then yields the components needed to apply Equation 8.3a and 8.3b as

Marker locus 1 2 3 4

p (Freq allele 1) 0.1 0.2 0.5 0.3
T (go | gf2) 0.9 0.2 0.5 0.5
P (go) 0.81 0.32 0.25 0.42
T (go | gm) 0.9 0.8 0.5 0.5

Applying Equation 8.3a, the LR values for male 2 for the four markers are, respectively, 1/0.9 =
1.11, 1/0.8 = 1.25, 1/0.5 = 2, and 0.5/0.5 = 1. Assuming linkage equilibrium, multiplying these
together give the final LR value as 2.78. Now suppose that the mother is unknown. Equation
8.3b gives the LR values for the four markers in male 2 as, respectively, 0.9/0.81 = 1.1, 0.2/0.32
= 0.63, 0.5/0.25 = 2, and 0.5/0.42 = 1.2, giving a total LR of 1.65.

If we are willing to assign a prior probability, πo, that the candidate is the father, we
can use Bayes’ theorem (Equation 3.3b) to update this probability given the marker data.
Following Li and Chakavarti (1985) and Thompson (1986b),

Pr(Paternity |D) =
πo Pr(D |H1)

Pr(D)
=

πo Pr(D |H1)
πo Pr(D |H1) + (1− πo) Pr(D |H2)

=
πo

πo + (1− πo)/LR
(8.4)

where LR is given by Equation 8.3a (known mother) or Equation 8.3b (unknown mother).
In the simplest setting, if one has k potential fathers, we could take πo = 1/k. More so-
phisticated approaches can be used that take into account additional information such time
spent with the mother and other behavioral observations (e.g., Neff et al. 2001; Hadfield et
al. 2006).

The more general paternity problem is when one has a number of candidate fathers. This
commonly arises in natural populations (especially in plants) and has been examined by a
number of authors (e.g., Meagher 1986; Meagher and Thompson 1986; Marshall et al. 1998).
The first step is excluding candidates to narrow the pool of potential fathers. As mentioned,
genotyping errors can result in false exclusions, as can the presence of null alleles (denoting
such an allele by Ø, 0Ø and 1Ø are erroneously scored as 00 and 11, respectively). Genotype
calling errors and null alleles can be built into the likelihood function to accommodate these
concerns (e.g., Marshall et al. 1998; Sieberts et al. 2002; Wang 2004; Kalinowski et al. 2006,
2007; Jones and Wang 2016). The next step is to rank the nonexcluded males, by computing
the LR for each candidate, with the male with the largest LR value taken as the father (the
MLE, or maximum likelihood estimate; Appendix 4). If the mother is unknown, we can
follow the same procedure, but now using Equation 8.3b to compute the LR.

While such an approach provides the ML solution for the most likely father among the
candidate set, due to sampling, the actual father might not have been included. There is also
the problem in deciding if the most likely male is significantly better than the next candidate
(Meagher 1986; Marshall et al. 1998; Slate et al. 2000). Letting LR1 and LR2 denote the largest
and second largest values, Marshall et al. suggested that the statistic ∆ = ln(LR1)− ln(LR2)
be used. In an attempt to account for multiple comparisons (Appendix 6), they evaluate
the significance of ∆ using simulations based on the number of candidate males and the
proportion of males that are sampled. Alternative approaches for this multiple comparison
problem have been suggested by Devlin et al. (1988, 1989), Smouse and Meagher (1994),
Smouse et al. (1999), Neff et al. (2000a, 2000b), Nielsen et al. (2001), Geber et al. (2003), and
Christie (2010).
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Note that the above LR assignment approach assumes a male is either the father or is
completely unrelated. In reality, relatives of a candidate and/or the offspring (in addition
to its mother) may be included in the sample. This is not much of a problem for distant
relatives, but complications can arises when close relatives are included in the candidate set.
It is especially problematic when sibs of the true father, or undetected sibs of the offspring,
are considered as potential fathers. For example, full sibs of an offspring can gave higher
LR values than the true father, a complication that Olsen et al. (2001) referred to as aunt
and uncle (avuncular) effects. When the mother is known, these concerns only arise with
full sibs, but when the mother is unknown, half sibs also cause complications (Thompson
and Meagher 1987; Marshall et al. 1998; Olsen et al. 2001; Ford and Williamson 2010).
The simplest solution is to estimate Θ directly for each pair, rather than trying to assign
individuals into a few discrete relationship categories which may not have sufficiently
granularity given the genealogy of the population.

Finally, the most challenging situation arises when both parents of an offspring are
unknown. Meagher and Thompson (1986) suggested that one first uses Equation 8.3b to
assess paternity and then also use it to assess maternity (using gf is place of gm). Among
the candidate set of mothers and fathers that this procedure generates, one then tests all
pairwise combinations of these high-value (large LR) parents, and the joint pair with the
highest LR value is taken as the MLE of the parents. Meagher and Thompson showed this
two-step approach is appropriate, as single-parent likelihoods are highly correlated with
the joint-parent likelihoods.

Sibship Assignment and Joint Family Likelihoods

There are two rather different settings for sibship assignment. In the simple case, one has
a natural family unit (typically a mother and her offspring) and the question is whether
these offspring are all full sibs or a collection of full and half sibs (and, if the latter, the
secondary question of how many distinct fathers were involved). In the more complex case,
one has sampled a natural population of offspring with no obvious mother (or father) and
the question is how many familial units are present, and then clustering individuals into
collections of full sibs potentially nested within larger half-sib families.

While exclusion is possible with marker data from a parent-offspring dyad, such is not
the case with a putative sib dyad. Here, exclusion would be ruling out the pair being half-
sibs if the mother known; or ruling out being either half or full sibs when neither parent is
prescribed. Suppose a candidate pair from the sample have genotypes of M1M2 and M3M4.
Such a dyad could be half sibs, full sibs (the parents were M1M3 and M2M4), or unrelated.
While simple exclusion is not possible from sib dyad data alone, we can compute a LR
for these different categories (given marker allele frequency estimates). As one adds more
individuals into the comparison, exclusion is possible, and especially if more putative sibs
in the family are considered. This follows by noting the probability that both possible alleles
from a parent are present in the genotypes of n offspring is 1− (1/2)n−1 (Wang 2007; Wang
and Santure 2009).

As this discussion suggests, using multiple-individual (joint) likelihoods (units of mul-
tiple putative sibs) has significantly more power that pairwise (dyad) LR comparisons. Vari-
ants of this approach have been used by a variety of workers (Painter 1997; Almudevar and
Field 1999; Thomas and Hill 2000; Thomas et al. 2000; Emery et al. 2001; Smith et al. 2001;
Sieberts et al. 2002; Almudeva 2003; Bulter et al. 2004; Wang 2004, 2012; Fernández and
Toro 2006; Wang and Santure 2009; Jones and Wang 2010; Almudevar and Anderson 2012;
Huisman 2017). The basic logic of such a full likelihood approach follows by expanding
the transmission probabilities used in simple paternity analysis. The complication is that
one must run over all combinations of the possible transmission probabilities for a set of
individuals under various assumption about their relatedness. This is computationally de-
manding, especially in the more complex setting of no obvious family units. Further, this
process must be computed separately for each marker (with the resulting LRs multiplied
together). These calculations can be approximated using MCMC-based approaches (such
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as simulated annealing; Appendix 8), or by cleverly combining information from pairwise
likelihoods (Wang 2012).

MARKER-BASED ESTIMATES OF RELATEDNESS: BACKGROUND

Finally, we turn from assigning pairs of individuals into discrete relationship classes to the
estimation of continuous measures of relatedness. The possible single-locus IBD states between
a pair of individuals are completely described by Jacquard’s (1974) nine condensed coef-
ficients of identity, ∆i (Figure 7.2). These collapse to just three IBD states in the absence
of inbreeding (∆7 – ∆9; Chapter 7), which are denoted in the human genetics literature
by the vector k = (k0, k1, k2), corresponding to (∆9, ∆8, ∆7). Here ki is the probability that
the pair shares i IBD alleles, with k2 = 1 corresponding to monozygotic twins, k1 = 1 to
parent-offspring, and k0 = 1 to unrelated individuals. Note that some authors, following
Cotterman (1940), denote ∆8 as 2k1, and the ki are often referred to as Cotterman coef-
ficients. The most general setting would be to estimate the likelihoods (or, in a Bayesian
setting, the posterior probabilities; Appendix 7) all the ∆i coefficients for a specific pair (e.g.,
Example A4.7). However, in the vast majority of cases, our interest is in summary statistics
of these identities, namely the coefficient of coancestry (Θxy ; Equation 7.2), an individual’s
inbreeding coefficient (fx), and, more infrequently, the coefficient of fraternity (∆xy).

The most common reason for estimating relationships is to obtain variance components
(we treat genomic selection/prediction as an extension of variance estimation; Chapters 30
and 31). Recall that 2Θxy and ∆xy are, respectively, the weights on the additive and domi-
nance variances in the phenotypic covariance between x and y (Chapter 7). More generally,
the weight on the k-level additive and `-level dominance variance component, σ2(AkD`),
is (2Θxy)k∆`

xy (Equation 7.12). We use these weights to translate phenotypic covariances
into variance estimates (Chapters 22–29 and 32). When there is extensive inbreeding, this
basic logic still applies, with the added complication that additional variance components
arise. This is examined in detail in Chapter 11 of WL. A second important use of relationship
estimates is to control for shared ancestry, such as in a GWAS (Chapter 20), where the goal is
contrast the effects of a feature (such as a particular SNP) once the impact of cryptic related-
ness is removed. A final use is in estimating the level to which a target individual is inbred
(estimating its inbreeding coefficient, f ). Chapter 12 examines the impact of inbreeding in
detail.

