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General Linear and Mixed Models
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Linear models form the backbone of most estimation procedures in quantitative ge-
netics and are extensively used throughout this book. They are generally structured such
that a vector, y, of observations of a response variable (y) is modeled as a linear combi-
nation of predictor variables observed along with y (Chapter 9). This chapter introduces
some of the basic tools and key concepts underlying the use of such models. We start with
models that only involve fixed effects (unknown constant to be estimated). Such general
linear models (GLMs) underlie a large number of standard statistical approaches (regres-
sion, ANOVA, etc.), all of which have estimators given by simple matrix expressions. We
then introduce models with random effects (effect values are random draws, or realiza-
tions, from some underlying distribution), which requires estimating the variance of this
underlying distribution in order to predict their realized values. Because they contain both
fixed and random effects, these are called mixed models (MM), and include the GLM as a
special case. Advanced linear model topics are examined in detail in Chapters 30 and 31,
and further comments are given in Appendix 3. Appendix 9 examines experimental design
in the context of linear models.

BASICS OF GENERAL LINEAR MODELS

Equation 9.1a introduced multiple regression, the extension of a univariate regression (Equa-
tion 3.12a) for predicting the value of a response variable y to using multiple sources of infor-
mation (the predictor variables x1, · · · , xp). In quantitative genetics, these predictors could
be traits of interest, molecular marker values, or confounding cofactors to be removed,
such as sex, design blocks, or age effects. Some or all of these predictors could be indicator
variables, with values of 0 or 1 indicating whether an observation belongs in a particu-
lar category or grouping of interest. Models containing only indicator variables are often
termed ANOVA (analysis of variance) models, while regression usually refers to models in
which predictor variables can take on a continuous range of values. Both are special cases of
the general linear model (GLM), wherein the ith observation (yi) is assumed to be a linear
function of m observed and/or indicator variables plus a residual error,

yi = µ+
m∑
k=1

βk xik + ei (10.1)

where xi1, · · · , xim are the values of the m predictor variables for the ith individual.

Linear Models in Matrix Form

For a vector of n observations, Equation 10.1 can be compactly written in matrix form as

yn×1 = Xn×p βp×1 + en×1 (10.2)

where y is the (n×1) vector of observed y values, the design or incidence matrix X is n×p,
β is a (p× 1) vector of parameters (usually called factors or effects) to be estimated, and e
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is the vector of residual errors (or, simply, residuals). Here y and X are known (the data),
while β is estimated, and then used to infer the residuals. For a given value of β,

ŷ = Xβ and ê = y− ŷ (10.3)

where ŷ = Xβ is the (n× 1) vector of predicted values for a given model.
Before examining how to solve Equarion 10.3 (i.e., estimation of β), we first present a

number of examples to give the reader a feel of how various linear models are expressed in
matrix form. This compact representation follows from the definition of matrix multiplica-
tion (Equation 9.6a).

Example 10.1. Consider a multiple regression using k predictor variables,

yi = α+
k∑
j=1

βj xij + ei (10.4)

where xij is the value of the jth predictor variable in observation i. We can think of the ith
observation as having two components: the valueyi of a response variable to be predicted, and
the vector xTi = (1, xi1, · · · , xik) of predictor values for that observation. Forn observations,
this model can be expressed in GLM matrix form as

y =

 y1
...
yn

 , X =


1 x11 · · · x1k

1 x21 · · · x2k
...

...
. . .

...
1 xn1 · · · xnk

 =


xT1
xT2

...
xTn

 , β =


α
β1
...
βk

 , and e =

 e1
...
en



Note from matrix multiplication that yi = xTi β + ei recovers Equation 10.4. The ith row of
X (xTi ) corresponds to the values of the predictor variables from observation i, while the jth
column of X corresponds to the data on parameter j in the experiment. The interpretation of
βi is the change expected in y from a unit change in the predictor variable xi, while holding
all other predictor variables constant.

As a specific example, consider a regression with three predictor variables,

yi = µ+ β1xi1 + β2xi2 + β1xi3 + ei

The predicted value becomes

ŷi = µ+ β1xi1 + β2xi2 + β1xi3

with ei = yi − ŷi being the difference between the observed and predicted values. In matrix
form, this model becomes

y1

y2
...
yn

 =


1 x11 x12 x13

1 x21 x22 x23
...

...
...

...
1 xn1 xn2 xn3



µ
β1

β2

β3

+


e1

e2
...
en



Example 10.2. Consider a half-sib design wherein each of m sires (males) are mated at random
to a number of unrelated dams (females) and a single offspring is measured from each cross.
The simplest model for this design (i.e., ignoring any other potential cofactors) is

yij = µ+ si + eij
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where yij is the phenotype of the jth offspring from sire i, µ is the population mean, si is the
sire effect, and eij is the residual error (the “noise” remaining in the data after the sire effect
is removed). Although this is clearly a linear model, it differs significantly from the regression
model described above in that while there are parameters to estimate (the sire effects, si), the
only measured values are the yij . Nevertheless, we can express this model in a form that is
identical to the standard regression model by using m indicator variables to classify the sires
of the offspring. The resulting linear model becomes

yij = µ+
m∑
k=1

sk xik + eij , where xik =
{

1 if sire k = i

0 otherwise

Suppose that three different sires are used in the above half-sib designand have two, one,
and three offspring, respectively. In matrix form, y = Xβ+ e, with

y =


y11

y12

y21

y31

y32

y33

 , X =


1 1 0 0
1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1

 , β =


µ
s1

s2

s3

 , and e =


e11

e12

e21

e31

e32

e33


This simple example highlights two issues. First, the model is overparameterized, as one

could arbitrary choose a value for µ and adjust each of the sire effect according. We can see
this from the column structure of X, as its first column is simply the sum of columns two
through four. Hence, X has only has three independent columns (it has rank three) and can
only uniquely estimate three parameter combinations. The rank of X impacts the estimability
of model parameters, which we will examine more formally, both below and in Appnedix 3.
We can easily deal with this issue with the modified model

yij = ti + eij

where ti = µ+ si is the mean value for sire i, with X and β now becoming

X =


1 0 0
1 0 0
0 1 0
0 0 1
0 0 1
0 0 1

 , β =

 t1
t2
t3



Observe that the difference between two treatments becomes ti−tj = µ+si−µ−tj = si−sj .
The second issue is more subtle, but equally important. Our above treatment assumes

that the sire values are fixed effects (unknown constants), but in reality they are best treated as
random effects (realizations of random draws from some unknown distribution). As detailed
below, this shift in focus from fixed to random introduces issues in interpretation, but also
allows for more efficient use of the data. For example, if the sires are related, then information
on a related sire (say sire 3) further informs us as to the value for sire 1. Under a fixed-effect
framework, the only information we can use to estimate the sire 1 effect are direct observations
on that sire. In this example, those are only the first two observations (only those observations
with a 1 in the first column of X, corresponding to data on sire 1). Under a random-effects
framework we can also borrow information from correlated (indirect) observations. Hence, if
sires 1 and 3 are related, information from the last three observations (direct observations on
sire 3) provides additional information on sire 1 that is not accessed in a fixed-effect analysis.
We examine fixed versus random effects in detail shortly, with Example 10.10 reframing this
example in a random-effects setting.
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Example 10.3. Consider a polynomial regression,

yi = a+ β1xi + β2x
2
i + · · ·βkxki + ei (10.5)

Although the data enter as nonlinear functions, this is still a GLM, as the linear in GLM refers
to linear with respect to the parameters being estimated, not the data. In the case of a polynomial
regression, the resulting GLM matrices become

X =


1 x1 x2

1 · · · xk1
1 x2 x2

2 · · · xk2
...

