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Distinct populations, such as the isolated demes that comprise some natural populations
or local land races and breeds of domesticated species, often exhibit remarkable pheno-
typic divergence. Such differences are sometimes a simple consequence of environmental
influences on phenotypic expression, but genetic differences may arise as a result of lo-
cal adaptation and random genetic drift. The genetic basis of interdemic differentiation
is of interest for several reasons. With nonadditive gene action, the mean phenotypes of
progeny of interdemic crosses (F1 hybrids from a line cross) will not be intermediate to
those of their parents. One manifestation of this phenomenon is heterosis, the common
observation that hybrids in many domesticated species often have enhanced performance
or trait values relative to their parental lines (Chapter 13). Conversely, a problem of some
significance in conservation biology is the opposite observation: outbreeding depression,
wherein hybrids have reduced fitness relative to their parental populations (Chapter 13).
Thus, depending on circumstances, line crossing can either very desirable (heterosis) or to
be avoided as much as possible (outbreeding depression). For populations that do not nor-
mally have an opportunity to interbreed in nature, the nature of their potential hybrids may
evolve passively as an indirect consequence of local adaptation and drift. However, when
opportunities for interdemic exchange are common, natural selection may favor specific
mating system properties, including dispersal strategies or reproductive isolation, which
enhance or discourage outcrossing (a key to deciphering the mechanisms of speciation).

The mechanisms of genetic differentiation also have important practical implications
beyond prediction of hybrid performance. For example, in artificial selection programs, the
mean phenotypes of selected lines often evolve well beyond the range of variation seen in
the base population prior to selection (Chapter 1; WL Chapters 25 and 26). The extent to
which such changes are caused by a large number of genes of relatively small effects, as
opposed to a few major segregating factors, is an important determinant of whether a search
for informative molecular markers is likely to be successful (Chapters 17–20). In addition,
the degree to which selection advances made in different lines can be successfully integrated
into a single crossbred line is a function of the ways in which genes from the isolated lines
interact. Entirely additive gains are easy to stack across lines, while incorporating gains
from nonadditive interactions is more problematic.

In this chapter, we show how the judicious choice of line crosses can be used to reveal
the relative contributions of additive, dominance, and epistatic effects to population differ-
entiation. A statistical test of the adequacy of alternative genetic models will be presented,
and its application to a variety of data sets will be used to show that nonadditive gene
action is commonly associated with population differentiation. Several methods for esti-
mating the minimum number of loci responsible for population differentiation will then be
discussed. Their application firmly supports the conviction that most characters of interest
to evolutionary biologists and breeders are influenced by multiple loci. This, however, does
not rule out the possibility that a small number of loci are responsible for the majority of the
differentiation between species and/or lines within species. Chapter 13 examines both het-
erosis and outbreeding depression, while Chapter 12 examines the complementary concern
of inbreeding depression, the decay in performance upon inbreeding.

EXPECTATIONS FOR LINE-CROSS MEANS

We start with two parental populations (P1 and P2), each with loci assumed to be in Hardy-
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Weinberg and gametic phase equilibrium (note that a fully inbred line is in Hardy-Weinberg,
as all loci are fixed are a single allele). For the time being, we also assume that the loci differ-
entiating the two populations are unlinked. An F1 population is obtained by crossing the P1

and P2 lines, and subsequent random mating of F1 individuals results in an F2 generation.
Because the F2 population will be in Hardy-Weinberg and gametic phase equilibrium for
unlinked loci, both for genes derived within and between populations, it is logical to treat
it as a point of reference for the definition of genetic effects.

In previous chapters, we have presented definitions of additive, dominance, and
epistatic effects for specific genes and gene combinations within randomly mating pop-
ulations. The statistical machinery underlying line-cross analysis has parallels with this
approach. The questions here, however, are whether there is a net difference between the
additive effects of the genes in the P1 and P2 populations, whether the genes in P1 tend
on average to be dominant over those in P2, and whether there are net directional epistatic
interactions between P1 and P2 genes. Before explicitly defining these composite effects, it
will be useful to have some indices to describe the gene content and the degree of hybridity
of line-cross derivatives.

For any pair of lines and their derivatives, the genotypes at a locus can be partitioned
into three classes: (1) both alleles are from a random sample of P1 genes, (2) both alleles are
from a random sample of P2 genes, and (3) one allele is from a random sample of P1 genes,
while the other is from the P2 pool of genes. Let S be the fraction of P1 genes in a line, and
H be the probability that a member of the line has one P1 and one P2 gene at a locus. These
two indices uniquely specify the expected frequencies of the three classes of genotypes at
any autosomal locus:

S − H

2
= frequency of individuals containing only P1 alleles

H = frequency of individuals containing one P1 and one P2 allele (11.1a)

1− S − H

2
= frequency of individuals containing only P2 alleles

Composite effects are formally defined in a least-squares framework, similar to that
used for effects at single loci (Chapter 4). Consider first the composite additive effect,
defined as the difference of additive effects of P1 versus P2 alleles summed over all loci. A
simple expression for this can be obtained by recalling Equation 4.9—for a diallelic locus,
the additive effects of the B1 and B2 alleles can be written as −p2α and p1α, where α is
the average effect of allelic substitution, and p1 and p2 are the frequencies of the B1 and B2

alleles. These expressions apply to a randomly mating population, precisely the situation in
the F2 generation. Noting that the F2 consists of 50% P1 and 50% P2 genes, the frequencies
of all contrasting alleles (of P1 versus P2 origin) are 0.5. Thus, the composite additive effects
of P1 and P2 genes in the F2 reference population are equal in absolute value but opposite in
sign, and we denote them respectively as +αc/2 and−αc/2,where the superscript cdenotes
composite (as opposed to single-gene) effects. The total composite additive effect in the F2

generation, [(αc − αc)/2], is then equal to zero, which is what is desired for a reference
population. The total composite additive effect in the F1 generation is also equal to zero,
because every locus contains one P1 and one P2 allele. In the P1 population, however, there
are only P1 alleles, each of which contributesαc/2, giving the total composite additive effect
as (αc + αc)/2 = αc. In contrast, as each P2 allele contributes −αc/2, the total composite
effect in the P2 population is −αc. More generally, the contribution of composite additive
effects to the mean genotypic value of any line-cross derivative is(