Our discussion will first consider a few key conceptual issues, such as the choice of
a base population in defining IBD status, IBD probability versus IBD correlational defini-
tions of relatedness, and variance in realized relationships. We then consider a variety of
approaches that have been proposed for marker-based estimates of relatedness. While the
logic for most methods is relatively independent of the types of markers being used, they
often reflect the historical transition from assuming only a few modestly informative mark-
ers (alloyzmes, which often contain multiple alleles at modest frequencies) to a few very
informative markers (SSRs; e.g., Queller et al. 1993; Blouin et al. 1996) and, finally to a large
to huge number of relatively low-information markers (SNPs). There is a very rich (and
growing) literature on marker-based relationship estimation. Reviews and commentaries
can be found in Ritland (2000), van de Casteele et al. (2001), Blouin (2003), Milligan (2003),
Garant and Kruuk (2005), Csilléry et al. (2006), Oliehoek et al. (2006), Weir et al. (2006),
Frentiu et al. (2008), Yang et al. (2010, 2011a), Sillanpää (2011), Toro et al. (2011); Gay et al.
(2013), Bérénos et al. (2014), Jensen et al. (2014), Wang (2014, 2016), Conomos et al. (2016),
Ackerman et al. (2017), Wang et al. (2017), Weir and Goudet (2017), and Goudet et al. (2018).
Huang et al. (2014) provide extensions to polyploids. A masterful review of many of the
issues considered here in a population genetics framework is given by Thompson (2013),
while a different perspective on these issues is offered by Speed and Balding (2015).

IBD, Base Populations, and the Coalescent

A central organizing concept for treating genetic drift is the coalescent of a sample of alleles
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Figure 8.3 The genealogy, or coalescent structure, of a sample of five alleles at a single SNP.
These all trace back to a single sequence in the most recent common ancestor (MRCA). Note
that a mutation (from the ancestral state G to the derived state T) occurred, so that two of
the sampled alleles differ in state from the MRCA. From a genealogical standpoint, all of
the G alleles trace back to the MRCA (and hence are all IBD using that individual as the
reference). Likewise, both T alleles trace back to a common ancestor (more recent than the
MCRA), where the mutation occurred. At some point far more recent than the MRCA, a base
population is designated. This is usually either taken as the present generation or no more
than a modest number of generations back from the present. Conversely, the MRCA is on the
order of 2Ne generations (Ne being the effective population size; WL Chapters 2 and 3). In
the base population, all AIS alleles are assumed to be unrelated (not IBD). By moving the base
population forward or backward in time, we change the IBD status of AIS alleles, even though
the underlying coalescent structure remains unchanged.

(variants at a single SNP), namely their genealogy (the pedigree of the sampled alleles; Figure
8.3). Under coalescent theory, all existing alleles trace back to some most recent common
ancestor (MRCA) through a series of coalescent events (reviewed in detail in Chapter 2 of
WL). In particular, suppose that k sequences are sampled. At some point in the recent past,
two of these sequences had a common ancestor, so that the k genealogies in the sample now
coalesce to k−1 genealogies. The process continues until the last two remaining genealogies
coalesce at the MRCA (Figure 8.3). Under the coalescent framework, all of the alleles are
“IBD” to the MRCA, as coalescent theory is only concerned with the genealogy, and not
the allelic states of its descendants, namely, the contrast between relatedness versus identity.
Mutation is overlaid on this genealogy to generate distinct AIS allelic classes (Figure 8.3).

The strictly genealogical coalescent view of IBD is at odds with the usual notion of
IBD status, which further assumes no mutation since the common ancestor, so that IBD
alleles must also be AIS. As noted by Powell et al. (2010), this apparent conflict is simply
a difference in reference points. In particular, we define some base population for IBD
calculations (Figure 8.3). We assume that all individuals in the base are unrelated and not
inbred (although we can modify either of these assumptions; Chapter 7). As shown in
Figure 8.3, with respect to the specified base, only two of the sampled alleles are IBD, yet
the sample contains multiple AIS alleles (two T and three G). With this same sample of five
alleles, we can change the IBD status of these AIS alleles simply by moving the base forward
or backward in time. Hence, while the MRCA is at a fixed (but unknown) generation, the
generation chosen for the reference population is arbitrary, usually being specified for the
convenience of the researcher. Very often, the base population is simply taken as the current
population.
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The reason we have focused on a single SNP in the above discussion is due to an
important subtlety with the MRCA. It is defined for a specific site, and hence changes
over a sequence, in that when recombination occurs, the coalescent structures can differ
between even closely linked sites. Thus, there is usually not a common MRCA for all the
sites over a gene, much less over a chromosome or genome. A related issue is the notion
of an IBD chromosomal segment, namely, for the sampled sequences, an unrecombined
region tracing back to a single copy in the reference population. In many populations, IBD
segments are smaller than a typical gene-coding region. As we will see, segmental IBD is
exploited for fine-mapping by GWAS (Chapter 20).

An important issue that we will not consider in detail here is the estimation of relat-
edness in highly structured populations, namely, when the larger population consists of a
number of subpopulations (demes). This has been examined by Anderson and Weir (2007),
Wang (2011b), Thornoton et al. (2012), Conomos et al. (2016), and Weir and Goudet (2017),
and can be considered a special case of where one sets the reference population. Suppose
we have a series of demes that have descended from a common ancestral population, and
imagine a rare allele that is common in deme one. Setting the ancestral population as the
base, individuals sharing this allele in deme one with be regarded as being closely related.
However, if we set deme one as the base (and hence use deme one allele frequencies), the
same set of individuals will be regarded, at best, as being weakly related (Anderson and
Weir 2007).

There is one final important implication in setting the base population. As we have
mentioned, a common use of relationship estimates is to obtain variance components. Esti-
mates of the former (relatedness) vary with the base populations, which, in turn, influences
estimates of the latter (variances), such that what we are estimating is the value of these
variances in the base population. Hence, even when using the same data, as we change the
assumed base population, we can change the variance estimates.

Probabilistic versus Correlational Definitions of Relatedness

The inbreeding coefficient, f , underlies measures of relationship, both within an individual
(f ) and between individuals (Θ). For inbreeding, the comparison of IBD status is between
the two alleles at a locus within an individual. For relationships, Θxy is based on choosing
a random allele from the same locus in individuals x and y, with Θxy being the average
value of f for the four combinations of allelic draws (Chapter 7). Equation 7.2b highlights
this connection between inbreeding and coancestry: if z is the offspring of x and y, then
fz = Θxy . Equation 7.3b provides a further connection in that 2Θzz − 1 = fz .

Historically, there are two different definitions of f . While Wright (1922) originally
defined f as the correlation between gametes, the popular concept of f being the probability
of IBD is due to Cotterman (1940) and Malecot (1948). Wright (1965), Powell et al. (2010),
and Wang (2014) noted that while these concepts are identical in many cases (when the
reference population is suitably ancestral to the current one), there are also settings where
they differ. While IBD-probability estimates of f and Θ must lie between zero and one,
the correlational definition can generate negative values, which in many situations are
biologically realistic. A negative estimate of f simply implies that the focal individual
is more heterozygous than expected by chance in the reference population. As noted by
Wang (2014), one example is the F1 hybrid of two inbred founder lines, which generates
a negative value of f (due to the excess heterozygosity in the F1), regardless of how the
parental information is combined to form a reference population. Similarly, if the reference
population contains a number of inbred individuals, then an outbred individual can a have
a negative estimate of f (albeit typically very small), as it is likely to more heterozygous than
a random member of the reference population. Similarly, negative estimates of Θ simply
imply that two individuals are more dissimilar than two random individuals, again in the
context of a reference population.

Powell et al. (2010) and Wang (2014) argued that the correlation-based definition of f
(and, therefore, Θ) is the most appropriate choice for marker-based estimates that take the
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current population (and hence the current allele frequencies) as the reference population. For
known pedigrees, the obvious choice for a reference population is the collection of founders,
but this raises issues of the rather arbitrary way in which founders are chosen. Typically,
this is by convenience—known information—rather than from biological motivations. An
example of the latter would be an isolated population with known founders (such as a
captively bred population). More generally, it is convenient to simply take the current
estimated allele frequencies as the reference population, which is assumed in most marker-
based studies. Powell et al. (2010) showed the connection between f values associated with
different base populations. Let f1 and f2 be the values based on two different assumed base
populations, and let fst be the correlation between a random gamete drawn from population
one and a random gamete drawn from population two. Then

f1 =
f2 − fst

1− fst
(8.5)

Additional commentary on these issues is offered by Rousset (2002), Thompson (2013), and
Speed and Balding (2015).

Finally, an important point was made by Powell et al. (2010), who argued that the ob-
jective of most marker-based IBD estimators is to predict the AIS status at the unobserved
loci underlying the trait (or traits) of interest. Obviously, if we knew these causative loci,
we could score them directly. If not, we can try to predict their amount of AIS sharing using
the marker data as proxies: individuals that share more marker loci IBD are likely to share
more AIS causative alleles. A subtle caveat (which will be examined more fully in Chapter
20) is that if the distribution of marker allele frequencies (the allele frequency spectrum;
LW Chapter 2) departs significantly from the distribution of causal allele frequencies, this
lowers the quality of marker predictions. Such potential differences in frequency spectra
are certainly not unexpected. First, there is often an ascertainment bias wherein common
SNPs (minor allele frequency at least one to five percent) are chosen, skewing the frequency
distribution towards higher values. Second, it is thought that many (or most) SNP markers
are selectively neutral (or nearly so), while the distribution of causative allele frequencies
often reflects past selection. This includes both direct artificial selection on the trait and
prior natural selection. For example, alleles of large effect tend to be at low frequencies in
natural populations, likely because they have been under negative natural selection in the
past. IBD estimates from pedigree data (which estimate IBD independent of the underlying
genetic architecture) are robust to this effect (Powell et al. 2010).

Realized versus Pedigree Kinship

The use of dense marker data highlights the important distinction, introduced in Chapter
7, between pedigree kinship and realized kinship (Wang et al. 2017). The former is the
expected value of Θ calculated using a known pedigree (Chapter 7), while the latter is the
actual realization of Θ for any particular pair of individuals, which can be estimated using
dense marker data (e.g., Figure 7.5). This variation about the expected value is generated
by Mendelian sampling (the segregation of the diploid genotype via meiosis into haploid
gametes). Such variation occurs whenever at least two of the ∆i probabilities are nonzero
(which is always true except for clones and parent-offspring; Chapter 7). Dense SNP data
can be used to capture this variation in relatedness, giving more accurate weights when
using information from relatives (replacing expected values by their actual realizations).
This is the basis of the genomic selection method known as G-BLUP (genomic-BLUP),
wherein marker-estimated relatedness values are used in place of pedigree-generated values
to improve the BLUP estimates (e.g., VanRaden 2007, 2008; Hayes et al. 2009; Chapters 31
and 32).