...
... · · ·

...
1 xn x2

n · · · xkn

 and β =


α
β1
...
βk


More generally, any regression of the form

yi = α+ β1 f(xi) + β2 g(xi) + · · ·+ e (10.6)
can be placed in GLM form. Conversely,

yi = α+ exp(−βxi)
is not a linear model, as it is a nonlinear function of the parameter β. In some cases, a trans-
formation can recover a linear model. For example, the model

yi = α exp(−βxi)
can be written in linear model form as

log(yi) = log(α)− βxi
Chapter 14 examines generalized linear models, which allow for a certain amount of nonlin-
earity in the parameters.

Example 10.4. A common addition to many GLMs are interaction terms, such as the model

yi = α+ β1xi1 + β2xi2 + β3xi2xi1 + ei (10.7)
Here

X =


1 x11 x12 x11 x12

1 x21 x22 x21 x22
...

...
...

...
1 xn1 xn2 xn1 xn2

 and β =


α
β1

β2

β3


The interpretation of an interaction term is that the effect of some of the predictor variables on
y are context-specific, and hence change as the background values of other predictor variables
change. In this example, when x1 held constant, a unit change in x2 changes y by β2 + β3x1

(i.e., the slope of x2 depends on the current value ofx1). Likewise, a unit change in x1 changes
y by β1 + β3x2.

Example 10.5. One major strength of GLMs is their incredible flexibility, as one can mix
and match all of the above modifications (and then some!) to design a model motivated by
biological intuition, rather than statistical convenience. As an example, suppose you want a
quadratic regression forced through the origin, with the slope of the quadratic term varying
over the sexes. The resulting GLM can be written as

yi = β1xi + β2x
2
i + β3six

2
i + ei

Here si is an indicator (0/1) variable for the sex (0 = male, 1 = female). This yields a male
quadratic slope of β2 and a female quadratic slope of β2 + β3. The standard linear model
hypothesis-testing framework (Appendix 3) can be used to test whether β3 is significantly
different from zero.
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Solving Linear Models: Ordinary Least Squares (OLS)

Estimates of the vector β of unknown parameters for a general linear model are usually
obtained by the method of least-squares (Chapter 3). This approach uses the observational
data given by y and X and makes assumptions about the covariance structure of the vector
of residual errors, e, leading to either ordinary least squares (OLS) or general least squares
(GLS) solutions. Both approaches estimate β by minimizing a sum of squared residuals,
with OLS minimizing an unweighted sum, and GLS a weighted sum, as we now detail.

Let b be an estimate ofβ, and denote the vector of y values predicted from this estimate
by ŷ = Xb, so that the resulting vector of residual errors is

ê = y− ŷ = y−Xb (10.8a)

The OLS estimate ofβ is the b vector that minimizes the unweighted residual sum of squares,

n∑
i=1

ê 2
i = êT ê = (y−Xb)T (y−Xb) (10.8b)

Taking derivatives, Example A3.6 shows that the OLS estimate satisfies

BLUEOLS(β) = β̂ = (XTX)−1XTy (10.9a)

with the OLS estimator of βi given by the ith element of this column vector. Equation 10.9a
is called the BLUE (or, more precisely, the OLS BLUE), for best linear unbiased estimator,
of β.

As an aside
H = X

(
XTX

)−1

XT (10.9b)

is referred to as the hat matrix (Hoaglin and Welsch 1978), because, for an OLS estimate,
the vector of predicted y values is given by

ŷ = Xβ̂ = X
(
XTX

)−1

XTy = Hy (10.9c)

H maps the observed y values onto their predicted values ŷ. Likewise, define

M = I−X
(
XTX

)−1

XT (10.9d)

as the absorption matrix for the fixed effects. Here

My = (I−H)y = y− ŷ = y−Xβ̂ = ê (10.9e)

By minimizing the unweighted sum, OLS assumes that all residuals contain the same
amount of information. This implies that the residuals are homoscedastic, with σ2(ei) = σ2

e

for all i. If some of the residuals have smaller variances, then the corresponding predicted
values of y are more precise, and hence their associated residuals should be weighed more
heavily that residuals with larger variances. Using an unweighted sum further assumes
that all residuals are uncorrelated, σ(ei, ej) = 0 for i 6= j, as the presence of correlated
residuals would change the residual weighting scheme. The OLS assumptions about the
residual structure is compactly denoted by e ∼ (0, σ2

e I), namely, that the vector of residuals
has a mean vector of zero, and a variance-covariance matrix of

Var(e) = σ2
e I =


σ2
e 0 · · · 0

0 σ2
e · · · 0

...
. . .

...
0 0 · · · σ2

e

 (10.10)
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Under the OLS assumption, the covariance matrix of the elements of vector of BLUE
estimates is

Vb = σ2
e (XTX)−1 (10.11a)

Hence, the sampling variance for the estimate of βi is given by the ith diagonal element
of the matrix Vb, while the covariance of this estimator with the BLUE of βj is the ijth
element of Vb. In applying Equation 10.11a, the residual variance σ2

e is usually replaced by
the estimated variance,

σ̂ 2
e =

1
n− p

n∑
i=1

ê 2
i =

(y−Xb)T (y−Xb)
n− p (10.11b)

where b is the BLUE estimate (Equation 10.9a) and p parameters are estimated (p is replaced
by the rank of X, when rank[X] < p).

It is important to stress that the only assumption required to obtain Equations 10.9a
and 10.11a is that the covariance matrix for the residuals is σ2

e I. While it is often assumed
that the residuals must also be normally distributed, this is not required for Equations 10.9a
and 10.11a to hold. The MVN assumption, however, is required for hypothesis testing and
construction of confidence intervals (Appendix 3). If the residuals follow a multivariate
normal distribution with e ∼ MVN(0, σ2

e I ), then the OLS estimate is also the maximum-
likelihood estimate (Appendix 4).

Finally, we note that the structure of X informs one as to whether the data contains
enough information to uniquely estimate a particular parameter. A parameter is said to be
estimable if the model returns a unique estimate of its value. If (XTX)−1 exists, then every
parameter in a GLM is estimable. What happens when XTX is singular? As discussed in
Appendix 3, Equations 10.9a and 10.11a still hold when a generalized inverse (or g-inverse),
denoted (XTX)−, is used. In this case, not all of the parameters have unique estimates, rather
some can only be uniquely estimated as linear combinations (or contrasts). For example, a
three-parameter model might return an estimate of β1 = 3, but only be able to specify that
(say) β2 − 3β3 = 2. Hence, only two unique parameter combinations can be estimated from
the data (X has rank 2).