S − H

2

)
(+αc) + (H)(0) +

(
1− S − H

2

)
(−αc) = (2S − 1)αc = θSα

c (11.1b)

where θS = 2S − 1 denotes the source index. The three terms on the left represent, respec-
tively, the contributions from P1 homozygotes, P1P2 heterozygotes, and P2 homozygotes.
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The index θS contrasts the expected number of P1 alleles at a locus in a particular line (2S)
with that in the F2 reference population (1).

The composite dominance effect is obtained in a similar manner, again treating the F2

population as a reference. Returning to Table 4.2, it can be shown that when the frequencies of
the two alleles are equal to 0.5, the dominance deviations from the regression on gene content
are−d/2 for both homozygotes and d/2 for the heterozygote. An analogous situation exists
for the F2 of a line cross, which consists of 25% P1P1, 50% P1P2, and 25% P2P2 individuals
at each locus. Thus, we denote the composite dominance effects associated with crossbred
(P1P2) and purebred (P1P1, P2P2) loci as +δc and −δc, respectively. More generally, the
contribution of composite dominance effects to the genotypic mean of a particular line is(

S − H

2

)
(−δc) + (H)(+δc) +

(
1− S − H

2

)
(−δc) = (2H − 1)δc = θHδ

c (11.1c)

where θH = 2H − 1 is the hybridity index. Thus, θHδc yields a value of δc for the F1

population, which consists entirely of hybrids, −δc for the parental lines, and zero for the
F2, maintaining the property that the average composite effects are defined to be zero in the
reference population.

There are three important points to note about this approach to interpreting line-cross
means. First, the composite effects are denoted as such because they summarize the total
effects over all loci. Because some of the effects of individual alleles in population P1 may
be positive and others negative, there is a possibility of considerable cancellation of locus-
specific effects. A comparison of the variances within different line-cross derivatives can
shed some light on this problem (Mather and Jinks 1982), but we will not take this up here.

Second, provided there is no mating with close relatives, the definition of composite ef-
fects does not require that the parental populations be pure (completely homozygous) lines.
For any line-cross derivative, the subset of individuals with two P1 alleles at a particular
locus will have the same expected Hardy-Weinberg genotype distribution of P1 genotypes
as the P1 generation. The same argument applies to loci with two P2 alleles. Thus, in the
absence of inbreeding (which alters the genotypic frequencies within classes; see Chapter
12), differences between the means of various line-cross derivatives cannot be due to a shift
in the genotype frequencies within the groups P1P1, P1P2, and P2P2. It can only be caused
by a shift in the relative abundances of these three groups.

Third, the source and hybridity indices are all that are needed to define the contributions
of composite epistatic effects to line means. To obtain the general expression, we let (αcnδ

c
m)

denote the composite effect involving the interaction ofn additive andmdominance effects.
(Note that this notation does not imply that (αcnδ

c
m) = αcn · δcm.) The general expression for

the mean genotypic value of a line is then

µ = µ0 + θSα
c
1 + θHδ

c
1 + θ2

Sα
c
2 + θSθH(αc1δ

c
1) + θ2

Hδ
c
2 + · · · (11.1d)

where µo is the F2 mean. Note that the coefficients for the composite effect αcnδ
c
m is of the

form of θnS θ
m
H . Hill (1982a) provides a formal derivation of Equation 11.1d, and alternative

modes of presentation appear in Cockerham (1980), Lynch (1991), and Schnell and Cock-
erham (1992). Example 11.1 provides a derivation of the result for the additive × additive
component of epistasis. The compositions of the expected line means for common types of
crossbreds are given in Table 11.1.

The preceding model applies in the presence of linkage as long as there is no epistasis.
Linked genes tend to be inherited as a unit, although they are gradually rendered inde-
pendent by crossing-over. This process has the effect of altering the likelihood of specific
epistatic interactions through progressive rounds of recombination (see Equations 11.2a–
11.2c). Provided the parental lines are in gametic phase equilibrium, the expressions for the
P1, P2, and F1 lines still hold, because there is no opportunity for recombination between
chromosomes of different parental lines, but those for all subsequent line-cross derivatives
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Table 11.1 Expected mean phenotypes for various line-cross derivatives in terms of composite addi-
tive, dominance, and two-locus epistatic effects, taking the F2 mean (µ0) as a point of reference. These
expressions assume freely recombining loci. For situations involving self-fertilization, it is further
assumed that the parental lines are completely homozygous.