Equation 7.7b gives the expected variance in Θ generated by Mendelian sampling
at a single locus, σ2(Θ). With n independently segregating loci, the associated variance
for the average of Θ over these loci is simply σ2(Θ)/n. Because chromosomes (generally)
assort independently, this result also applies when we sum chromosome-wide estimates.
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Consider the genome-wide value of Θ for a given pair of individuals (x, y) for a species
with k chromosomes,

Θ̂xy =
k∑

i=1

wi Θ̂xy,i (8.6a)

where Θ̂xy,i is the estimate for chromosome i, and wi is the weight placed on this chromo-
some. Typically, if `i is the map length of chromosome i, and L =

∑k
`i is the total genome

map length, then wi = `i/L. Chapter 17 discusses map lengths—genetic distances based
on recombination, as opposed to physical distances based on base pairs—in detail. L is
usually expressed in units of Morgans (the expected total number of crossovers) or centi-
Morgans, cM, (100 cM = 1 Morgan.) The associated genome-wide variance becomes (Risch
and Lange 1979)

σ2(Θ̂xy) =
k∑

i=1

w2
i σ2(Θ̂xy,i) (8.6b)

The delicate issue is that, due to linkage, loci (or markers) on a chromosome are not
independent. Hence, if we have n loci on a specific chromosome, the variance associated
with that chromosome is not σ2(Θ)/n, as there are not n independent sampling events. A
number of approximations have been proposed to accommodate this complication from
linked, and hence nonindependent, sites (Franklin 1977; Risch and Lange 1979; Suarez et al.
1979; Stam 1980; Stam and Zeven 1981; Donnelly 1983; Hill 1993a, 1993b; Guo 1994, 1995,
1996; Visscher 1996, 2009; Visscher et al. 2006; Hill and Weir 2011, 2012; Thompson 2013).
Most of this work is build around assuming the Haldane mapping function to model the
recombination process (Example 8.3). As is discussed in detail in Chapter 17, this assumes a
Poisson distribution for the number of crossovers within a region and no interference. Note
that Equation 8.6b only refers to the evolutionary variance, the randomness associated
with the Mendelian sampling process alone. There is an additional error, which we ignore
here, generated by using a finite number of markers to estimate the Θ value for a given
chromosome (or, more widely, genome).

One approach for obtaining the genome-wide variance is to use the single-locus vari-
ance (Equation 7.7b) in conjunction with some estimate, ns, of the number of independently
segregating chromosomal segments, taking the variance as σ2(Θ)/ns. This approach is an
approximation, attempting to model the recombinational behavior of a continuous chro-
mosome by using a equivalent number of independently segregating segments (Donnelly
1983). Nonetheless, this is still a useful device for inquiring about some of the underlying
factors influencing the variance in Θ. For relatives separated by a single round of meiosis
(such as sib pairs), a simple metric for the number of segments is the recombination (or
segregation) index (RI; Darlington 1939), which is the haploid chromosome number (k)
plus the total number of crossovers per gamete (C), with RI = k + C. One can think of this
as an approximation for the number of independent blocks of genetic material in a gamete.

As the number of generations back to the common ancestor increases, there is more
opportunity for recombination, increasing ns and thus decreasing the variance. This raises
an important point. Sets of relatives with the same expected value of Θ (such as half sibs
versus double first cousins) can have different expected standard deviations. This occurs
because although the single locus variance (Equation 7.7a) is the same in these cases, the
expected number of recombinational events differs over the paths separating the compared
relatives, resulting in differences in ns values (Rasmuson 1993; Hill and Weir 2011). An
equivalent way of thinking about this is that while the single gene IBD probabilities can be
the same, the two-locus IBD probabilities differ (Thompson 1988, 2013). A related issue is
that the chromosomal-specific variance decreases with the total amount of recombination
on that chromosome. Visscher (2006) observed this in humans, and found that the predicted
values for σ2(Θ̂xy,i) based on the map length of the chromosome (Example 8.3) generally
correlated well with their empirical values. More generally, the genome-wide variance in Θ
increases as chromosome number and/or total map length decreases, both of which have
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the effect of decreasing ns.
Hill and Weir (2011) noted that both the skew and the CV increases as relatives become

more distant (recall that Example 7.3 showed that the CV of Θ for half sibs was greater than
for full sibs). As they succinctly state: “Although the variance of actual relationships falls as
individuals become more distant, its coefficient of variation rises, and so, exacerbated by the
skewness, it becomes increasingly difficult to distinguish different pedigree relations from
the actual fraction of the genome shared.” Hence, the concept of discrete relationship classes
quickly breaks down as relatives become more distant, being replaced by continuous measures
of relatedness that capture the realized values.

Example 8.2 A number of authors have considered the variance in the fraction of IBD genome
sharing between a pair of full sibs (the common human setting). The IBD fraction is given by
2Θ (as Θ concerns drawing single alleles), and hence (Equation 3.10e) this variance is four
times the variance of Θ. From Example 7.3, the single-locus variance for noninbred full sibs
is 1/32, giving σ2(2Θ) = 1/8, for a standard deviation of 0.354. Using data on the number
of crossovers on each human chromosome, Suarez et al (1979) obtained a standard deviation
for genome IBD of 0.056 (corresponding to ns = 40) when allowing for recombination, and a
value of 0.082 (ns = 19) under the assumption of no recombination (chromosomal segregation
only). Using an analytic model of the crossover process, Risch and Lange (1979) obtained a
value of 0.04 (ns = 78). Rasmuson (1993) used the estimated segregation index for humans (75
in males and 100 in females) to approximate the standard deviation as 0.354/

√
100 = 0.0354.

Empirical estimates from Visscher et al. (2006) using 4,400 pairs of quasi-independent sibs
gave a value of 0.036, with realized values of 2Θ ranging from 0.375 to 0.617. Their analytic
results (Equation 8.7a) suggested that the effective number of segments per chromosome (ns)
ranged from a high value of 6 for the largest chromosome down to a value of 2 for the smallest,
for a total number of 85 effective chromosome segments.

Example 8.3 To see the logic underlying approximations accounting for linkage, we develop
expressions for full- and half-sibs variances for the fraction of IBD sharing, 2Θ. We assume no
recombinational interference (independence of crossovers) and a Poisson distribution for the
number of crossovers along a chromosome (the Haldane map function assumptions; Chapter
17). Consider loci i and j linked together on a chromosome. Recalling Example 7.3, for a single
locus in a half-sib, σ2(2Θi) = 4/64 = 1/16. For two loci,

E[2Θi2Θj ] = [2(1− cij)2 + 2c2
ij ]/16

where cij is the recombination fraction between i and j. Hence,

σ(2Θi, 2Θj) = E[2Θi2Θj ]− E[2Θi] E[2Θj ] =
(1− 2cij)2

16
=

exp(−4mij)
16

where mij is the Haldane map distance (this follows from Equation 17.4). Summing over all
n loci on a chromosome, the variance in the IBD fraction for that chromosome becomes

σ2(2Θ) = n−2(1/16)
∑

i

∑
j

exp(−4mij) '
4`− 1 + exp(−4`)

128 `2
(8.7a)

where ` is the total map length of the chromosome (in Morgans). Details for the last approxi-
mation (which follows for large n) can be found in Guo (1996) and Hill (1993a).

Suppose that are k chromosomes, the ith of which has length `i, for a total genome map
length ofL =

∑
`i. Summing over Equation 8.7a yields the variance for the genome fraction

of shared IBD alleles in half sibs as

1
128L2

[
4L − k +

k∑
i=1

exp(−4`i)

]
(8.7b)
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which can be further approximated as (4L − k)/[128L2]. Note that this shows the variance
increases with decreasing values of k and/or L. For human autosomes, k = 22 and L = 35,
giving an approximate variance of

(4 · 35− 22)/[128 · 352] = 0.00075

for a standard deviation of 0.0274. Visscher (2009) noted that this approximation only differs
at the fourth decimal place, 0.0272 versus 0.0274, when compared to the more exact value from
Equation 8.7b. The latter can be computed by either using known values of `i, or by setting
`i = 35/22 (treating all chromosomes has having the same map length), as (in this case), both
returned the same value (0.0272).

Similarly, using the same logic for full sibs yields

1
64L2

[
4L − k +

k∑
i=1

exp(−4`i)

]
(8.7c)

which can be further approximated as (4L− k)/[64L2], yielding a variance of 0.0015 and an
associated standard deviation of 0.039. Nice summary tables of the variance for a wide variety
of other relatives are given by Guo (1996) and Hill and Weir (2011). The latter also summarize
expressions for the skewness.

Local versus Global Relatedness

The combination of Mendelian sampling (generating variation in realized relationships)
coupled with the use of dense markers to detect such variation provides a very powerful
tool. Consider a collection of full sibs. Because of this sampling, some will be more related,
and hence (for a heritable trait) more phenotypically similar, that others. Visscher et al.
(2006) used this within-sibship variation to estimate the heritability of human height. An
even more granular analysis was proposed by Visscher et al. (2007). Just as Mendelian sam-
pling can generate variation in the realized values of the global relatedness (the genome-
wide average), it also generates between-chromosomal differences in the realized relationship
within a pair of individuals (localized relatedness). Hence, we can estimate the heritability
attributed to a specific chromosome by contrasting relatedness differences in a sample over
just that chromosome. Because longer chromosomes have more recombination, and thus a
smaller between-individual variance in fraction of shared IBD, smaller chromosomes tend
to show more variance in relatedness, and therefore potentially more power to detect a
chromosomal effect. A second implication for these between-chromosomal differences in
variance is that smaller chromosomes in distant relatives are more likely to share no IBD
segments than larger chromosomes (Example 8.4).

Example 8.4. The connection between localized relatedness and variation in relatedness is
through the notion of IBD chromosome segments. These are continuous stretches of DNA
shared by the two focal individuals that have not undergone recombination since the com-
mon ancestor (identity by recombination). Following Donnelly (1983), Thompson (2013), and
Speed and Balding (2015), consider two individuals that last shared a common ancestor g gen-
erations in the past. Further suppose there are k chromosomes, a total map length of L, and
a total genome size of M megabases (Mb). As relatives become more distant, the probability
that they share no IBD segments increases. Thompson (2013) showed that one can approximate
this by

Pr(Θ = 0) ' exp
[
− (2g − 1)L

22g−1

]
(8.8a)

Speed and Balding assumed human map lengths of 40.7 Morgans in females and 22.9 Morgans
in males, taking L as their average, 31.8, and a value of M = 2667 Mb. For two individuals
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that last shared a common ancestor five generations in the past,

Pr(Θ = 0) ' exp
[
− (2 · 5− 1) · 31.8

22·5−1

]
= 0.67

Hence, the majority of such relatives will share no IBD segments. When the common ancestor
is 3 generations back, Equation 8.8a yields 0.007, so that 99.3% of all such pairs will share at
least one IBD segment.