Lack of estimability often implies a poor experimental design, but can also arise through
loss of data from an otherwise well-planned design. Suppose one is examining the effects of
height and sex. If the data (from either poor initial design or through data loss) consists of
only tall males and short females, one cannot separate the height and sex effects from each
other. Rather, we can only contrast tall males with short females, with the height and sex
effects being fully confounded. The number of unique combinations of fixed effects that can
be estimated for a given model is given by the rank of X, namely the number of independent
columns (columns that cannot be expressed as linear combinations of the other columns;
Example 10.2). With n observations and p < n unknowns, X is an n × p matrix, so that
XTX is p × p. X is of full rank when its rank is p, and in such cases the inverse of XTX
exists. When this inverse does not exists (so that Rank[X] < p), the rank of X is given by
the number of nonzero eigenvalues of XTX. When the rank of X is less than p, a g-inverse
must be used. Appendix 3 examines these issues in more detail.

Example 10.6. Consider a univariate linear regression where the predictor and response
variable both have expected mean zero, so that the regression passes through the origin. The
appropriate model becomes

yi = β xi + ei (10.12a)

With observations onn individuals, this relationship can be written in GLM form withβ = (β)
and design matrix X = (x1, x2, · · ·xn)T , implying

XTX =
n∑
i=1

x2
i and XTy =

n∑
i=1

xi yi
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Assuming the covariance matrix of e is σ2
e I, then Equation 10.9a gives the OLS estimate of β

as

β̂ =
(
XTX

)−1

XTy =
∑
xi yi∑
x2
i

(10.12b)

while Equations 10.11a and 10.11b give its sample variance as

σ2( β̂ ) =
(
XTX

)−1

σ2
e =

σ2
e∑
x2
i

'
∑n
i=1(yi − β̂xi)2

(n− 1)
∑
x2
i

(10.12c)

Note that this estimate of β differs from the standard univariate regression slope (Equation
3.14b) where the intercept value is not assumed to be equal to zero.

Example 10.7. Recall from Equation 9.4b that the vector of partial regression coefficients
for a multivariate regression is given by b = V−1 c (where V is the estimated covariance
matrix and c is the vector of estimated covariances between y and z). Here we show that this
expression is equivalent to the OLS estimator b = (XTX)−1XTy. For the ith individual, we
observe yi and the values of p predictor variables, zi1, · · · , zip. Because a regression satisfies
ȳ = α+β1z̄1+· · ·+βpz̄p, subtracting the mean from each observation removes the intercept,
with (Equation 9.3b)

y∗i = (yi − ȳ) = β1(zi1 − z̄1) + · · ·+ βp(zip − z̄p) + ei

For n observations, the resulting linear model y∗ = Xβ+ e has

y∗ =

 y1 − y
...

yn − y

 , β =

 β1
...
βp

 , X =

 (z11 − z̄1) · · · (z1p − z̄p)
...

. . .
...

(zn1 − z̄1) · · · (znp − z̄p)


where zij is the value of character j in the ith individual. Partitioning the design matrix X
into p column vectors corresponding to then observations on each of the p predictor variables
gives

X = ( x1, · · · , xp ) where xj =


z1j − z̄j
z2j − z̄j

...
znj − z̄j


giving the jth element of the vector XTy∗ as

(
XTy∗

)
j

= xTj y∗ =
n∑
i=1

(yi − ȳ)(zij − z̄j) = (n− 1)Cov(y, zj)

and implying XTy∗ = (n− 1) c. Likewise, the jkth element of XTX is

xTj xk =
n∑
i=1

(zij − z̄j)(zik − z̄k) = (n− 1)Cov(zj , zk)

implying XTX = (n− 1)V. Putting these results together gives

(XTX)−1XTy∗ = V−1c

showing that Equation 9.4b does indeed give the OLS estimates of the partial regression
coefficients.
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Solving Linear Models: Generalized Least Squares (GLS)

Under OLS, the unweighted sum of squared residuals is minimized, which assumes ho-
moscedastic and uncorrelated residuals. When residual errors are heteroscedastic and/or
correlated, ordinary least-squares estimates of regression parameters and standard errors
of these estimates are potentially biased. A more general approach to regression analysis ex-
presses the covariance matrix of the vector of residuals as σ2

e R, with σ(ei, ej) = Rijσ
2
e . Lack

of independence between residuals is indicated by the presence of nonzero off-diagonal
elements in R, while heteroscedasticity is indicated by differences in the diagonal elements
of R.

Generalized (or weighted) least squares (GLS) takes these complications into account,
and minimizes the weighted sum of squares given by eTR−1e. As shown in Appendix 3,
this follows as the transformation e∗ = R−1/2e changes the original vector of residuals
into a new vector e∗ with homoscedastic and uncorrelated residuals, with the GLS solution
following from the minimization of the sum eT∗ e∗. As a result, for the linear model

y = Xβ+ e with e ∼ (0, σ2
e R)

the GLS estimate of β is

BLUEGLS(β) = β̂ =
(
XTR−1X

)−1

XTR−1y (10.13a)

(Aitken 1935). The covariance matrix for the GLS estimates is

Vb = σ2
e

(
XTR−1X

)−1

(10.13b)

The estimated residual variance is also modified from Equation 10.11b, with

σ̂ 2
e =

(y−Xb)TR−1(y−Xb)
n− rank(X)

(10.13c)

If residuals are independent and homoscedastic, R = I, and GLS estimates reduce to the
OLS estimates. If e ∼MVN(0, σ2

e R), the GLS estimate of β is also the maximum-likelihood
estimate. In our treatment of GLS, we will occasionally denote the residual covariance
structure by V = σ2

e R.

Example 10.8. A common situation requiring weighted least-squares analysis occurs when
residuals are independent but heteroscedastic with σ2(ei) = σ2

e/wi, where wi are known
positive constants. For example, if each observation yi is the mean of ni independent obser-
vations (each with uncorrelated residuals with variance σ2

e ), then σ2(ei) = σ2
e/ni, and hence

wi = ni. Here
R = Diag(w−1

1 , w−1
2 , . . . , w−1

n )

where Diag denotes a diagonal matrix, giving

R−1 = Diag(w1, w2, . . . , wn)

With this residual variance structure, consider the weighted least-squares estimate for the
simple univariate regression model y = α+ β x+ e. In GLM form,

y =

 y1
...
yn

 , X =

 1 x1
...