Line θS θH Expected Mean Phenotype

P1 1 –1 µ0 + αc1 − δc1 + αc2 − αc1δc1 + δc2 + · · ·
P2 –1 –1 µ0 − αc1 − δc1 + αc2 + αc1δ

c
1 + δc2 + · · ·

F1 0 1 µ0 + δc1 + δc2 + · · ·
F2 0 0 µ0

B1 = (P1 × F1) 1
2 0 µ0 + 1

2α
c
1 + 1

4α
c
2 + · · ·

B2 = (P2 × F1) – 1
2 0 µ0 − 1

2α
c
1 + 1

4α
c
2 + · · ·

F2 × P1
1
2 0 µ0 + 1

2α
c
1 + 1

4α
c
2 + · · ·

F2 × P2 – 1
2 0 µ0 − 1

2α
c
1 + 1

4α
c
2 + · · ·

F2 × F1 0 0 µ0

B1 × F1
1
4 0 µ0 + 1

4α
c
1 + 1

16α
c
2 + · · ·

B2 × F1 – 1
4 0 µ0 − 1

4α
c
1 + 1

16α
c
2 + · · ·

Second backcrosses

B1 × P1
3
4 – 1

2 µ0 + 3
4α

c
1 − 1

2δ
c
1 + 9

16α
c
2 − 3

8α
c
1δ
c
1 + 1

4δ
c
2 + · · ·

B1 × P2 – 1
4

1
2 µ0 − 1

4α
c
1 + 1

2δ
c
1 + 1

16α
c
2 − 1

8α
c
1δ
c
1 + 1

4δ
c
2 + · · ·

B2 × P1
1
4

1
2 µ0 + 1

4α
c
1 + 1

2δ
c
1 + 1

16α
c
2 + 1

8α
c
1δ
c
1 + 1

4δ
c
2 + · · ·

B2 × P2 – 3
4 – 1

2 µ0 − 3
4α

c
1 − 1

2δ
c
1 + 9

16α
c
2 + 3

8α
c
1δ
c
1 + 1

4δ
c
2 + · · ·

Selfed backcrosses

B1s
1
2 – 1

4 µ0 + 1
2α

c
1 − 1

4δ
c
1 + 1

4α
c
2 − 1

8α
c
1δ
c
1 + 1

16δ
c
2 + · · ·

B2s – 1
2 – 1

4 µ0 − 1
2α

c
1 − 1

4δ
c
1 + 1

4α
c
2 + 1

8α
c
1δ
c
1 + 1

16δ
c
2 + · · ·

Continued selfing from the F2

F3 0 – 1
2 µ0 − 1

2δ
c
1 + 1

4δ
c
2 + · · ·

F4 0 – 3
4 µ0 − 3

4δ
c
1 + 9

16δ
c
2 + · · ·

will be biased to an extent depending on the map structure of the constituent loci. For a pair
of loci with recombination fraction c, the following modifications need to be applied to the
expressions for the F2 and backcross means,

µ(F2) = µ0 +
(

1− 2c
2

)
αc2 + (1− 2c)2δc2 + · · · (11.2a)

µ(B1) = µ0 +
αc1
2

+
(

1− c
2

)
αc2 +

(
2c− 1

2

)
αc1δ

c
1 + (1− 2c)δc2 + · · · (11.2b)

µ(B2) = µ0 −
αc1
2

+
(

1− c
2

)
αc2 −

(
2c− 1

2

)
αc1δ

c
1 + (1− 2c)δc2 + · · · (11.2c)
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Table 11.2 Genetic map structure and the average recombination frequency (c̄) between random
pairs of loci throughout the genome. N is the haploid number of chromosomes per genome, and L
is the total map length (in Morgans) in females. For Drosophila, we ignore a tiny dot chromosome
for which little mapping data are available. In the mosquito Aedes and in humans, respectively, re-
combination in males is approximately 50% and 65% as frequent as that in females; and there is no
recombination within chromosomes in male Drosophila. For these three taxa, the reported values of
c̄ are averages for the two sexes. All results are approximations, as genomic maps are continuously
being refined with the addition of molecular markers (Chapter 17).

Species N L Lengths of Individual Chromosomes, Li c̄

Drosophila melanogaster 3 2.77 0.66, 1.03, 1.08 0.365

Drosophila pseudoobscura 4 4.46 0.68, 0.69, 1.01, 2.08 0.386

Aedes aegypti 3 2.28 0.62, 0.80, 0.86 0.380

Caenorhabditis elegans 5 1.61 0.27, 0.31, 0.33, 0.34, 0.36 0.418

Arabidopsis thaliana 5 5.24 0.63, 0.83, 0.98, 1.36, 1.44 0.443

Hordeum vulgare (barley) 7 9.49 0.70, 1.12, 1.15, 1.26, 1.27, 1.59, 2.40 0.465

Neurospora crassa 7 10.02 1.07, 1.13, 1.18, 1.33, 1.49, 1.52, 2.30 0.466

Zea mays (maize) 10 12.10 0.42, 0.78, 0.95, 1.07, 1.12, 1.37, 1.41, 0.474
1.55, 1.55, 1.67, 1.76

Phaseolus vulgaris (bean) 11 8.92 1.05, 1.04, 0.95, 0.92, 0.86, 0.78, 0.74, 0.471
0.71, 0.71, 0.60, 0.56

Pinus pinaster 12 18.56 1.90, 1.75, 1.69, 1.66, 1.63, 1.61, 1.57, 0.481
(maritime pine) 1.54, 1.54, 1.41, 1.36, 0.90

Lycopersicon esculentum 12 14.91 0.90, 0.92, 0.98, 1.01, 1.04, 1.04, 1.23, 0.479
(tomato) 1.34, 1.42, 1.63, 2.11

Mus musculus (mouse) 20 14.25 0.36, 0.36, 0.49, 0.56, 0.57, 0.57, 0.68, 0.483
0.70, 0.71, 0.73, 0.74, 0.78, 0.78, 0.80,
0.81, 0.84, 0.87, 0.89, 1.00, 1.01

Homo sapiens 23 40.00 0.69, 0.76, 1.12, 1.12, 1.22, 1.24, 1.25, 0.490
1.26, 1.38, 1.39, 1.40, 1.47, 1.62, 1.67,
1.67, 1.67, 1.74, 1.75, 1.75, 1.77, 1.92,
2.21, 2.49

Danio rerio 25 28.06 0.59, 0.80, 0.84, 0.85, 0.86, 0.87, 0.95, 0.489
(zebrafish) 1.00, 1.02, 1.05, 1.05, 1.09, 1.13, 1.13,

1.14, 1.16, 1.22, 1.22, 1.33, 1.34, 1.39,
1.39, 1.45, 1.53, 1.66

Source: All data are from O’Brien (1990), except that for Phaseolus (Vallejos et al. 1992), Pinus (Plomion
et al. 1995), and Danio (supplied by J. Postlethwait).