A closely related issue is the number, ns, of shared IBD segments. Speed and Balding
approximated this as

E[nS ] ' k + 2Lg

22g−1
(8.8b)

Again taking g = 5, E[nS ] = (22 + 2 · 31.8 · 5)/(29) = 0.66, while for g = 3, E[nS ] =
6.65. These values imply that most chromosomes in both of these settings will share no IBD
segments, generating considerable variance in IBD between the chromosomes of a pair of
relatives. To further emphasize this point, consider the expected mean size (in megabases) of
any such shared segment. Speed and Balding showed that the mean length, conditional on at
least one shared region being present, is

µS '
M

k + 2Lg
(8.8c)

Even though the majority of individuals with a common relative 5 generations in the past
share no IBD segments, when they do, its average length is 2667/(22+2 · 31.8 · 5) = 7.8 Mb.
For g = 3, this conditional mean length is 12.5 Mb. This process, wherein fewer and fewer
relatives share any IBD segments, but those that do have segments of at least modest size, is
what generates the ever increasing skewness in IBD as relatives become more distant (Hill and
Weir 2011). Many of the above results appear in the literature as function of the total number,
m, of meioses that separate a pair from their common ancestor, with m replacing 2g in above
expressions (Equation 8.8a–8.8c). Chapter 17 examines further examines the lengths of shared
IBD regions.

MARKER-BASED ESTIMATES OF THE COEFFICIENT OF COANCESTRY, Θ

Finally, we turn to the estimation of relatedness statistics from marker data. Again, the issue
is how to translate observed AIS sharing at the markers into estimates of IBD sharing at
either a global (genome-wide) or local (chromosomal segment) level. This usually requires
us to specify a reference population (but see Weir and Goudet 2017; Goudet et al.2018), with
the allele and genotype frequencies in the reference providing us with the expected amount
of AIS sharing between random individuals. For a random-mating (i.e., unstructured) pop-
ulation, allele frequencies are sufficient to specify the expected AIS sharing. However, when
there is structure in the base population or in the sample (such as inbreeding or when a
substantial fraction of the sampled individuals are relatives), allele frequencies alone are
not sufficient to adjust AIS status, and we examine how to accommodate these concerns.

Our discussion largely frames estimators in terms of biallelic SNP markers, but most
can easily be extended to multiallelic markers, such as SSRs. Most of these approaches use
single-point (or SNP-by-SNP) estimates, which treat markers as being independent and
then amalgamates these single-locus results into a final composite estimate. Note that single-
point estimators do not require any mapping (i.e., positional) information on the markers.
As marker density increases, nearby markers become increasingly correlated (linkage dis-
equilibrium; Chapters 5 and 17). This is typically dealt with by trimming the number of
markers to form a set of largely independent loci (e.g., Purcell et al. 2007; Huisman et al.
2016), but this loses information. More recent estimators exploit information provided by
the pattern of linkage disequilibrium, either by weighting adjacent markers by their cor-
relations (e.g., Day-Williams et al. 2011; Speed et al. 2012; Wang et al. 2017) or using the
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IBD status of chromosomal segments, also known as recombinational IBD (Example 8.4), as
opposed to using IBD alleles at individual loci (reviewed by Browning and Browning 2012).

Our focus will be on estimating the three most widely reported relatedness metrics:
the coefficient of coancestry (Θxy ; which has the fraction of IBD genome sharing, 2Θxy , as
a special case), the inbreeding coefficient of an individual (fx), and the coefficient of frater-
nity (∆xy). We consider these in turn, largely focusing on method of moments estimators,
wherein one generates statistics whose expected value equals the parameter of interest.
Maximum likelihood provides a more rigorous statistical framework, but can be computa-
tionally quite demanding. Appendix 4 examines ML estimates of continuous relationship
metrics.

Single-point IBD Estimators

There are a number of proposed methods that translate data from a SNP into estimates of
Θ. The basic approach is as follows. Consider two individuals, x and y. We denote the two
alleles in x by a and b (which may be alike in state), and similarly in y by c and d. The
molecular similarity (or molecular similarity index) at locus ` between x and y is defined
by

Sxy,` =
Iac + Iad + Ibc + Ibd

4
(8.9a)

where Iad is an indicator function that equals one if a and d are AIS, and otherwise is zero.
For biallelic loci (such as most SNPs), Sxy,` takes on values of 0, 1/2, or 1. A value of zero
occurs if x and y are different homozygotes, while Sxy,` = 1 if they are the same homozygote.
All other biallelic locus combinations yield a value of 1/2. A value of 1/4 requires at least
three distinct alleles, and values of 3/4 do not occur, because if the first three combinations
are one, so is the last (Oliehoek al. 2006). Toro et al. (2002) referred to Equation 8.9a as
molecular coancestry, as when AIS equals IBD, then E[Sxy,`] = Θxy , which follows from
the definition of the coefficient of coancestry (Chapter 7). The average over L marker loci
yields an estimate of

Θ̂xy =
1
L

L∑
`=1

Sxy,` (8.9b)

The problem with this simple estimator is the equating of AIS with IBD, as unrelated
individuals can share AIS alleles. One needs to assign a base (or reference) population
and use the expected genotype frequencies in this base to provide a correction for AIS
status among random individuals. Any such adjustment makes some key assumptions.
Usually these are that one has a random sample from the true assumed reference population,
and that individuals within the sample are largely unrelated and largely outbred. If the
sample contains a sufficient number of inbred individuals and/or relatives, this can bias
the correction for alleles that are AIS but not IBD. While this bias may be small, it can
potentially be rather large, especially in small populations or small samples (Wang 2002;
Goudet et al. 2018). A related, but subtle, issue is that the assumed base population itself (as
opposed to the sample) may contain a significant fraction of relatives and inbred individuals
(such as might be expected in captive-bred population). A random pair of individuals from
this population has some reasonable chance of being related and/or inbred. IBD estimates
in this setting are best thought of as differences in IBD status relative to that expected in
random draw from the reference population (Goudet et al. 2018), and, as such, can take on
negative values.

To proceed under the assumption of an appropriate sample from a random-mating
reference population, let s` denote the probability that two randomly drawn alleles in the
base are AIS. As shown by Lynch (1988c), the expected value for Sxy,` is given by

E[ Sxy,` ] = Θxy + (1−Θxy)s` (8.10a)

namely, Θ if they are related (IBD, hence AIS), and s` if they are not related, latter occurring
with probability 1 − Θ (not IBD). Here s` is the expected AIS sharing among a randomly
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drawn pair of individuals from the reference population. Underestimating of the amount
of AIS sharing between random individuals results in overestimation of relatedness, while
overestimation of AIS results in underestimation of relatedness.

For a biallelic locus in Hardy-Weinberg,

s` = p2
` + (1− p`)2 = 1− 2p`(1− p`) (8.10b)

where p` is the SNP allele frequency in the reference population, a value typically estimated
from the sample. When this is done, Queller and Goodnight (1989) recommend first remov-
ing the pair under consideration from the sample, and then estimating p` using this reduced
sample. While this is reasonable, the pair may share a rare allele, in the extreme only present
in the pair, in which case the reduced sample estimate would be zero. If the sample size is
modest to large, including the pair of interest when estimating p` should introduce little
bias, provided the average coancestry in the sample is very close to zero.

Rearranging Equation 8.10a suggests a more general method of moments estimator
(Lynch 1988)

Θ̂xy,` =
Sxy,` − s`

1− s`
(8.10c)

(note the similarly to Equation 8.5). If we weight all markers equally, then a composite
estimate of Θxy based on L markers (either globally, with the markers spread across the
genome, or locally, with the markers restricted to a chromosome or chromosomal segment)
is given by

Θ̂xy =
1
L

L∑
`=1

Θ̂xy,` (8.10d)

Lynch and Ritland (1999) suggested that equal weighting is not optimal (in terms of pro-
ducing the smallest sampling variance), but rather each estimate should be weighted by
its sampling error. Eding and Meuwissen (2001) obtained the sample variance of Equation
8.10c, assuming that s` is known without error, as

σ2
(
Θ̂xy,`

)
=

s` + Θxy(1− 2s`)−Θ2
xy(1− s`)

1− s`
= w−1

` (8.10e)

Hence, a more optimal estimator is

Θ̂xy =
1
W

L∑
`=1

w` Θ̂xy,`, with W =
n∑

`=1

w` (8.10f)

Equation 8.10e shows that optimal weights are functions of the parameter we are attempting
to estimate, but one could substitute an initial estimate and then iterate until convergence.

Negative estimates of Θ can arise when Sxy,` < s` over a large number of loci, implying
that these individuals are less related than expected by chance (relative to random individu-
als drawn for the reference population). Assuming s` = 0 eliminates this problem (the
assumption behind Equation 8.9b), but also introduces bias (Speed and Balding 2015; Ack-
erman et al. 2017). Oliehoek al. (2006) obtained an adjusted value for s` to ensure that all
the Θ̂xy are nonnegative, but again this likely introduces some slight bias. Such attempts
to force estimates to be nonnegative are largely based on the incorrect interpretation that Θ
must be positive. As discussed above, negative estimates are both expected and biologically
interpretable.

Alternatively, one can base an estimator on the total number of shared AIS alleles over
L loci (Day-Williams et al. 2011). First, define

Sxy =
L∑

`=1

Sxy,` (8.11a)
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which is the total number of AIS alleles shared between x and y over all scored markers.
This has expected value

E[ Sxy ] =
L∑

`=1

E[ Sxy,` ] =
L∑

`=1

[Θxy + (1−Θxy)s`] = LΘxy + (1−Θxy)
L∑

`=1

s` (8.11b)

Rearranging yields the Day-Williams estimator

Θ̂xy,DW =
Sxy −

∑L
`=1 s`

L−
∑L

`=1 s`

(8.11c)

The distinction between the estimators given by Equations 8.10d and 8.11c is that the former
corrects for AIS on a locus-by-locus basis, while the latter corrects for the summed total of AIS
over all loci. Equation 8.10b gives the values of s` under the assumption of an appropriate
sample from a random-mating reference population.