...
1 xn

 , and β =
(
α
β

)
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Define the following weighted means and cross products,

w =
n∑
i=1

wi, xw =
n∑
i=1

wixi
w

, x2
w =

n∑
i=1

wix
2
i

w

yw =
n∑
i=1

wiyi
w

, xyw =
n∑
i=1

wixi yi
w

With these definitions, matrix multiplication and a little simplification yields

XTR−1y = w

 yw

xyw

 and XTR−1X = w

 1 xw

xw x2
w


Applying Equation 10.13a, the GLS estimates of α and β are

a = yw − bxw (10.14a)

b =
xyw − xw yw
x2
w − x 2

w

(10.14b)

If all weights are equal (wi = c), these expressions reduce to the standard (OLS) least-
squares estimators given by Equation 3.14. Applying Equation 10.13b, the sampling variances
and covariance for these estimates become

σ2(a) =
σ2
e · x2

w

w (x2
w − x 2

w )
(10.15a)

σ2(b) =
σ2
e

w (x2
w − x 2

w )
(10.15b)

σ(a, b) =
−σ2

e xw

w (x2
w − x 2

w )
(10.15c)

Model Assessment

Fitting a model is only the first step, and should be followed by considerable post-construc-
tion analysis. A few key ideas. First, just because a model is statistically significant (it has a
significantly better fit than a model with no effects beyond a common mean; yi = µ + ei)
does not mean that it is biologically significant. A good indicator of the later is the model r2

value (Equation A3.15), namely, how much of the variation in the response variable (y) is
accounted for by the model. Consider two different models: Model 1 has p = 10−9 and
r2 = 0.01, while Model 2 has p = 10−4 and r2 = 0.3. From a statistical standpoint, Model
1 might seem superior, but it only accounts for 1% of the variation in y, while Model 2
accounts for 30% and thus is biologically more significant than Model 1.

Second, all of the information on how well the model performs is contained in the resid-
uals. As mentioned, normality is not required for OLS or GLS estimates or their standard
errors. It is, however, required for hypothesis testing and the construction of confidence
intervals (Appendix A3). Hence, the vector of residuals should be tested for normality, at
a minimum by plotting their histogram, and more formally by using standard normality
tests (Chapter 2). It should be noted that a histogram of the y values is usually expected to be
non-normal, as the data likely consists of a number of groups with different means. Even
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if y values are normally distributed in each of these groups, the distribution of y values
in the full sample is a mixture of normals, and hence is likely to show multiple modes,
skew, and kurtosis (Chapter 16). In contrast, the distribution of residuals reflect errors once
we have accounted for the data consisting of different groups with different means. If one
finds that the residuals are not normal, transformation of y to a different scale (Chapter 14),
such as constructing a GLM using log(y) in place of y, can often normalize the resulting
residuals. More generally, one can use generalized linear models (Chapter 14) to handle
settings where the residuals are expected to be non-normal, such as with binary data.

Finally, residual plots of e versus y, or e versus ŷ, can be highly informative, as can
a plot of ŷ versus y. While (by construction) the expected value of e is zero under least-
squares, there may still be trends in e despite this restriction. For example, if the spread
of residual values increases with y or ŷ, this indicates heteroscedasticity (and hence GLS
must be used instead of OLS). Modeling using log(y) instead of y can often resolve this
issue. More generally, the distribution of e should be independent over y values if one has
an appropriate model. Given that one observes a positive residual, an adjacent residual
(when plotting e versus y or ŷ ) is equal likely to be positive or negative under a valid
model. Departures from this independence can arise if an incorrect model is fitted. As an
example, suppose that the true model is a quadratic (with a maximum in the middle of the
data range), but we assumed a linear effect. The latter model would likely still account for
some of the variation in y. However, residual plot would show blocks (runs) of residuals all
having the same sign, for example, the first 1/4 are negative, the middle 1/2 are positive,
and the last 1/4 are negative. This would still give an expected residual value of zero, but
adjacent residuals are correlated due to fitting an incorrect model. A simple check for this is
the Wald–Wolfowitz runs test. Here the test statistic,Rn, for the number of runs (changes in
the signs of adjacent residuals) in a sample of size n is approximately normally distributed
with mean n/2 + 1 and variance n/4.

THE GENERAL MIXED MODEL

The mixed model (MM) builds on the general linear model by adding one (or more) vectors
of random effects,

y = Xβ+ Zu + e

where Z (akin to X) is a known matrix and u is the additional vector of random effects. As
with the residuals of a general linear model, one must specify the covariance structure of u
in order to define the model. Before proceeding further with the analysis of the MM—which
is the workhorse framework for much of modern quantitative genetics—we first consider
the distinction between fixed versus random effects.

Fixed versus Random Effects

Unknown parameters in statistical models are typically classified as either fixed or random
(Figure 10.1). The former are unknown constants to be estimated, whereas the latter are
realizations drawn from some underlying distribution. While this classification is often
treated rather rigidly, the distinction between the two is actually somewhat fluid, and
depends on often subtle differences in the assumptions underlying a model. Indeed, for the
same data set and essentially the same problem, one investigator might feel justified using
a fixed-effect interpretation, while another might choose random effects.

One common rule is that if one regards the data as a sample from a much large popula-
tion of interest, then effects are treated as random. If our interest is only in the values in the
sample, then often (but not always; see Example 10.9) they are treated as fixed. Likewise,
if one cannot go back after the fact to resample the same levels of a factor, it is best treated
as random. For example, one can go back and sample new males and females, or resam-
ple from a specific growing location. However, one cannot resample from a specific past year.
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Figure 10.1. A flow chart for considering the roles of fixed and random effects in an analysis.
(From Hans-Peter Piepho, reprinted with permission.)

Hence, one could treat the location as fixed, but the year as random (and hence a year by
location interaction is also random).

Finally, factors are often treated as random for convenience (Example 10.9). One setting
for this is when a model contains a large number of nuisance parameters: parameters that
must be estimated, but are not really of any concern to the investigator. Each estimated
fixed effect uses a degree of freedom. In contrast, random effects represent realizations
(draws) from a particular unknown distribution, typically assumed to be a normal with
mean zero (the fixed effects absorb any nonzero mean effect) and variance σ2.Here, the only
parameter to be estimated is this variance, no matter how many realizations are drawn from
this distribution. Thus, nuisance parameters are often treated as random to save degrees
of freedom. Finally, one can always move to a Bayesian framework (Appendices 7 and 8),
wherein all parameters are treated as random.

Example 10.9. Suppose that one has a completely randomized design (Appendix 9) of 10
blocks, each of which consists of three replicate plots for each of five different inbred lines,
randomly assigned within the block (for 150 observed plot values). The simplest linear model
is

yijk = Li +Bj + eijk (10.16)

with yijk the value of the kth plot of line i in block j, and we assume the absence of line ×
block interactions. Treating all factors as fixed, there are five line effects and 10 block effects,
or 15 parameters (degrees of freedom) that must be estimated (the column vector β has 15
terms). Assuming OLS, the covariance structure becomes e ∼ (0, σ2

e I).
However, we usually do not care about the block effects beyond removing any bias they

may introduce in the estimate of the Li. If we could reasonably assume that blocks have
independent effects (i.e., blocks that are closer to each other are no more likely to be similar
than comparisons among more distant blocks), then we can treat these as random, with the
value (or realization) for a particular block being drawn from some distribution with unknown
variance, σ2

b . The consequence of treating block values as random is that instead of using 10
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degrees of freedom for block effects, we only use one, that for estimating σ2
b . Similarly, even

with 1000 blocks, we would still only use one degree of freedom under the random-effect
model (assuming that all the blocks are uncorrelated).