Example 11.1 presents the derivation of Equations 11.2a–11.2c. The expressions for more
advanced crosses (e.g., B1 × F1) are complicated because one must account for additional
generations of recombination.

Assuming that the epistatic effects between loci are independent of c, these expres-
sions also apply to the total composite effects of all loci when c̄, the mean recombina-
tion frequency between all pairs of loci, is substituted for c. Because we generally do
not know c for any pair of loci, let alone for all of the loci underlying a quantitative
trait, the best we can provide is a heuristic guide to the potential significance of link-
age. Assuming that the genes are uniformly distributed across all chromosomes, then
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c̄ = 0.5−
2L−N +

N∑
i=1

e−2Li

4L2
(11.3)

whereN is the number of chromosomes in a haploid set, Li is the genetic map length of the
ith chromosome (in Morgans), and L =

∑
Li is the total map length (Zeng et al. 1990). This

expression is based on Haldane’s mapping function, cij = 0.5(1 − e−2Lij ), which relates
the recombination frequency to the genetic map length between two linked loci, i and j
(Chapter 17). Estimates of c̄ are given in Table 11.2 for several species for which the genetic
maps are reasonably well resolved. For species with a very small number of chromosomes
and/or restricted recombination in males, as in Drosophila and the mosquito Aedes, c̄ can
be somewhat less than 0.40, but when N exceeds six or so, it tends to be greater than 0.45.
For most mammals, N is typically on the order of 15 or more, so most pairs of genes are on
different chromosomes, and c̄ is very close to 0.5. With c̄ > 0.45, Equations 11.2a-11.2c are
quite close to the expressions in Table 11.1. Thus, unless the genes underlying quantitative
traits tend to be aggregated on chromosomes, linkage is unlikely to cause much bias in the
interpretation of line-cross means, except perhaps in the case of species such as Drosophila.

Example 11.1. All of the composite effects described above are defined in a least-squares
sense, and the nice symmetry whereby all effects have the same absolute value but differ
in sign is a consequence of all contrasting pairs of alleles having frequency 0.5 in the F2

generation. We now provide a formal derivation of the additive× additive composite effects
in the context of a reference population that is both in Hardy-Weinberg and gametic phase
equilibrium. We denote the four gamete types asx11, x12, x21, and x22,where the subscripts
refer to the parental sources of alleles (lines 1 or 2)at the first and second locus. All four gamete
types have frequencies equal to 0.25. Let the additive× additive effects associated with these
gametes be α11, α12, α21, and α22. The effect αij is defined to be the average residual effect
associated with a gamete containing a Pi -derived allele at the first locus and a Pj -derived
allele at the second locus, after the additive effects of the two genes have been accounted for
(see Equation 5.4a). Under a least-squares framework, the mean residual error is defined to
be zero (Chapter 3), which implies

1
4

(α11 + α12 + α21 + α22) = 0

Furthermore, the mean squared error is minimized. Noting that the previous expression im-
plies that α22 = −α11 − α12 − α21, the function to be minimized is

M = α2
11 + α2

12 + α2
21 + (−α11 − α12 − α21)2

Taking the partial derivative with respect to α11 and setting it equal to zero, we obtain

2α11 + α12 + α21 = 0

Subtracting (α11 + α12 + α21 + α22) from this expression, we find that the epistatic effects
associated with each of the parental chromosome types are equal, i.e., α11 = α22. By similar
means, it can be shown that α12 = α21, which when applied to the constraint that (α11 +
α12 + α21 + α22) = 0 implies that

α11 = α22 = −α12 = −α21

Thus, the additive× additive effects associated with both recombinant chromosome types are
equal and opposite in sign to those of the parental chromosomes. Because, in a diploid, there
are four combinations of genes at two loci (two within and two between the uniting gametes),
we define the effects as

α11 = α22 = +αc2/4
α12 = α21 = −αc2/4
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In both the P1 and P2 populations, all additive × additive interactions within and between
chromosomes are of parental type (αii), and the composite effect of such interactions is
4(αc2/4) = αc2. In the F1 generation, the two interactions within chromosomes are of parental
type, but the pairs of nonalleles between chromosomes are of different parental type, so the
composite effect is 2(αc2/4) + 2(−αc2/4) = 0.

Now consider the situation in the F2 generation. Under free recombination, all four ga-
metes are equally frequent, and with random mating, the average additive× additive epistatic
effect within and between uniting gametes is equal to zero, as noted above. Suppose, however,
that the two loci are linked, so that a fraction c of gametes are recombinant, and a fraction
(1 − c) are nonrecombinant. The gamete frequencies are then p(x12) = p(x21) = c/2, and
p(x11) = p(x22) = (1− c)/2. Assuming random mating, the paternal source of an individ-
ual’s allele at one locus is independent of the maternal source of an allele at a second locus.
Thus, the average composite effects associated with additive× additive interactions between
uniting gametes is equal to zero. However, because the parental sources of genes within ga-
metes will not have been completely randomized, the composite additive × additive effect
within gametes is not zero, but

2[c(−αc2/4) + (1− c)(αc2/4)] = (1− 2c)αc2/2

giving the term in Equation 11.2a. These results can be extended to the backcross genera-
tions. xonsider, for example, the situation when F1 individuals are crossed to members of
parental line P1, creating the B1 backcross generation. The F1 parent can contribute each of
the four possible gametes, while the P1 parent contributes only x11 gametes. With probability
(1 − c)/2, the offspring genotype is x11/x11, and each of the four possible two-locus inter-
actions involves two P1 alleles; each such interaction contributes αc2/4, giving (1 − c)αc2/2.
Likewise, with probability c/2 the genotype is x12/x11. Here, there are two P1/P1 interac-
tions (2αc2/4) and two P1/P2 interactions (−2αc2/4), yielding a total contribution for this
genotype of (c/2)(2αc2/4− 2αc2/4) = 0. In a similar fashion, expectations for the other two
genotypes are found to be equal to zero, giving the total contribution in the B1 backcross as
(1− c)αc2/2.