When these assumptions about either the sample, or the base population itself, are
incorrect, these AIS corrections can be biased. A simple, but robust, way around this com-
plication is the Weir-Goudet estimator (2017). This can be expressed as either the total
number (S) or proportion (M = S/L) of AIS alleles over L loci,

Θ̂xy,WG =
Sxy − S

L− S
=

Mxy −M

1−M
(8.12a)

where n is the sample size and

S =
1

n(n− 1)

n∑
j 6=i

n∑
i=1

Sij (8.12b)

is the average sharing over all pairs of individuals in the sample (with M = S/L). The Weir-
Goudet estimator measures how much a given pair departs from a random pair comparison
and, as such, can take on negative values. The latter simply means that is pair is less similar
than an average comparison in the sample. This estimator does not attempt to estimate
base-population allele frequencies, and simply takes the base population as the sample,
which could contain a significant fraction of inbred individuals and/or relatives. Again, for
a small sample one could compute S by first removing the pair of interest.

Single-point Correlation Estimators

Closely related to IBD probability-based estimators (Equations 8.9–8.12) are estimators
based on the average correlation among alleles. As mentioned, f (and by extension Θ)
can be regarded as either an IBD probability or a correlation among alleles (Cotterman
1940; Malécot 1948). This equivalence of Θ with a correlation immediately suggests why
some estimates can be negative, with Θ < 0 implying that the two individuals are more
dissimilar than expected by chance. This provides a complementary viewpoint to negative
estimates based on IBD probabilities, which are interpreted as the IBD probability for a
specific pair being less than the expected IBD probability for a random pair from the base
population.

To proceed, code the two alleles at a given SNP locus (`) as 0 or 1, and let the random
variable b` denote the value of a randomly drawn allele from this SNP, where E[b`] = p`

is the frequency of the reference allele (1), and σ2(b`) = p`(1− p`). Analogous to Equation
8.10a, the probability that a randomly drawn allele from x and y are both 1 is

Pr(bx,` = by,` = 1) = Θxyp` + (1−Θxy)p2
` (8.13a)
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which rearranges to

Θxy,` =
Pr(bx,` = by,` = 1)− p2

`

p`(1− p`)
=

E[bx,` by,`]− (E[b`])
2

p`(1− p`)

=
σ(bx,`, by,`)

σ(bx,`)σ(by,`)
= ρ(bx,`, by,`) (8.13b)

namely, the correlation, ρ, between a random allele in x and a random allele in y. Toro et al.
(2011) recode Equation 8.13b by using the fraction of reference alleles at locus ` in individual
x,

gx,` =


0 for 00
1/2 for 10
1 for 11

(8.13c)

to obtain the single-locus estimate of Leutenegger et al. (2003)

Θ̂xy,` =
(gx,` − p`)(gy,` − p`)

p`(1− p`)
(8.13d)

where p` is the allele frequency in the base population, which is generally replaced by the
average allele frequency, p̂`, in the sample. This can introduce significant bias, especially
for rare alleles (Yang et al. 2010a).

Similarly, we can consider the correlation in reference allele copy number between x
and y. Let Tx,` denote the number of copies of allele 1 (from SNP `) that x carries, where
Tx,` = 0, 1, or 2, corresponding, respectively to SNP genotypes of 00, 10, and 11 (note
that Tx,` = 2gx,`). Hence, E[T`] = 2p`, yielding a contribution to the covariance in T` (the
molecular covariance; Toro et al. 2011) between two relatives of

(Tx,` − 2p`) (Ty,` − 2p`)

The variance in T` is σ2(T`) = E[T 2
` ]− (E[T`])2, which under, Hardy-Weinberg, becomes[

02 · (1− p`)2 + 12 · 2 · p`(1− p`) + 22 · p2
`

]
− (2p`)2 = 2p`(1− p`)

yielding a correlation in T between x and y at SNP ` of

ρ(Tx,`, Ty,`) =
σ(Tx,`, Ty,`)

σ(Tx,`) · σ(Ty,`)
=

(Tx,` − 2p`) (Ty,` − 2p`)
2p`(1− p`)

(8.14a)

To relate ρ(Tx,`, Ty,`) with Θxy , we write Tx,` = bx,` + b′x,`, where b and b′ represent the two
SNP alleles in x, to yield that

σ(Tx,`, Ty,`) = σ(bx,` + b′x,`, by,` + b′y,`) = 4σ(bx,`, by,`)

Substituting this result into Equation 8.14a and recalling Equation 8.13b yields

ρ(Tx,`, Ty,`) =
4σ(bx,`, by,`)
2p`(1− p`)

= 2
[
σ(bx,`, by,`)
p`(1− p`)

]
= 2ρ(bx,`, by,`) = 2Θxy (8.14b)

Again, the issue is how to translate the single locus correlation estimators (Equation
8.14a) into a composite single estimate. Weighting each locus equally yields

Θ̂xy,V 2 =
1

2L

L∑
`=1

ρ(Tx,`, Ty,`) (8.15a)

=
1

2L

L∑
`=1

(Tx,` − 2p`) (Ty,` − 2p`)
2p`(1− p`)

(8.15b)
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Widely used (e.g., Hayes et al. 2009; Yang et al. 2010a, 2011a), this estimator appears to be
proposed first by VanRaden (2007, 2008) and is often called VanRaden’s second method.
The concern is that SNPs with rare alleles are much more heavily weighted, with weight
∼ 1/q` where q is the minor allele frequency. At first blush, this seems reasonable, as the
sharing of rare alleles does indeed provide stronger evidence for IBD than the sharing of
common alleles. However, the base-population frequencies of such rare alleles are difficult
to estimate with precision, and hence these large weights have very large sampling errors.
Yang et al. (2011a) proposed a regression-based correction to adjust Equation 8.15b for using
estimated frequencies in place of the true frequencies.

An alternative, and potentially more robust, estimator was also offered by VanRaden
(2008), namely VanRaden’s first method,

Θ̂xy,V 1 =
∑L

`=1 (Tx,` − 2p`) (Ty,` − 2p`)

4
∑L

`=1 p`(1− p`)
(8.16a)

This estimator weights all loci equally, and can be thought of as the sum of the single-locus
covariances in allelic copy number divided by the sum of the variances in allelic copy num-
ber. Note that all of these correlation-based estimators (Equations 8.13d, 8.15b, and 8.16a)
require unbiased estimates of the base population allele frequencies and further assume that
the base population is an unstructured, randomly mating population. When either of these
assumptions fail, these yield potentially biased estimates. Both of the VanRaden estimators
(Equations 8.15b and 8.16a) are special cases of the estimator

Θ̂xy,s =
∑L

`=1 (Tx,` − 2p`) (Ty,` − 2p`) [2p`(1− p`)]s

2
∑L

`=1[2p`(1− p`)](1+s)
(8.16b)

where s = 0 and s = −1 correspond, respectively, to VanRaden’s first and second methods.
The choice of s places different amounts of emphasis on SNPs with rare alleles, with s = 0
weighting them equally, and s = −1 assigning them more weight.

Example 8.5 Wang et al. (2017) showed that many of the above method of moments estimators
of Θ (e.g., Equations 8.11c, 8.15b, 8.16b) can be written as special cases of a more general single-
locus estimator

Z`(a`) =
Tx,` · Ty,` − a`(Tx,` + Ty,`) + 2a`p` − 4p2

`

p`(1− p`)
(8.17a)

Specifically, they showed that E[Z`(a`)] = Θ for all values of a` (when the ture allele frequen-
cies are used). These locus-specific values are then weighted to form the composite estimate

Θ̂xy(a,w) =
L∑

`=1

w` · Z`(a`), where
L∑

i=1

wi = 1 (8.17b)

with a = (a1, · · · , aL)T the vector of locus-specific a values for Equation 8.17a, and w =
(w1, · · · , wL)T the vector of weights for the Z`. From Equation 3.11b,

σ2
[
Θ̂xy(a,w)

]
=

L∑
i=1

w2
i σ2 [Zi(a)] +

L∑
j 6=i

L∑
i=1

wiwjσ [Zi(a), Zj(a)] (8.17c)

In the absence of LD, the double sum is zero, as genotypes are uncorrelated over loci. Wang
et al. found that the optimal weights that minimizes Equation 8.17c are functions of the true
relatedness (e.g., Equation 8.10e). They suggested an improved estimator for Θ by using a
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two-step process: First, one uses a standard method to provide initial estimates for Θ. These
are then submitted into their expressions to obtain the optimal weights in Equation 8.17b to
generate an updated estimate.

Usually when estimating Θ, the goal is to obtain all pairwise combinations among a
collection of individuals, with the results compactly displayed in matrix form (Chapter
9), namely the numerator relationship matrix, A. This matrix arises when using BLUP, in
genomic prediction, and in correcting for cryptic relationships in a GWAS (Chapters 10,
20, 31, and 32). The ijth element of A is 2Θij (the weight on the additive genetic variance;
Equation 7.11a), and can be estimated either by using expected values from a pedigree
(Chapter 7), or the realized values from marker estimates. In the latter setting, this matrix
is usually denoted by G and is called the genomic relationship matrix (VanRaden 2008).
Example 9.14 shows how both VanRaden estimators for all pairwise comparisons in a sample
can be compactly written in matrix form. Chapter 31 examines methods for combining both
pedigree and marker information, generating a pedigree-genomic relationship matrix, H
(Legarra et al. 2009; Christensen and Lund 2010).

Which Single-point Θ Estimator Should be Used?

Most of the early studies examining the effectiveness of various marker-bases estimators of
Θ were done in the era when just a few dozen SSRs, or up to a few hundred SNPs, were
scored. Generally, these studies found that the correlation between values predicted from
known pedigrees and values predicted from markers was modest. Part of this divergence is
expected, because we are contrasting an expected value (pedigree) with a specific realization
(markers). The latter, provided that we can estimate it with precision, is the more accurate
measure of relatedness. A second source of error, that does not diminish as one adds more
markers, is potentially biased corrections for AIS. Most methods use a Hardy-Weinberg
correction (e.g., Equation 8.10b), which requires accurate estimates of the base population
allele frequencies, and more subtly, that the base population itself is randomly mating.
Typically, allele frequencies are estimated from a reference sample, which leads to biased
estimates if the sample is not representative of the base or if the sample contains any relatives
or inbreds (Wang 2014). These complications can be dealt with by using the reference sample
as the base, and then adjusting for the value of a randomly draw pair from the reference
(e.g., the Weir-Goudet estimator; Equation 8.12).