Under this interpretation,β has five terms (one for each line, with X being 150× 5), while
the column vector u of random effects has ten terms (one for each block, with Z being 150×
10). The model is still given by Equation 10.16, but we have to further specify the covariance
structure for the random block effects (along with the residuals). Assuming independent block
effects and OLS residuals,

b ∼ (0, σ2
b I), e ∼ (0, σ2

e I) (10.17a)

If one assumes correlation among adjacent blocks, then I is replaced by a nondiagonal matrix
whose off-diagonal elements indicate the amount of correlation between each combination of
blocks. This requires adding (at least) one additional parameter to estimate, with the random
effects now using (at least) two degrees of freedom.

The model (covariance structure) given by Equation 10.17a treats the line genotypes as
fixed, which implies that we only care about the values of the particular lines in our sample.
We have no interest in the larger population from which they were drawn. Conversely, if we
are indeed interested in the population variance, σ2

G, of line values, we now treat our five lines
as random draws from this distribution. This is now a random-effects interpretation, which
introduces two important features. First, we expect that some lines may be more similar
than others due to more recent common ancestry (which can be estimated either pedigree
data, Chapter 7, or molecular markers, Chapter 8). Hence, the covariance matrix need not
be diagonal, but rather of the form σ2

GA, where the relationship matrix A (Example 9.14)is
symmetric. The resulting covariance structure becomes

L ∼ (0, σ2
G A), b ∼ (0, σ2

b I), e ∼ (0, σ2
e I)

This is more compactly written asL
b
e

 ∼
σ2

G A 0 0
0 σ2

b I 0
0 0 σ2

e I

 (10.17b)

Second, a critical feature about A is that random-effects models borrow information
from correlated observations. When treating lines as fixed effects, the only information used
to estimate a particular line value (say L3) are those direct observations on line 3 (30 plots in
this example). Under a random-effect model, direct observations on line 3 are used, as well as
observations on all other lines that are correlated with line 3 (those lines for which the elements
A3i and Ai3 of A are nonzero, i.e., those lines related to line 3). Hence, even if we have no
interest in the nature of the population from which the lines were drawn, treating them as
random allows us to access this borrowing-of-information feature.

The General Mixed Model

Consider a column vector y containing the phenotypic values for a trait measured in n
individuals. We assume that these observations are described adequately by a linear model
with a p × 1 vector of fixed effects (β) and a q × 1 vector of random effects (u). The first
element of the vector β is typically the population mean, and other factors included may be
gender, location, year of birth, experimental treatment, and so on. The elements of the vector
u of random effects are often genetic effects such as additive genetic (breeding) values. In
matrix form,

y = Xβ+ Zu + e (10.18)

where X and Z are, respectively, n × p and n × q incidence matrices (X is also called
the design matrix), and e is the n × 1 column vector of residual deviations assumed to
be distributed independently of the random genetic effects. Often, all of the elements of
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Z are 0 or 1, depending upon whether the relevant random effect for a given observation
contributes to the value of the response variable, y. Because this model jointly accounts for
fixed and random effects, it is generally referred to as a mixed model (Eisenhart 1947).

Now consider the means and variances of the component vectors of the mixed model.
By definition, random effects have mean zero. Hence, E(u) = E(e) = 0, implying that
E(y) = Xβ. Denote the (n×n) covariance matrix for the vector e of residual errors by R and
the (q× q) covariance matrix for the vector u of random genetic effects by G. Excluding the
difference among individuals due to fixed effects, from Equation 9.21b and the assumption
that u and e are uncorrelated, the covariance matrix for the vector of observations y is

Vn×n = Zn×qGq×qZTq×n + Rn×n (10.19)

The first term accounts for the contribution from the vector u of random effects, while the
second accounts for the variance due to residual effects. We will generally assume that
residual errors have constant variance and are uncorrelated, so that R is a diagonal matrix,
with R = σ2

E I. Hence, Xβ gives the vector of mean values for the observations, while the
spread about this mean value is influenced by the random effects, u and e. The ith diagonal
element of V (Vii) gives the variance associated with observation i, whileVij is the covariance
between observations i and j.

We are now in a position to contrast the mixed model and the general linear model.
Under the general linear model,

y = Xβ+ e∗ where e∗ ∼ (0,V), implying y ∼ (Xβ,V) (10.20a)

where the notation∼ (a,V) means that the random variable has mean vector a and covari-
ance matrix V. On the other hand, the mixed model partitions the vector of residual effects
into two components, with e∗ = Zu + e, giving

y = Xβ+ Zu + e where u ∼ (0,G) and e ∼ (0,R)

implying y ∼ (Xβ,V) = (Xβ,ZGZT + R) (10.20b)

When analyzed in the appropriate way, both formulations yield the same estimate of the
vector of fixed effects β, while the mixed-model formulation further allows estimates of the
vector of random effects u.

Comparing Equations 10.20a with 10.20b shows one important use of adding random
effects. In Equation 10.20a, the vector of residuals e∗ is of GLS form, while by adding an
appropriate random effect in Equation 10.20b, the vector of residuals e is often assumed
to be of OLS form, Var(e) ∼ σ2

e I. Shared features (such as some individuals sharing the
same family) generate correlations among residuals, but these can be removed by adding
the appropriate vector (or vectors) of random effects to the model (Chapter 30).

For the mixed model, we observe y, X, and Z, while β, u, R, and G are generally
unknown. Thus, mixed-model analysis involves two complementary estimation issues: (1)
estimation of the vector of fixed effects (β) and prediction of the vector of random effects
(u), and (2) estimation of the covariance matrices G and R. These covariance matrices are
generally assumed to be functions of a few unknown variance components. Namely, they
are usually of the form σ2 B, where σ2 is an unknown variance to be estimated and B
is a matrix of known constants. More generally, they can be of the form

∑
i σ

2
i Bi, where

the sum is usually over just a few terms. For the remainder of the chapter, we consider
estimators of β and u under the assumption that the variance components associated with
G and R are known. Applications of mixed models for estimating breeding values and for
genomic selection and prediction are examined in detail in Chapter 30, while estimation of
the variance components is examined in detail in Chapter 31.
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Example 10.10. As an expansion of Example 10.2, suppose that three sires are chosen at
random from a population, and each crossed to multiple randomly chosen (and unrelated)
dams, where each mating yields a single offspring. Two offspring from each sire are evaluated,
some in environment 1 and some in environment 2. Let yijk denote the phenotypic value of
the kth offspring of sire i in environment j. The model is then

yijk = βj + ui + eijk

This model has three random effects (u1, u2, u3), which measure the contribution from each
sire, and two fixed effects (β1, β2), which describe the influence of the two environments.
The model assumes an absence of sire × environment interaction. As noted above, a total
of six offspring were measured. One offspring of sire 1 was assigned to environment 1 and
had phenotypic value y1,1,1 = 9, while the second offspring was assigned to environment
2 and had phenotypic value y1,2,1 = 12. The two offspring of sire 2 were both assigned to
environment 1 and had values of y2,1,1 = 11 and y2,1,2 = 6. Finally, one offspring of sire
3 was assigned to environment 1 and had phenotypic value y3,1,1 = 7, while the second
offspring was assigned to environment 2 and had phenotypic value y3,2,1 = 14. The resulting
vector of observations can be written as

y =


y1,1,1

y1,2,1

y2,1,1

y2,1,2

y3,1,1

y3,2,1

 =


9
12
11
6
7
14


giving the mixed model as y = Xβ + Zu + e, where the incidence matrices for fixed and
random effects, and the vectors of these effects, are

X =


1 0
0 1
1 0
1 0
1 0
0 1

 , Z =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 , β =
(
β1

β2

)
, u =

u1

u2

u3



Note that this model is not yet fully specified, as no covariance structure of u or e has been
proposed.