ESTIMATION OF COMPOSITE EFFECTS

With the preceding model, the expected line means are linear functions of the composite
effects. Thus, straightforward procedures can be used to estimate these effects from the
observed line means. Generally, when the estimates of k parameters are desired, k types of
lines can be identified that allow a solution using simultaneous equations. For example, if
the epistatic effects are ignored, the expectations for the P1, P2, and F1 means are simply

µ(P1) = µ0 + αc1 − δc1 (11.4a)
µ(P2) = µ0 − αc1 − δc1 (11.4b)
µ(F1) = µ0 + δc1 (11.4c)

Rearranging and substituting observed for expected means, we obtain the three esti-
mators,

µ̂0 =
z̄(P1) + z̄(P2) + 2z̄(F1)

4
(11.5a)

α̂c1 =
z̄(P1)− z̄(P2)

2
(11.5b)

δ̂c1 =
2z̄(F1)− z̄(P1)− z̄(P2)

4
(11.5c)

With a model that includes all three forms of two-locus epistasis, there are six un-
knowns, so the mean phenotypes of at least six types of lines need to be evaluated. This is
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Table 11.3 Coefficients for observed line means in expressions for estimated composite effects using
the six-parameter model.

Parameter P1 P2 F1 F2 B1 B2

µ0 0 0 0 1 0 0
αc1 0 0 0 0 1 –1
δc1

1
4

1
4 – 1

2 2 –1 –1
αc2 0 0 0 –4 2 2
αc1δ

c
1

1
2 – 1

2 0 0 –1 1
δc2

1
4

1
4

1
2 1 –1 –1

most easily accomplished by assaying both parental lines, their F1 and F2 derivatives, and
the two backcrosses of F1 individuals to the parental lines (B1 and B2). As in the previous
example, the estimated composite effects can then be written as simple linear functions of
the observed means (Table 11.3). For example, the composite additive × additive effect is
estimated by

α̂c2 = −4z̄(F2) + 2z̄(B1) + 2z̄(B2)

Although we do not consider it in any detail here, it is worth noting that reciprocal
crosses between parental lines can be used to estimate maternal effects and the effect of
sex chromosomes. For example, when males of the P1 line are crossed to females of the
P2 line, and vice versa, assuming that males are the heterogametic sex, the difference in
mean phenotypes of daughters from the two lines provides an estimate of the difference
between maternal effects associated with each parental line. In F1 males, the effect of the
X chromosome is superimposed on the maternal-effect difference. However, by making
four possible types of crosses between F1 individuals (two maternal sources of cytoplasm
in females × two maternal sources of the X chromosome in males), a clean partitioning of
these two sources of composite effects can be obtained (Carson and Lande 1984; Hard et al.
1992).

Because the estimates of the composite effects are linear functions of the line-cross
means, the sampling variances of the estimates can be obtained from the expression for the
variance of a sum (Equation 3.11b). Because the mean phenotype of each line is estimated
independently of the others, there is no covariance between the different mean estimates.
Thus, the sampling variance of a composite effect is simply the sum of the sampling vari-
ances of the line means used in its estimation, each weighted by the squared coefficient in
the estimating equation. For example, for the preceding estimator of α̂c2,

Var(α̂c2) = 16Var[z̄(F2)] + 4Var[z̄(B1)] + 4Var[z̄(B2)]

where Var[z̄(· · ·)] is the squared standard error of a line mean.
Finally, we note in passing that one interesting application of line-cross methodology

is in the analysis of selection response. In this setting, one grows saved seed from different
generations (and often some of their crosses) from a selection experiment (or a breeding
program) in a common environment and evaluates their means. This approach is discussed
in WL Chapter 18 and is often called a generation-means analysis (GMA), and allows
one to examine the component of selection response (Hammond and Gardner 1974; Smith
1979a, 1979b, 1983; Melchinger and Flachenecker 2006).

Hypothesis Testing

When the number of observations equals the number of parameters to be estimated, the
solution of simultaneous equations cannot be used to evaluate the adequacy of the genetic
model, as the parameter estimates are constrained to yield the observed line means exactly.
This problem is eliminated when the number of observed line means exceeds the number
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of parameters to be estimated. For example, if data are available for the P1, P2, F1, and F2

lines, the statistic

∆ = z̄(F2)−
(
z̄(P1) + z̄(P2)

4
+
z̄(F1)

2

)
(11.6a)

provides a simple test for epistasis. In the absence of epistasis, the expected value of ∆ is
zero because at every locus, by the Hardy-Weinberg law, the F2 is 25% P1P1, 50% P1P2, and
25% P2P2. The sampling variance of this test statistic is

Var(∆) = Var[z̄(F2)] +
Var[z̄(F1)]

4
+

Var[z̄(P1)] + Var[z̄(P2)]
16

(11.6b)

Under the reasonable assumption that the sampling distribution of ∆ is approximately
normal, the ratio |∆|/

√
Var(∆) provides a simple t test for epistasis. For large samples, if

this ratio is greater than 1.96, then the null hypothesis of no epistasis can be rejected with
95% confidence.