Despite these concerns, more recent studies using significantly more markers found
much better performance. For example, good performance has been found using 103 SNPs in
captively bred populations of zebra finches (Santure et al. 2010), pigs (Lopes et al. 2013), and
cattle (Rolf et al. 2010), and in natural populations of soay sheep (Bérénos et al. 2014). Goudet
et al. (2018) suggested that 104 SNPs will very efficiently estimate realized Θ values in most
settings, especially when using the reference sample as the base and an AIS correction based
on sample properties (Equation 8.12b rather than Hardy-Weinberg). All of this leads to the
current consensus that estimating relatedness using on the order of 104 SNPs provides
a more accurate picture of shared relatedness than a pedigree constructed without error
(Wang 2016). Early contrary views (e.g., Van Horn et al. 2007) were influenced by the poor
performance of estimators using only a modest number of markers.

In terms of the relative performance of specific estimators, if the population sample
consists mainly of outbred and unrelated individuals, most methods perform equally well,
with some methods slightly better for close relatives and others slightly better for more
distant relatives. When the sample size, and/or the actual base population is small, such that
both inbreds and relatives are common, then the Weir-Goudet estimator performs better, as
it does not assume Hardy Weinberg and does not rely on estimates of base-population allele
frequencies. Their AIS corrector, S, also takes into account correlations among marker alleles
at different loci, so this class of estimators is at least somewhat robust to SNP oversampling
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(high correlations among SNPs). Methods that are sensitive to rare alleles, namely when
single-locus results are weighted differentially (e.g., Equation 8.10f; 8.13d, 8.15b), are very
sensitive to estimates of these frequencies, and can be problematic.

LD-informed Estimators

Estimators leveraging linkage disequilibrium information—correlations between alleles at
different markers—fall into two distinct categories. The first approach is a straight-forward
extension of combining the single-locus estimators, with the weighting scheme for the site-
specific estimates being modified to adjust for correlations among marker alleles at different
loci (Day-Williams et al. 2011; Speed et al. 2012; Wang et al. 2017). Equation 8.17c shows
their basic variance structure, with the double sum of covariances accounting for the effects
of linkage and LD. These estimates return improved (lower sampling error), and usually
more robust, estimates of Θ.

The second approach uses very dense SNP data to locate shared stretches of IBD—
segmental IBD—in distant relatives (Purcell et al. 2007; Browning 2008; Kong et al. 2008; Al-
brechtsen et al. 2009; S. Browning and B. Browning 2010, 2012; Gusev et al. 2009; Manichaikul
et al. 2010; B. Browning and S. Browning 2011, 2013; Han and Abney 2011; Huff et al. 2011;
Moltke et al. 2011; Lawson and Falush 2012; Durand et al. 2014; Li et al. 2014; Glazner and
Thompson 2015; Staples et al. 2016; Ramstetter et al. 2017). In Europeans, IBD segments as
small as 2 cM (roughly 2 Mb) can routinely be detected using standard SNP arrays (Brown-
ing and Browning 2012), which represent individuals with a common ancestor of around 25
generations in the past. Recall from Example 8.4 that most pairs with such distant ancestors
likely share no IBD segments (Equation 8.8a gives this probability as 99.4%), but when they
do, the segments are often long enough to be detectable. Applying Equation 8.8c (with the
values of M and L used in Example 8.4) gives an expected size of 1.7 Mb for 25 generations,
but there is considerable variation about this value, with some segments being substan-
tially longer. The signal used to declare a region as being IBD is an anomalously long run of
matching (AIS) SNP alleles across the two individuals. This requires a sufficient number of
polymorphic SNPs, with the minimal segment length that can be detected being a function
of the amount of polymorphism per unit of recombination. As such, the minimal size can
vary dramatically over both populations and species. It can also vary dramatically within
a genome or chromosome, as regions of low recombination (such as around centromeres)
tend to have greatly reduced levels of polymorphism (WL Chapter 8).

The computational approach for detecting IBD segments is based on hidden Markov
models (HMMs). Full details can be found in most of the above references, but the basic
idea is as follows. One starts at a given position on a chromosome with some estimate of
the site IBD status based on marker information. The IBD state at an adjacent site is then
predicted using a transmission probability (based on map distance and marker information)
of remaining in the current state (the adjacent site has the same IBD status as the starting
site) or moving to a new state (the new site has a different IBD status). One then moves to
the next adjacent site and repeats the process. The resulting output is a probability map for
runs of IBD across a chromosomal region. Underpinning this sophisticated mathematics is
a rather simple idea: as was the case for rare alleles, individuals that share rare (highly
improbable) haplotypes are likely related.

It is important to recall one of the lessons from Example 8.4, namely, that distant
relatives only share short segments of IBD (if at all) that are randomly distributed over their
genomes, resulting in a chimeric organization of shared IBD regions over a chromosome.
Suppose that individuals x, y, and z all shared the same relative in the distant past. By
chance, pairs from this group will share different IBD segments from this ancestor (if they
share any at all). For example, x and y may share a segment on (say) chromosome one, but x
and z may not, but rather could share a segment on chromosome three, while y and z share
a segment on chromosome five. Similarly, x and w may share a different common ancestor,
so that while part of chromosome one in x and y has an IBD segment from the x-y common
ancestor, a nearby region in x and w may share a different IBD region from the x-w common
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ancestor. Hence, when the sample contains a set of individuals with only distant ancestors,
the genome of a focal individual is a patchwork of IBD segments, with most of the genome
not sharing any IBD blocks with others in the sample, while the rest is a collection of small
segments that are IBD with different sets of sampled individuals.

Quantification of the amount of shared IBD segments between a pair of individuals
provides a direct measure of the total fraction of the genome shared by the pair (total length
of shared IBD segments divided by diploid genome size), and hence a value of 2Θ. While
physical distance (e.g., base pairs) are often used, the more appropriate metric is the amount
of recombination (e.g., cMs), as the size of IBD regions is a function of their recombination
rate. This is the continuous relatedness measure for this pair, which is often attempted to be
mapped into a discrete relationship category, such as 5th cousins. Several of the programs that
search for IBD segments return such genealogical estimates, usually in the form of the total
number, m, of meioses that separate the two focal individuals. For example, Huff et al. (2011)
developed an ML estimator for m, while Purcell et al. (2007) considered the smallest value
of m that is consistent with the number and length of IBD segments. Applying Equation
7.6, we can translate an estimate of m into an estimate of Θ, with Θ̂ = (1/2)m̂. However, as
noted earlier, as the common ancestor becomes more distant, both the skew and CV of the
amount of IBD sharing increases, creating every-larger uncertainties about the true nature
of the relationship (Hill and Weir 2011). Indeed, Speed and Balding (2015) have argued that
the notion of a specific relationship has little merit in the era of whole-genome sequencing,
as one can directly measure the fraction of two genomes that are shared AIS.

MARKER-BASED ESTIMATES OF THE COEFFICIENTS OF

INBREEDING (f ) AND FRATERNITY (∆xy)

The logic used above for developing estimates for Θ extends to other relatedness metrics.
We consider two here: the amount fx of inbreeding in individual x, and the coefficient of
fraternity ∆xy between x and y. As above, while pedigrees can estimate expected values
for these quantities (Chapter 7), with sufficiently dense marker data we can estimate the
actual realizations, which can be deviate substantially from their pedigree-expected values.
Similarly, correcting fx and ∆xy estimators for AIS alleles depends on assumptions about
the base population.

Single-point Estimators of f

With probability f , the two alleles at a randomly chosen locus in an inbred individual are
IBD. Hence, the impact of inbreeding on genotype frequencies is straightforward (Chapter
12): decreasing the frequency of heterozygotes relative to Hardy-Weinberg,

Freq(A`a`) = (1− f)2p`(1− p`) (8.18a)

and correspondingly increasing the frequency of homozygotes,

Freq(A`A`) = fp` + (1− f)p2
` = p2

` + fp`(1− p`) (8.18b)

It is important to stress that an inbred individual has a genome consisting of a mixture
of inbred and outbred loci (or, more accurately, chromosomal segments), with a fraction f
that are inbred and fraction (1− f ) that are not. Absent a rare mutation, an inbred locus is
never heterozygous, while homozygotes can occur at both inbred (autozygous) and outbred
(allozygous) loci.

The issue in estimating the fraction, f , of an individual’s genome that is autozygous is
separating autozygous from allozygous homozygotes. This is usually done by comparing
the observed homozygosity with the value expected given some reference population. In
exactly the same fashion, the deficiency of heterozygotes also provides an estimate of the
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fraction of the genome that is autozygous. Both these approaches raise, once again, the criti-
cal issue of the appropriate reference population. In many settings, the reference population
itself may be inbred, so that an estimate of f , as with Θ above, reflects the relative difference
in f between the focal individual and a random individual from the reference, and thus can
be negative.