Estimating Fixed Effects and Predicting Random Effects

As highlighted throughout this book, one primary goal of a quantitative-genetic analysis
is to estimate variance components. However, there are also numerous situations in which
inferences about fixed effects (such as the effect of a particular environment or year) and/or
random effects (such as the breeding value of a particular individual) are the central moti-
vation. As we will see, marker effects can be treated as either fixed or random, depending
upon the circumstances (Chapters 20, 30, and 31). Inferences about fixed effects have come
to be called estimates, whereas those that concern random effects are known as predictions.
The most widely used procedures are BLUE and BLUP, referring, respectively, to best lin-
ear unbiased estimator (of the fixed effetcs) and best linear unbiased predictor (of the
random effects). They are best in the sense that they minimize the sampling variance, linear
in the sense that they are linear functions of the observed phenotypes y, and unbiased in
the sense that E[ BLUE(β) ] = β and E[ BLUP(u) ] = u. Although the method of predicting
random effects using BLUP methodology was first discussed by Henderson (1949, 1950),
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the expression “best linear unbiased predictor” was apparently first used by Goldberger
(1962), with the acronym BLUP due to Henderson (1973). BLUP is the method of choice
for estimating the breeding values of individuals from field records of large and complex
pedigrees, and underpins many marker-based genomic prediction and genomic selection
schemes (Chapter 30).

For the mixed model given by Equation 10.18, the BLUE of β is

β̂ =
(
XTV−1X

)−1

XTV−1y (10.21)

with V as given by Equation 10.19. Notice that this is just the generalized least-squares
(GLS) estimator (Equation 10.13a).

We obtain the BLUP for the vector of random effects u from its regression on y. This
follows from Equation 9.29a under the assumption that the joint distribution of u and y is
multivariate normal. Starting with

u ∼MVN(0,G), y ∼MVN(Xβ,V)

and noting (from Equation 9.21a) that the covariance between u and y is given by

Cov(u,y) = Cov(u,Xβ+ Zu + e) = Cov(u,u) ZT = GZT (10.22a)

The joint density of u and y thus becomes(
u
y

)
∼MVN

[(
0

Xβ

)
,

(
G GZT

ZG V

)]
(10.22b)

In the notation of Equation 9.29a,

x1 = u, x2 = y, µ1 = 0, µ2 = Xβ, Vx1x2 = GZT , Vx2x2 = V

yielding the BLUP of u as

û = µ1 + Vx1x2V−1
x2x2

(x2 − µ2)

= GZTV−1
(
y−Xβ̂

)
(10.22c)

(Henderson 1963). Further, applying Equation 9.28 gives the covariance matrix for û as

G−GZTV−1ZG (10.22d)

Suppose that we can express G as σ2
G A and R as σ2

E B. While one might suspect that
two variance components (σ2

G and σ2
E) are required to apply Equation 10.22c, in actuality,

we only require a single parameter, their ratio, σ2
E/σ

2
G. To see this, first note that

V = ZGZT + R = σ2
G[ ZAZT + (σ2

E/σ
2
G) B ] (10.23a)

Hence,

GZTV−1 = (σ2
GA) ZTσ−2

G [ ZAZT + (σ2
E/σ

2
G) B ]−1

= A ZT [ ZAZT + (σ2
E/σ

2
G) B ]−1 (10.23b)

In a similar fashion,

β =
(
XTV−1X

)−1

XTV−1y

=
(
XTσ−2

G [ ZAZT + (σ2
E/σ

2
G) B ]−1X

)−1

XTσ−2
G [ ZAZT + (σ2

E/σ
2
G) B ]−1y

=
(
XT [ ZAZT + (σ2

E/σ
2
G) B ]−1X

)−1

XT [ ZAZT + (σ2
E/σ

2
G) B ]−1y (10.23c)
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showing that the BLUE also only depends on the variance ratio (σ2
E/σ

2
G).

Finally, a few comments on an important feature, shrinkage, of BLUPs are in order.
Equation 10.22c shows why we speak of predicting random effects, as their values are pre-
dicted from a regression. Consider the ith observation, which we can express as

yi − ŷi = ui + ei (10.24a)

where ŷi (the ith element in the vector Xβ̂, with β̂ the BLUE of β) is the adjustment of
observation i for the fixed effects (recentering all observations to have an expected value
of 0). The central question becomes of much of the deviation between the observed yi and
predicted ŷi values is due to the random effect ui versus the residual ei. Intuition suggests
that if most of the variance is in u, then most of the deviation is due to ui, while if most of
the variation is from residual effects, then very little of the deviation is from ui. We can more
formally illustrate this by supposing only a single observation, so that Z = (1),G = (σ2

G),
R = (σ2

E), and V = (σ2
G + σ2

E). In this setting, Equation 10.22c reduces to

û =
σ2
G

σ2
G + σ2

E

(y − ŷ ) =
{' 0 for σ2

E À σ2
G

' y − ŷ for σ2
G À σ2

E

(10.24b)

The ratio of σ2
G to the total variance (σ2

G+σ2
E) is the shrinkage factor for this random effect.

If this ratio is close to one, there is very little shrinkage, with ui = yi− ŷi, which is essentially
the estimate obtained by treating ui as a fixed effect. Conversely, if this ratio is near zero,
them almost all of the deviation is due to the residual error, with ui being assigned a value
close to its mean (which, by construction, is zero). Example 10.13 further expands on these
ideas.

Example 10.11. What are the BLUP values for the sire effects (u1, u2, u3) in Example 10.10?
In order to proceed, we require the covariance matrices for the sire effects and the residual
errors. We assume that the residual variances within both environments are the same (σ2

E),
so R = σ2

E I,where I is the 6× 6 identity matrix. Assuming that all three sires are unrelated
and drawn from the same population, G = σ2

S I, where I is the 3 × 3 identity matrix and
σ2
S is the variance of sire effects. Assuming only additive genetic variance, the sire effects

(breeding values) are half the sires’ additive genetic values (Chapters 7 and 22). Thus, because
the sires are sampled randomly from an outbred base population, σ2

S = σ2
A/4, where σ2

A is
the additive genetic variance. Assume that σ2

A = 8 and σ2
E = 6 for a heritability (assuming

only additive variances) of h2 = σ2
A/(σ

2
A + σ2

E) = 8/(6 + 8) = 0.57. With these values, the
covariance matrix V for the vector of observations y is given by ZGZT + R, or