A more general approach to hypothesis testing uses least-squares regression to estimate
the model parameters and then compares the observed means with the model predictions.
With this approach, one can start with a very simple model, evaluate its significance, and
gradually add higher-order composite effects to the model, until no further significant
improvement in the model fit occurs. This procedure, first suggested by Cavalli (1952) and
Hayman (1960a), is known as the joint-scaling test.

Consider the simple additive model,

z̄i = µ0 + θSiα
c
i + ei

where the ith line mean (z̄i) has coefficient θSi, and ei denotes the deviation of the observed
mean from the prediction of the model. In matrix form, letting z̄ be the vector of observed
line means, a be the (2× 1) vector of effects µ0 and αc1, and M be the matrix of coefficients,
the linear model becomes

z̄ = Ma + e (11.7)

where e is the column vector of residual errors, i.e., the vector of deviations between ob-
served and predicted line means. Note that all of the elements in the first column of M are
equal to one, as they are all multipliers for µ0, whereas the second column contains the
coefficients θSi for the various lines (Table 11.1).

Because the line means may vary with respect to accuracy (reflecting, for example,
different sample sizes), they should not be weighted equally in the computation of a. From
Equation 10.13a, the weighted least-squares solution is

â = (MTV−1M)−1MTV−1z̄ (11.8)

where the covariance matrix V for the residuals is diagonal with diagonal elements equal to
the squared standard errors of the means. The treatment of V as a diagonal matrix assumes
that the measured individuals from the different lines are unrelated, i.e., that there is no
sampling covariance between the observed means.

From Equation 10.13b, the sampling variances and covariances of the two parameter
estimates, µ̂0 and α̂c1, are given by the elements of the (2× 2) covariance matrix

Var(â) = C = (MTV−1M)−1 (11.9)

The two diagonal elements of C are Var(µ̂0) and Var(α̂c), whereas both off-diagonal ele-
ments are equal to Cov(µ̂0, α̂

c). Sampling covariance arises between estimates of the param-
eters because they are jointly estimated from a common data set. Letting ẑi = µ̂0 + θSiα̂

c be
the fitted (predicted) mean phenotype for the ith line, the sampling variance of ẑi is simply
the variance of a sum,

Var(ẑi) = Var(µ̂0) + 2θSiCov(µ̂0, α̂
c) + θ2

SiVar(α̂c) (11.10a)
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Using Equations 9.21b and 11.9, the covariance matrix for the predicted means is

Var( ẑ ) = Var( M â ) = MCMT = M(MTV−1M)−1MT (11.10b)

Although the least-squares solution is completely general, significance testing requires
the assumption of normality. If that assumption is met, the weighted error sum of squares

χ2 =
k∑
i=1

(z̄i − ẑi)2

Var(z̄i)
(11.11)

where k is the number of observed lines, provides a test statistic for the adequacy of the
model (Appendix 3). Under the null hypothesis of purely additive gene action, this test
statistic will be χ2 distributed with degrees of freedom equal to the number of lines minus
the number of estimated parameters, in this case giving (k − 2) df.

If the test statistic is large enough to reject the additive model, the logical next step is to
evaluate the additive-dominance model. In this case, the vector a contains a third element,
δc1, and the matrix M contains a third row consisting of the elements θHi. The solution again
follows from Equation 11.8, and the new fit is evaluated by use of Equation 11.11, where the
χ2 statistic is now distributed with k− 3 degrees of freedom, as three parameters are fitted.

Letting χ2
A and χ2

AD denote the test statistics associated with the additive and additive-
dominance models, then the difference

Λ = χ2
A − χ2

AD (11.12)

is equivalent to a likelihood-ratio test statistic (see Example A4.5). Such statistics are asymp-
totically χ2 distributed (for large sample sizes), with degrees of freedom equal to the differ-
ence in the number of parameters included in the two models (in this case, one). While the
inclusion of dominance in the model will definitely improve the fit, Equation 11.12 provides
a test for whether the improvement is significant.

If the additive-dominance model is rejected on the basis of an overly large value for
χ2
AD, the next step is to proceed with the analysis of models containing epistatic effects,

assuming that enough line means are available for such analysis. At this point, δc1 may or
may not be dropped from the model depending on its degree of significance in the previous
analysis. The significance of the improvement of fit with models containing epistasis can
again be evaluated by use of the appropriate likelihood-ratio test, i.e., by the difference in
χ2 test statistics between the modified model and the previous restricted model.

Example 11.2. We now use the joint-scaling test to study the genetic basis of human skin
color. The sample consists primarily of residents of Liverpool, England (Harrison and Owen
1964). Pigmentation was measured as the reflectance of the medial aspect of the right upper
arm at 545 mµ. The P1 consists of individuals of West African origin and the P2 of individuals
of European descent. The data are as follows

P1 P2 F1 F2 B1 B2

z̄i 14.4 41.0 28.4 30.3 24.2 34.7
SE(z̄i) 0.611 0.453 0.581 1.483 1.334 1.122

There is a threefold range of variation in the standard errors of the mean phenotypes, and
this translates into a tenfold range in the sampling variances. Clearly, weighted least-squares
regression is desirable in this situation.