A number of method of moments estimators have been proposed based around the
comparison of observed versus expected homozygosity (or heterozygosity) values. We first
consider single-point estimates (f for a specific site), from which a composite estimate for
the genome (or chromosomal region) is constructed by some weighting scheme of the point
estimates. The basic structure is as follows. Consider a focal individual (x), and (as above) let
Tx,` denote the copy number of reference alleles (which we arbitrarily take as the major—
more common–allele, and denote it by 1) at locus ` in x (taking on values of 0, 1, or 2;
corresponding, respectively to SNP genotypes of 00, 10, and 11). Note that Tx,`(2− Tx,`) is
only nonzero for a heterozygote. The expected heterozygote frequency when an individual
is inbred to level f is given by Equation 8.18a. We can use this equation to obtain an estimate
of f using multilocus data in several ways. First, one could simply average both sides of
Equation 8.18a over L markers in the focal individual, yielding the expectation

E

[
1
L

L∑
`=1

Tx,`(2− Tx,`)

]
= (1− f)

1
L

L∑
`=1

2p`(1− p`) (8.19a)

which rearranges to give the estimator

f̂HOM,1 = 1−
∑L

`=1 Tx,`(2− Tx,`)∑L
`=1 2p`(1− p`)

= 1− O[Het]
E[Het]

(8.19b)

where O[Het] and E[Het] =
∑

` 2p`(1− p`) denote, respectively, the numbers of observed
and expected marker heterozygotes within an individual. We can equivalently consider
Equation 8.19b as an estimate based on the observed excess in homozygotes, rearranging
to yield (Purcell et al. 2007)

f̂HOM,1 =
O[Hom]− E[Hom]

L− E[Hom]
(8.19c)

which follows from noting that O[Hom] + O[Het] = E[Hom] + E[Het] = L. Hence

E[Hom] = L− E[Het] = L−
L∑

`=1

2p`(1− p`) (8.20a)

E[Hom] and E[Het] are, respectively, the expected number of homozygous and het-
erozygous marker loci in a random individual from a randomly mating base population.
These are akin to the AIS corrections in many of the above estimates ofΘ, which also critically
depended on random mating and known allele frequencies. When inbreeding is present
in the base population, these assumptions fail. The approach taken by the Weir-Goudet
estimator (Equation 8.12) offers a robust solution to this problem. Instead of calculating the
expected number of homozygotes (or heterozygotes) under random mating assumptions,
we instead use the average value of these in the reference sample. For example,

E[Het] =
1
n

n∑
i=1

(
L∑

`=1

Ti,`(2− Ti,`)

)
(8.20b)

with E[Hom] = L−E[Het]. For small samples, one could compute Equation 8.20b with the
focal individual excluded. These values are substituted into Equation 8.19b and 8.19c, with
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the estimated f now being the departure from the average base population value, which
can easily be negative (less inbred than a random individual from the base population).

An alternative estimator for f follows by rearranging Equation 8.18a to give (Li and
Horvitz 1953)

f = 1− freq(A`a`)
2p`(1− p`)

(8.21a)

which yields

f̂HOM,2 = 1− 1
L

L∑
`=1

Tx,`(2− Tx,`)
2p`(1− p`)

(8.21b)

Equation 8.21b differs from Equation 8.19b in that the latter weights all loci equally, while
the former places more weight on heterozygotes arising from loci with extreme allele fre-
quencies. As such, it is a more delicate estimate than Equation 8.19, being overly sensitive
to rare alleles (with their corresponding estimation uncertainties).

The same logic leading to Equation 8.15 can be used to obtain an estimator based on
the correlation among uniting gametes (Yang et al. 2010a),

f̂Y =
1
L

L∑
`=1

γ`, with γ` =
T 2

x,` − (1 + 2p`)Tx,` + 2p2
`

2p`(1− p`)
(8.22a)

where the locus-specific estimators simplify to

γ` =


(1− p`)/p` for 1`1` (Tx,` = 2)
−1 for 1`0` (Tx,` = 1)
p`/(1− p`) for 0`0` (Tx,` = 0)

(8.22b)

Because p` ≥ 1/2 (by construction, as we take 1` to be the major allele), these weights place
more value on the rare homozygote (0`0`) than on the common homozygote (1`1`). Equation
8.22a computes how similar the alleles at SNPs are within an individual relative to randomly
mating individual from the base population. As such, it is a biased estimate when the base
population itself is inbred, and/or if we have a biased estimate of the base population allele
frequencies. Finally, recall Equation 7.3b, fx = 2Θxx− 1, so that one can repurpose many of
the above Θ estimators by simply considering the coancestry of an individual with itself.

Several authors have proposed more sophisticated ML based estimators for f , which
have been extended to allow for null alleles and to jointly estimate the allele frequencies
along with f (Vogl et al. 2002; Wang 2011a; Hall et al. 2012). These are computationally more
feasible than ML estimates of Θ, as one only has to obtain n estimates, as opposed to the
n(n− 1)/2 pairwise estimates for Θ.

LD-based Estimators of f : Runs of Homozygosity (ROHs)

Previously, we used dense SNP data to detect blocks of shared IBD segments between two
individuals. We extend this approach to detect inbreeding by considering stretches within
an individual that are IBD between its two homologous chromosomes. The idea is to use
runs of homozygosity (ROHs), where a run is defined as a continuous DNA segment that is
completely homozygous (Broman and Weber 1999; Chapman and Thompson 2003; Purcell
et al. 2007; McQuillan et al. 2008; Howrigan et al. 2011; Keller et al. 2011; Curik et al. 2014;
Peripolli et al. 2016; Ceballos et al. 2018). This is the extension of the idea of autozygous
versus allozygous from loci to chromosomal segments (Browning and Browning 2011 refer
to an autozygous segment as homozygosity by descent, HBD). This leads to the simple
estimate of the fraction of the genome that is autozygous as

f̂ROH =
total length of ROHs

genome size
(8.23)
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The key issue is distinguishing between an allozygous ROH arising by chance in an
outbred individual versus an autozygous ROH arising from HBD, with our intuition being
that longer ROHs are more likely to be autozygous. This is often done using so-called
rule-based methods, namely specifying a size threshold used to designate a homozygous
region as a ROH. The delicate problem is linkage disequilibrium, as a sufficiently short region
of DNA persists in the population as essentially a block, and thus should be weighted as
a single locus. Hence, a short ROH could be consistent with allozygosity, having no more
weight that a single homozygous SNP. McQuillan et al. (2008) suggested a minimal threshold
size in excess of the 100kb LD block size commonly found in many human populations,
whereas later authors suggested much higher threshold values. Obviously, the LD structure
of different populations/species would result in different threshold levels, see Ceballos et
al. (2018). At a minimum, the ROH threshold should be (at least) several times larger that
the average LD block size for the genomic region of interest.

The distribution of HBD length is approximately exponential with parameter M/(2g),
where M is length in Morgans of the region of interest (typically, a chromosome) and g
is the number of generations since the common ancestor (Fisher 1954). For example, in
a region with an average recombination rate of 1 cM (0.01 Morgans) per Mb of DNA,
a threshold size of 5 Mb corresponds to ancestors within the last 10 generations, while a
threshold size of 0.5 Mb corresponds to ancestors within the last 100 generations. Hence, long
ROHs represent very recent inbreeding, while short ROHs may represent ancient inbreeding
blocks that have yet to be broken up by recombination. The choice of a threshold thus
represents a user-defined balance between the control of false positives (longer ROHs have
lower false-positive rates of autozygosity) versus reduced power (ignoring shorter runs
that, cumulatively, may be biologically important). This lack of a clearly defined threshold
generates a certain amount of arbitrariness for ROH-based estimates of f . We examine this
more in detail in Chapter 12.

A second issue is that using the physical genome size is not the appropriate metric for
Equation 8.23. There is a general trend for genomic regions with low recombination rates to
have very reduced variation (WL Chapter 8). Hence, large regions of the genome, such as
around centromeres, show little variation, inflating the genomic fraction of ROHs (McQuil-
lan et al. 2008). Auton et al. (2009) and Gazal et al. (2014) suggested that a more reasonable
approach would be to score both ROHs and total genome size in terms of Morgans, namely
genetic distances (expected number of crossovers), rather than physical distances (base pairs).
Auton et al. suggested a threshold ROH value of 1 cM.

A more formal approach would be to use models that incorporate SNP-calling and
sequencing errors, as well as mutation rate estimates, to infer ROHs, rather than a strict ad-
herence to exact homozygosity throughout a long sequence. A number of authors have pro-
posed both ML and HMM approaches to accommodate these concerns (Broman and Weber
1999; Leutenegger et al. 2003; Purcell et al. 2007; Wang et al. 2009; Browning and Browning
2010, 2013; Pemberton et al. 2012; MacLeod et al. 2013; Gazal et al. 2014; Narasimham et al.
2016; Vieira et al. 2016; Druet and Gautier 2017; Solé et al. 2017; Szpiech et al. 2017). Because
estimates of f are mainly used in studies of inbreeding depression, we defer discussion of
which estimator is most appropriate until Chapter 12.

Estimators of ∆xy

The last relationship metric we consider is the coefficient of fraternity, ∆xy , the probability
that x and y share two alleles IBD (Chapter 7). In the literature, it is occasionally referred to as
the four-gene relationship coefficient, with Θ being the two-gene relationship coefficient.
This metric is of interest in that it is the weight on any dominance variance shared by
relatives (Equation 7.11b) and it also arises in studies of inbreeding depression (Chapter
12). Equation 7.8 shows that a nonzero value of ∆xy requires special circumstances, namely
that the parents (mx, sx and my, sy) of x and y must be related, as

∆xy = ΘmxmyΘsxsy + ΘmxsyΘsxmy (8.24)

As a result, nonzero values of ∆ require that either (i) both the mothers and the fathers are
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related, or (ii) the father of x and the mother of y, and the father of y the mother of x, are
related. Such complex relationships in a sample are expected to be much less frequent than
sets of relatives that simply share a single IBD allele at a given locus (e.g., Table 7.2). In any
sample, the number of pairs of relatives with nonzero ∆xy values is thus expected to be far
less than those that have a nonzero Θxy values, resulting in lower power and less precision
when estimating the former relative to the latter. Equation 8.24 also shows that the expected
value of ∆ scales as the square of Θ, Hence, not only are pairs of relatives with nonzero ∆
expected to be much scarcer than relatives with nonzero Θ values, the resulting value of ∆
is expected to be much smaller, and really only of significance between fairly close relatives.

Both methods of moments (Ritland 1996b; Lynch and Ritland 1999; Wang 2002) and
likelihood (Milligan 2003; Ackerman et al. 2017) estimators of ∆xy have been proposed. Our
focus here is on method of moment estimators. The basic structure of likelihood estimators
follows using logic similar to that for paternity assessment, see Appendix 4 (in particular,
Example A4.7) for details.