V =
8
4


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


 1 0 0

0 1 0
0 0 1

 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

+ 6


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



=


8 2 0 0 0 0
2 8 0 0 0 0
0 0 8 2 0 0
0 0 2 8 0 0
0 0 0 0 8 2
0 0 0 0 2 8

 , giving V−1 =
1
30
·


4 −1 0 0 0 0
−1 4 0 0 0 0

0 0 4 −1 0 0
0 0 −1 4 0 0
0 0 0 0 4 −1
0 0 0 0 −1 4


Using this result, a few simple matrix calculations (Equation 10.21) gives

β̂ =
(
β̂1

β̂2

)
=
(
XTV−1X

)−1

XTV−1y =
1
18

(
148
235

)
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while applying Equation 10.22c yields

û =

 û1

û2

û3

 = GZTV−1
(
y−Xβ̂

)
=

1
18

−1
2
−1



Example 10.12. As a prelude to association analysis (Chapter 20), the effects on a trait from
different genotypes at a single candidate gene are often estimated by ordinary least squares
(OLS), using the model

yij = gi + eij (10.25a)

where yij is the observed phenotype of the jth individual of genotype i, gi is the mean geno-
typic value for the ith genotype at the locus of interest, and eij is a residual deviation assumed
to be independently distributed among individuals. While this model may be reasonable for
a random collection of individuals from a large population, when some sampled individuals
are relatives, the sharing of alleles at other loci influencing the trait will induce correlations
between residuals. If this is the case, OLS analysis can produce biased estimates of the focal
QTL effects. When one of the QTL genotypes is very rare, as is often the case, the sampled
individuals may be intentionally selected from the same pedigree, so the problem of bias is
not trivial.

Use of a mixed model provides a means of accounting for associations among background
QTLs in relatives in a way that eliminates bias in estimates of candidate gene effects. If the
relatives in question share only additive effects (as in a pedigree with no full sibs or double
first cousins, or when there is no nonadditive gene action, hence ∆xy is zero for all pedigree
pairs), the correlations among residuals are accounted for by the additive genetic relationship
matrix A, where Aij is twice the coefficient of coancestry, 2Θij (Equation 7.11a). When full
sibs are included and dominance is present at background QTLs, both A and a dominance
relationship matrix (Chapter 30) are required. Here we assume that all of the background
genetic effects are additive, in which case the simplest mixed model can be applied,

yij = gi + aij + eij (10.25b)

with the contribution from the different single-locus genotypes (gi) being treated as fixed
effects. The additive genetic background effects (aij) and the residual environmental devia-
tions (eij) are treated as random effects, both with expected values equal to zero, and with
respective variances σ2

A and σ2
E . Note that σ2

A is the background additive genetic variance for
the trait in excess of that caused by the focal QTL. In matrix form,

y = Xg + Za + e (10.25c)

If there is a single observation for each individual, as we assume below, then Z = I and the
covariance matrix for the vector of observations (y) becomes

V = σ2
A A + σ2

E I (10.25d)

Thus, the covariance between the residual errors of two individuals (i and j) is just σ2
AAij =

2Θijσ
2
A,while the variance of individual errors isσ2

A+σ2
E .The error in using OLS to estimate

single gene effects is that A is (incorrectly) assumed to equal an identity matrix, so that V is
incorrectly assumed to be diagonal.

From Equation 10.21, the estimates of the QTL means are given by

ĝ =
(
XTV−1X

)−1

XTV−1y (10.25e)

Kennedy et al. (1992) showed that mixed-model estimates of candidate gene effects are
much more reliable than OLS estimates, especially in small selected populations. Building
on this approach, several authors (Hoeschele 1988; Hofer and Kennedy 1993; Kinghorn et al.
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1993) have proposed BLUP-based segregation analysis (Chapter 16) for estimating the effects
of an unknown major gene. Here the elements in the design matrix X associated with gi are
probabilistic estimates for the major-locus genotypes of each individual. As we develop in
Chapter 20, the principles of this example, along with those of Examples 9.13 and 9.14, give
the structure of mixed models used in association analysis.

Example 10.13. Equations 10.21 and 10.22c can be used to provide significant insight into the
implications of treating a factor as fixed versus random. Suppose we measure two replicate
plots for each of three inbred lines in a single randomized block, so that the simplest model is

yij = Li + eij (10.26a)

where yij is the value of the jth plot of line i. Suppose that the plot values were 6 and 8 for line
1, 10 and 12 for line 2, and 14 and 16 for line 3. Treating the line values as fixed, the resulting
GLM, y = Xβ+ e, has

y =


6
8
10
12
14
16

 , X =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 , β =

L1

L2

L3

 (10.26b)

Assuming OLS residuals, Equation 10.9a gives the OLS BLUEs for the line values as

β̂ = (XTX)−1XTy =

 7
11
15


Now use this exact same data set, but treat the line values as random. To provide as fair a

comparison as possible, assume the lines are unrelated (so that information is not borrowed
from correlated observations). The covariance structure for the vector of random line effects
is thus σ2

G I. The model now becomes

yij = µ+ `i + eij (10.26c)

where µ is the overall mean, and `i the realization for line i (giving the line value as Li =
µ + `i). Again, assume OLS residuals. The resulting components of the mixed model y =
Xβ+ Zu + e, become

X =


1
1
1
1
1
1

 , β = (µ ) , Z =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 , u =

 `1
`2
`3

 (10.26d)

with a covariance structure of

Var

(
u
e

)
=
(
σ2
G I 0
0 σ2

E I

)
Using Equation 10.23a, these assumptions yield

V = σ2
G[ ZZT + (σ2

E/σ
2
G) I ]

= σ2
G




1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1

+ σ2
E/σ

2
G


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(10.26e)
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One can show for this V that all values of σ2
E/σ

2
G yield

β̂ = µ̂ =
(
XTV−1X

)−1

XTV−1y = ( 11 )

Equations 10.22c and 10.23b gives the solution for the BLUPs of line values as

û = GZTV−1
(
y−Xβ̂

)
= ZT [ ZZT + (σ2

E/σ
2
G) I ]−1

(
y−Xβ̂

)
Consider σ2

E/σ
2
G values of 500, 5, 1, 1/5, and' 0. Noting that H2 = 1/(1 + σ2

E/σ
2
G), these

correspond to broad-sense heritability values of 0.002, 0.17, 0.5, 0.82, and '1, respectively,
with corresponding BLUPs of

û =

−0.016
0

0.016

 ,

−1.14
0

1.14

 ,

−2.67
0

2.67

 ,

−3.64
0

3.64

 ,

−4.00
0

4.00


These solutions highlight the property of shrinkage that arises with the prediction of random
effects. When H2 is near zero, so that the phenotype of a line is a very poor predictor of its
genetic value, the BLUPs are regressed back to near the mean (which is zero for a random
effect, for anL value of µ̂ = 11). Conversely, whenH2 is near one (essentially no shrinkage),
we essentially recover the fixed-effect solutions, µ̂T ' ( 7 11 15 ).

Hence, there is a tradeoff with using random effects. On one hand, they shrink observed
deviations back towards the mean, which is not done by BLUEs. On the other hand, they
borrow information from correlated observations (provided G has nonzero off-diagonal ele-
ments) that are not used by BLUEs.