We start by considering the simplest genetic model, assuming that all gene action is
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additive within and between loci. Table 11.1 gives the coefficients for the effects µ0 and αc as

M =


1 1
1 −1
1 0
1 0
1 0.5
1 −0.5


The sampling covariance matrix for the line means is diagonal with Vii =
[SE(z̄i)]2, with

V =


0.373 0.000 0.000 0.000 0.000 0.000
0.000 0.205 0.000 0.000 0.000 0.000
0.000 0.000 0.338 0.000 0.000 0.000
0.000 0.000 0.000 2.199 0.000 0.000
0.000 0.000 0.000 0.000 1.780 0.000
0.000 0.000 0.000 0.000 0.000 1.259


These lead to

MTV−1M =
(

12.325 −2.311
−2.311 7.891

)
which yields the sampling covariance matrix for the parameter estimates (Equation 11.9),

C = (MTV−1M)−1 =
(

0.086 0.025
0.025 0.134

)
and from Equation 11.8, the parameter estimates become

â =
(
µ̂0

α̂c

)
=
(

28.17
−13.07

)
The standard errors of the parameter estimates are equal to the square roots of the diagonal
elements of C,

SE(µ̂0) = (0.086)1/2 = 0.29

SE(α̂c) = (0.134)1/2 = 0.37

The line means predicted by the model are obtained as ẑ = Mâ, and the sampling variances
and covariances of predicted values by Equation 11.10b,

Var(ẑ) = M(MTV−1M)−1MT

The square roots of the diagonal elements of this latter matrix are the estimated standard
errors of the predicted means. In all cases, the predicted values are very close to the observed
means:

P1 P2 F1 F2 B1 B2

ẑ 15.2 41.2 28.2 28.2 21.6 34.7
z̄ − ẑ −0.8 −0.2 0.2 2.1 2.6 0.0
SE(ẑ) 0.52 0.41 0.29 0.29 0.38 0.31

The test statistic,χ2
A = 7.510,with four degrees of freedom, is not significant as Pr(χ2

4 ≥
7.510) = 0.11. Thus, the fitted model with µ̂0 = 28.17 and α̂c = −13.07 appears to
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adequately explain the data. Reevaluation of the data with the additive-dominance model
confirms this conclusion. In this case, the analysis proceeds with

M =


1 1 −1
1 −1 −1
1 0 1
1 0 0
1 0.5 0
1 −0.5 0


and

a =

µ0

αc

δc


yielding the parameter estimates (and associated standard errors):

µ̂0 = 28.32 (0.32), α̂c = −13.14 (0.37), δ̂c = 0.44 (0.34)

Notice that the estimates µ̂0 and α̂c are very close to those obtained under the purely additive
model, and that δ̂c is only slightly greater than its standard error. The test statistic for this
analysis is χ2

AD = 5.879. The likelihood-ratio test statistic, Λ = χ2
A − χ2

AD = 1.631,
provides a test of the hypothesis that dominance accounts for a significant proportion of the
variance among line means. With one degree of freedom, Λ is not significant, as Pr(χ2

1 ≥
1.631) = 0.20.
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Figure 11.1 Observed versus fitted mean phenotypes for 14 line-cross derivatives from two
pure parental lines of tobacco. The diagonal line gives the expected pattern if observed and
predicted line means were identical. (After Jinks and Perkins 1969.)

Line Crosses in Nicotiana rustica

Few attempts have been made to estimate more than two-locus epistatic effects using line-
cross analysis. However, Mather, Jinks, and their associates have done an enormous amount
of work with highly inbred lines of tobacco to evaluate the relative importance of various
types of higher-order gene action (Mather and Jinks 1982). An experiment by Jinks and
Perkins (1969) is particularly noteworthy. In addition to the six fundamental line crosses,
they created four second-generation backcrosses (B1 × P1, B1 × P2, B2 × P1, B2 × P2), the
crosses B1 × F1 and B2 × F1, and the selfed backcrosses (B1s and B2s), and they assayed all



ANALYSIS OF LINE CROSSES 13

Table 11.4 Composite effects estimated from phenotypic means of two line crosses involving inbred
parental stocks of tobacco, V1 × V5 (upper lines of data for each trait) and V2 × V12 (lower lines).
Only significant effects are given, and the resulting models provide an adequate fit to the data in all
cases. Leaf length was not analyzed in the V2 × V12 experiment. (Data from Pooni et al. 1985.)

Character µ̂0 α̂c1 δ̂c1 α̂c2 α̂c1δ̂
c
1 δ̂c2

Height—2 wk 5.50 1.19 1.10 1.27
4.34 1.97 0.48 0.55

—4 wk 15.74 3.53 3.32 3.97
15.22 9.96 2.58 3.48

—6 wk 49.84 5.02 −2.48 9.95
49.14 30.22 11.14 9.21 4.12

—flowering 73.75 7.99 −5.02
83.40 5.84 3.12 −6.21

—final 126.80 12.57 3.72 −7.58
143.44 8.79 21.91 −3.33

Leaf length 19.10 0.35 −1.89

Table 11.5 A survey of the composite effects estimated in line-cross analyses. The results reported for
each analysis describe the most parsimonious genetic model, and all recorded effects are statistically
significant. The motivation for the use of logarithmic transformations in some cases is discussed in
Chapter 14.

Character µ̂0 α̂c1 δ̂c1 α̂c2 α̂c1δ̂
c
1 δ̂c2 Reference

Corn
time to silking 65.19 0.20 −6.16 −4.40 7.33 5.92 Mohamed 1959
time to shed pollen 62.88 −1.57 −4.36 −1.94 4.74 3.69

Lima beans
seed size 0.57 −0.25 −0.16 0.04 0.30 0.19 Ryder 1958

Tomatos
log10(fruit weight) 0.69 −0.87 0.02 0.12 −0.03 Powers 1951

Pitcher-plant mosquito
log10(critical photoperiod)

−1.84 −4.45 0.40 1.79 4.18 Hard et al. 1992

Drosophila melanogaster
ln(longevity) 1.79 −0.06 0.01 0.03 Luckinbill et al. 1988

Drosophila tripunctata
ovipos. site pref. 0.31 −0.12 0.05 0.18 Jaenike 1987

D. heteroneura × D. sylvestris
ln(head length) 3.00 0.09 Templeton 1977
ln(head width) 3.96 −0.01

Astyanax (cave fish)
eye diameter 4.72 −2.43 1.62 1.10 −1.57 −1.24 Wilkens 1971

Mice
log10(body weight) 1.39 0.18 −0.01 −0.07 −0.01 0.01 Chai 1956

Chickens
weight 3.49 −0.12 −0.06 −0.08 0.08 0.05 Waters 1931
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of them simultaneously (i.e., in a common garden). With such a large number of lines, there
are enough degrees of freedom to test for the significance of three-locus epistatic effects.