For a biallelic marker (such as a SNP), the Lynch and Ritland (1999) and Wang (2002)
single-locus estimator based on marker locus ` is

∆̂xy,` = 1− (4− 4Ixy,2 − 3Ixy,1) h` − 2(1− Ixy,2 − Ixy,1)
h2

`

(8.25a)

where h` = 2p`(1 − p`) = 1 − p2
` − (1 − p`)2 is the probability that a random individual is

not a homozygote at locus i. The two AIS indicator variables are defined by

Ixy,2 =


1 if x = 00, y = 00
1 if x = 10, y = 10
1 if x = 11, y = 11
0 otherwise

(8.25b)

namely, that x and y are AIS for the marker genotypes, while I1 indicates that one individual
is a homozygote and the other a heterozygote,

Ixy,1 =


1 if x = 00 or 11, y = 10
1 if x = 10, y = 00 or 11
0 otherwise

(8.25c)

Extensions to markers with multiple alleles are given by Lynch and Ritland (1999) and Wang
(2002). Again, this estimator assumes known allele frequencies in a random-mating base
population, as an unbiased value of h2

` depends on these assumptions holding.
As with any single-point estimator, the issue is how one weights individual locus results

to obtain a single composite estimator over all the markers in the region of interest (chro-
mosome or entire genome). One could use the Li and Horvitz (1953) scheme of weighting
by heterozyogsity, w` = h−1

` , giving the composite estimator for L independent loci as

∆̂xy =
1
W

L∑
`=1

w` ∆̂xy,` (8.25d)

with W =
∑

w`. Lynch and Ritland (1999) weight using the inverse of the sampling vari-
ance (which, in part, depends on the unknown parameters to be estimated), while other
weighting schemes are examined by Wang (2002). Improved (smaller variance) composite
estimators could be obtained using the approach of Wang et al. (2017), by first estimating
the relationship metrics using a standard method, and then substituting these values into
the Lynch and Ritland expressions for optimal weights. One could iterate of this approach
until the weights stabilize.
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An alternative estimator was suggest by Zhu et al. (2015), which is the dominance
counterpart of Equation 8.15b,

1
L

L∑
i=`

(
(x`j − 2p2

`) (x`k − 2p2
`)

4p2
`(1− p`)2

)
(8.26a)

where the value of x`i for locus ` in individual i is given by

x`i =


0 genotype is 00
2p` genotype is 10
(4p` − 2) genotype is 11

(8.26b)

In general, the sampling variance of ∆̂ scales as 1/(Ln2
a), where L is the number of

markers and na the number of alleles per marker (Lynch and Ritland 1999). Using a smaller
number of highly polymorphic markers (such as SSRs) can thus be more powerful that
using a larger number of less informative markers. In contrast, the sampling variance for
estimates of Θ tends to scale as 1/(Lna) (Lynch and Ritland 1999; Wang 2002), so that adding
more markers has the same impact as adding more alleles per marker. The extra sensitivity
of estimates of ∆xy to the number of alleles is intuitive, as such estimates are based on the
marker genotypes of x and y being AIS, and hence the more even alleles frequencies are, the
greater the power. Given our comments that nontrival values of ∆ are generally restricted to
rather close relatives, SSRs can have reasonable power in detecting coefficients of fraternity.
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Städele, V., and L. Vigilant. 2016. Strategies for determining kinship in wild populations using genetic
data. Ecol. Evol. 6: 6107–6120. [8]

Stam, P. 1980. The distribution of the fraction of the genome identical by descent in finite random
mating populations. Genet. Res. 35: 131–155. [8]

Stam, P., and A. C. Zeven. 1981. The theoretical proportion of the donor genome in near-isogenic lines
of self-fertilizers bred by backcrossing. Euphytica 30: 227–238. [8]

Staples, J., and 6 others. 2016. PADRE: Pedigree-aware distant-relationship estimation. Am. J. Hum.
Genet. 99; 154–162. [8]

Suarez, B. K., T. Reich, and P. M. Fishman. 1979. Variability in sib pair genetic identity. Human Hered.
29: 37–41. [8]

Szpiech, Z. A., A. Blant, and T. J. Pemberton. 2017. GARLIC: Genome Autozygosity regions likelihood-
based inference and classification. Bioinformatics 33: 2059–2062. [12]



MARKER-BASED RELATEDNESS 39

Thomas, S. C., and W. G. Hill. 2000. Estimating quantitative genetic parameters using sibships recon-
structed from marker data. Genetics 155: 1961–1972. [8]

Thomas, S. C., J. M. Pemberton, and W. G. Hill. 2000. Estimating variance components in natural
populations using inferred relationships. Heredity 84: 427–436. [8]

Thompson, E. A. 1975. The estimation of pairwise relationships. Ann. Hum. Genet. 39: 173–188. [8]

Thompson, E. A. 1986a. Pedigree analysis in human genetics. Johns Hopkins Univ. Press, Baltimore, MD.
[8]

Thompson, E. A. 1986b. Likelihood inference of paternity. Am. J. Hum. Genet. 39: 285–287. [8]

Thompson, E. A. 1988. Two-locus and three-locus gene identify by descent in pedigrees. IMA J. Math.
Appl. Med. Biol. 5: 261–280. [8]

Thompson, E. A. 2013. Identity by descent: variation in meiosis, across genomes, and in populations.
Genetics 194: 301–326. [8]

Thompson, E. A., and T. R. Meagher. 1987. Parental and sib likelihoods in genealogy reconstruction.
Biometrics 43 : 585–600. [8]

Thornoton, T., and 5 others. 2012. Estimating kinship in admixed populations. Am. J Hum. Genet. 91:
122–138. [8]

Toro, M., L. A. Garcı́a-Cortés, and A. Legarra. 2011. A note on the rationale for estimating genealogical
coancestry from molecular markers. Genet. Sel. Evol. 43: 27. [8]

Toro, M., and 5 others. 2002. Estimation of coancestry in Iberian pigs using molecular markers. Conserv.
Genet. 3: 309–320. [8]

van de Casteele, T., P. Galbusera, and E. Matthysen. 2001. A comparison of microsatellite-based
pairwise relatedness estimators. Mol. Ecol. 10: 1539–1549. [8]

Van Horn, R. C., J. Altmann, and S. C. Alberts. 2008. Can’t get there from here: inferring kinship from
pairwise genetic relatedness. Am. Behav. 75: 1173–1180. [8]

VanRaden, P. M. 2007. Genomic measures of relationship and inbreeding. INTERBULL Bull. 37: 33–36.
[8]

VanRaden, P. M. 2008. Efficient methods to compute genomic predictions. J. Dairy Sci. 91: 4414–4423.
[8]

Vieira, F. G., A. Albreschtsen, and R. Nielsen 2016. Estimating IBD tracts from low coverage NGS data.
Bioinfomraics 32: 2096–2102. [8]

Visscher, P. M. 1996. Proportion of the variation in genetic composition in backcrossing programs
explained by genetic markers. J. Hered. 87: 136–138. [8]

Visscher, P. M. 2009. Whole genome approaches to quantitative genetics. Genetica 136: 351–359. [8]

Visscher, P., M., J. A. Woolliams, D. Smith, and J. L. Williams. 2002. Estimation of pedigree errors in
the UK dairy population using microsatellite markers and the impact on selection. J. Dairy Sci. 85:
2368–2375. [8]

Visscher, P. M., and 7 others. 2006. Assumption-free estimation of heritability from genome-wide
identity-by-descent sharing between full siblings. PLoS Genet. 2: e41. [8]

Visscher, P. M., and 13 others. 2007. Genome partitioning of genetic variation for height from 11,214
sibling pairs. Am. J. Hum. Genet. 81: 1104–1110. [8]

Vogl, C., A. Karhu, G. Moran, and O. Savolainn. 2002. High resolution analysis of mating systems:
inbreeding in natural populations of Pinus radiata. J. Evol. Biol. 15: 433–439. [8]

Walling, C. A., J. M. Pemberton, J. D. Hadfield, and L. E. B. Kruuk. 2010. Comparing parentage
inference software: reanalysis of a red deer pedigree. Mol. Ecol. 19: 1914–1928. [8]

Wang, J. 2002. An estimator for pairwise relatedness using molecular markers. Genet. 160: 1203–1215.
[8]

Wang, J. 2004. Sibship reconstruction from genetic data with typing errors. Genetics 166: 1963–1979.
[8]

Wang, J. 2007. Parentage and sibship exclusions: higher statistical power with more family members.
Heredity 99: 205–217. [8]

Wang. J. 2011a. A new likelihood estimator and its comparison with moment estimators of individual
genome-wide diversity. Heredity 107: 433–443. [8]

Wang. J. 2011b. Unbiased relatedness estimation in structured populations. Genetics 187: 887–901. [8]



40 CHAPTER 8

Wang, J. 2014. Marker-based estimates of relatedness and inbreeding coefficients: an assessment of
current methods. J. Evol. Biol. 27: 518–530. [8]

Wang, J. 2016. Pedigrees or markers: Which are better in estimating relatedness and inbreeding
coefficient? Theor. Pop. Biol. 107: 4–13. [8]

Wang, J., and A. W. Santure. 2009. Parentage and sibship inference from multilocus genotype data
under polygamy. Genetics 181: 1579–1594. [8]

Wang, B., S. Sverdlov, and E. Thompson. 2017. Efficient estimation of realized kinship from single
nucleotide polymorphism genotypes. Genetics 205: 1063–1078. [8]

Wang, S., C. Haynes, F. Barany, and J. Ott. 2009. Genome-wide autozygosity mapping in human
populations. Genet. Epid. 33: 172–180. [8]

Weir, B. S., A. D. Anderson, and A. B. Hepler. 2006. Genetic relatedness analysis: modern data and
new challenges. Nat. Rev. Genet 7: 771–780. [8]

Weir, B. S., and J. Goudet. 2017. A unified characterization of population structure and relatedness.
Genetics 206: 2085–2103. [8]

Williams, J. G. K., and 4 others. 1990. DNA polymorphisms amplified by arbitrary primers are useful
as genetic markers. Nucl. Acids Res. 18: 6531–6535. [8]

Wright, S. 1922. Coefficients of inbreeding and relationship. Am. Nat. 56: 330–339. [8]

Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems
of mating. Evolution 19: 395–420. [8]

Yang, J., S. H. Lee, M. E. Goddard, and P.M. Visscher. 2011a. GCTA: a tool for genome-wide complex
trait analysis. Am. J. Hum. Genet. 88: 76–82. [8]

Yang, J., and 11 others. 2010a. Common SNPs explain a large proportion of the heritability for human
height. Nat. Genet. 42: 565-–569. [8]

Zhang, F., W. Gu, M. E. Hurles, and J. R. Lupski. 2009. Copy number variation in human health,
disease, and evolution. Ann. Rev. Genom. Hum. Genet. 10: 451–481. [8]

Zhu, Z., and 17 others. 2015. Dominance genetic variation contributes little to the missing heritability
for human complex traits. Am. J. Hum. Genet. 96: 1–9. [8]