Henderson’s Mixed Model Equations and MM Standard Errors

Computation of Equations 10.21 and 10.22c requires the inverse of the covariance matrix
V. In the above toy examples, V−1 was not difficult to obtain. However, when y contains
many hundreds-of-thousands of observations, as is commonly the case in dairy breeding,
the computation of V−1 can be challenging. As a way around this problem, Henderson
(1950, 1963, 1973, 1984a) offered a more compact method for jointly obtaining β̂ and û in
the form of his mixed-model equations (MME),XTR−1X XTR−1Z

ZTR−1X ZTR−1Z + G−1

 β̂
û

 =

XTR−1y

ZTR−1y

 (10.27)

While these expressions may look considerably more complicated than Equations 10.21
and 10.22c, R−1 and G−1 are trivial to obtain if R and G are diagonal, and hence the
submatrices in Equation 10.27 are much easier to compute than V−1. A second advantage
of Equation 10.27 can be seen by considering the dimensionality of the matrix on the left
hand side. Recalling that X and Z are n × p and n × q respectively, XTR−1X is p × p,
XTR−1Z is p× q, and ZTR−1Z + G−1 is q × q. Thus, the matrix that needs to be inverted
to obtain the solution for β̂ and û is of order (p+ q)× (p+ q), which is often considerably
less than the dimensionality of V (an n × n matrix). Finally, one can solve Equation 10.27
by Gaussian elimination (Gentle 2007), a computationally efficient method that bypasses
matrix inversion.

Although there are several ways to derive the mixed-model equations (Robinson 1991;
a derivation can be found in WL Example A6.5), Henderson (1950) originally obtained
them by assuming that the covariance matrices G and R are known and that the densities
of the vectors u and e are each multivariate normal with no correlations between them.
Equation 10.27 then yields the maximum likelihood estimates of the fixed and random
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effects. Henderson (1963) later showed that the mixed-model equations do not actually
depend on normality, and that β̂ and û are BLUE and BLUP, respectively, under general
conditions provided the variances are known.

Example 10.14. Using the values from Examples 10.10 and 10.11, we find that

XTR−1X =
1
6

(
4 0
0 2

)
, XTR−1Z =

(
ZTR−1X

)T
=

1
6

(
1 2 1
1 0 1

)

G−1 + ZTR−1Z =
5
6

 1 0 0
0 1 0
0 0 1

 , XTR−1y =
1
6

(
33
26

)
, ZTR−1y =

1
6

 21
17
21


Thus, after factoring out 1/6 from both sides, the mixed-model equations for these data

become 
4 0 1 2 1
0 2 1 0 1
1 1 5 0 0
2 0 0 5 0
1 1 0 0 5



β̂1

β̂2

û1

û2

û3

 =


33
26
21
17
21


Taking the inverse gives the solution

β̂1

β̂2

û1

û2

û3

 =
1

270


100 25 −25 −40 −25

25 175 −40 −10 −40
−25 −40 67 10 13
−40 −10 10 70 10
−25 −40 13 10 67




33
26
21
17
21

 =
1
18


148
235
−1

2
−1


which is identical to the results obtained in Example 10.11.

A relatively straightforward extension of Henderson’s mixed-model equations pro-
vides estimates of the standard errors of the fixed and random effects. Write the inverse of
the left hand side (LHS) matrix in Equation 10.27 asXTR−1X XTR−1Z

ZTR−1X ZTR−1Z + G−1

−1

=

C11 C12

CT
12 C22

 (10.28)

where C11, C12, and C22 are, respectively, p × p, p × q, and q × q submatrices. Using this
notation, Henderson (1975) showed that the sampling covariance matrix for the BLUE of β
is

σ(β̂ ) = C11 (10.29a)

while the sampling covariance matrix of the prediction errors (û− u) is

σ( û− u ) = C22 (10.29b)

and, finally, the sampling covariance of estimated effects and prediction errors is

σ(β̂, û− u ) = C12 (10.29c)

(We consider û−u rather than û as the latter includes variance from both the prediction error
and that the random effects u themselves.) The standard errors of the fixed and random
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effects are obtained, respectively, as the square roots of the diagonal elements ofC11 and C22.
Meyer (1989a) presents methods for approximating the diagonal elements of the inverse
of this matrix (and hence the standard errors) for very large breeding designs where the
inverse of the MME matrix may be difficult to compute.

Example 10.15. Consider the mixed-model equation from Example 10.14. Here for the fixed
factors β1, β2 and the random effects u1, u2, u3, the inverse of the LHS coefficient matrix is

4 0
0 2

...
1 2 1
1 0 1

· · · · · · · · ·
1 1
2 0
1 1

...
5 0 0
0 5 0
0 0 5


−1

=
1

270


100 25

25 175
...
−25 −40 −25
−40 −10 −40

· · · · · · · · ·
−25 −40
−40 −10
−25 −40

...
67 10 13
10 70 10
13 10 67


Hence,

C11 =
1

270

(
100 25
25 175

)
and C22 =

1
270

 67 10 13
10 70 10
13 10 67


so that, for example,

σ2(β̂1) =
100
270

, σ2(β̂2) =
175
270

, σ(β̂1, β̂2) =
25
270

and, likewise,

σ2(û2 − u2) =
70
270

, σ(û1 − u1, û3 − u3) =
13
270

, and so on.

REML Estimation of Variance Components

Finally, as noted above, the practical application of Equations 10.21, 10.22c, and 10.27 re-
quires that the variance components be known. Thus, prior to a BLUP analysis, these need
to be estimated by ANOVA (Chapter 22) or restricted maximum likelihood (REML). REML
is closely related to BLUP, with (roughly speaking) REML estimates obtained from iterat-
ing and updating BLUP estimates until there is suitable convergence (Chapter 31). REML
maximizes that part of the likelihood function that is unaffected by fixed effects (Patterson
and Thompson 1971). Harville (1977) coined the term restricted ML, but Thompson (2008)
noted that REML maximizes a residual likelihood, and hence preferred the term residual
maximum likelihood. One advantage of REML estimates (over those obtained by other
estimation procedures) is that they are unbiased by the estimates of fixed effects (Patterson
and Thompson 1971). Chapter 31 examines REML in some detail.

Thus, BLUPs are usually obtained by a two-stage approach: variance components are
first obtained by REML and then these estimates are used to obtain BLUPs. This two-stage
approach is called empirical BLUP or REML/BLUP (Sorensen and Kennedy 1986; Kennedy
and Sorensen 1988; Harville 1990). Kackar and Harville (1981) and Gianola et al. (1986,
1988) showed that using REML estimation does not result in biased values for BLUPs, but
that the resulting predictors may not be “best” (there may be other linear predictors with
smaller mean-squared errors). While Chapter 31 examines large-sample approximations
for the uncertainty in REML variance estimates, these cannot be easily translated into how
much additional uncertainty is introduced into BLUPs by using REML estimates in place
of their true values. A more formal procedure is to use a Bayesian approach (Appendices
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7 and 8), wherein one draws a value of the variances from their posterior distribution, and
then computes the BLUPs given this value. Repeating this procedure thousands of times
generates an empirical posterior distribution for BLUPs that fully incorporates any errors
introduced by using estimated, instead of true, variances (Appendix 8).
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