In the case of final plant height, a model with fitted parameters (and associated standard
errors) µ̂0 = 57.64 ± 0.23, α̂c1 = 5.32 ± 0.20, δ̂c1 = 3.55 ± 0.38, α̂c2 = 4.85 ± 1.28, and
α̂c2δ̂

c
1 = 3.73 ± 1.03 provided an excellent fit to the data (Figure 11.1). Thus, for this trait,

there are significant additive× additive and additive× additive× dominance interactions
involving genes from different lines, but no significant additive × dominance, dominance
× dominance, or higher-order interactions. The most parsimonious three-locus fit for the
data on flowering time is obtained with µ̂0 = 15.91± 0.09, α̂c1 = 1.36± 0.15, δ̂c1 = −2.39±
0.22, and α̂c2δ̂

c
1 = 1.81 ± 0.37. Here, there are significant differences between observed and

predicted line means in this case (Figure 11.1), suggesting the existence of even higher-
order epistatic interactions. Analyses with other parental lines (Smith 1937; Hill 1966) led
to similar results—final height was usually described adequately by a model incorporating
dominance and at least one form of two-locus epistasis, while flowering time was influenced
by epistatic interactions between pairs, triplets, and higher numbers of loci. The results from
two additional line-cross experiments, involving only the six fundamental generations,
indicate that epistasis contributes to line differences in other characters in Nicotiana (Table
11.4). In these additional cases, however, effects involving more than pairs of loci need not
be invoked to explain the data, because in no case are the observed means significantly
different from the final model predictions.

Additional Data

A summary of results from some other line-cross studies is given in Table 11.5. In most cases,
the parental lines are conspecific isolates known at the outset to differ (often substantially) in
mean phenotypes. The main message is consistent with the Nicotiana results—differentiation
of divergent lines almost always involves epistatic effects. We will see in Chapter 12 that
epistatic interactions can sometimes be removed by a suitable scale transformation, but it
is unlikely that this would be successful for all the tabulated studies.

VARIANCE OF LINE-CROSS DERIVATIVES

In principle, the joint-scaling test can be used to interpret the variances as well as the means
obtained from line crosses. One of the most important applications of such an analysis is in
the interpretation of the outbreaks of variation often seen in an F2 generation (Figure 1.3).
To keep things simple, let us assume that gene action is additive and that the environmental
variance (here denoted as σ2

E) is independent of the genetic background. The expected
phenotypic variances for the parental lines and their F1 offspring are then

σ2(P1) = σ2
E + σ2

A1
(11.13a)

σ2(P2) = σ2
E + σ2

A2
(11.13b)

σ2(F1) = σ2
E +

1
2
σ2
A1

+
1
2
σ2
A2

(11.13c)

where σ2
A1

and σ2
A2

are the additive genetic variances in the P1 and P2 lines. The genotypic
variance in the F1 generation follows from the fact that, for each locus, F1 individuals contain
exactly one P1 allele and one P2 allele, and that the two haploid sets of alleles contribute
variance σ2

A1
/2 and σ2

A2
/2.

An additional source of genetic variance will appear in any line-cross derivative for
which there is variation among individuals in the proportion of P1 and P2 genes. For ex-
ample, in the F2 generation there is a 50% probability of being P1P2 and 25% probabilities
of being P1P1 or P2P2 at any locus. This variation is in contrast to that in the F1 genera-
tion where all individuals are P1P2. Letting −αci/2 and +αci/2 be the mean additive effects
of alleles at the ith locus in the P1 and P2 lines, then the variance among F2 individuals
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attributable to differences between parental lines at the locus is

σ2
S(i) = 0.25(−αci )2 + 0.5

(
αci
2
− αci

2

)2

+ 0.25(αci )
2 =

(αci )
2

2
(11.14)

Summing over all loci, we obtain the segregational variance,

σ2
S =

1
2

n∑
i=1

(αci )
2 (11.15)

which describes the excess variance that appears in the F2 generation as a consequence of
the segregation of parental-line genes. The expected variance in the F2 generation is then

σ2(F2) = σ2
E +

1
2
σ2
A1

+
1
2
σ2
A2

+ σ2
S (11.16)

To obtain a general expression for the variances within backcross and more advanced
generations, we take the following approach, again assuming additive gene action. Recall
that if a line has associated parameters H and S, then the proportions of P1-purebred, P2-
purebred, and crossbred genotypes at any locus are S − (H/2), 1 − S − (H/2), and H,
respectively. For the ith locus, these classes have genotypic means and variances equal
to (αci , σ

2
A1i

), (−αci , σ2
A2i

), and (0, [σ2
A1i

+ σ2
A2i

]/2), respectively. For any line, the genetic
variance associated with the locus can be expressed as

σ2
A(i) = E(A2

i )− µ2
Ai

where Ai denotes the breeding value of an individual at the locus, and from arguments
given above, µAi = θSα

c
i = (1− 2S)αci . An expression for E(A2

i ) is obtained by averaging
over the three possible classes of genotypes,

E(A2
i ) =

(
S − H

2

)
[σ2
A1i + (αci )

2] +H

(
σ2
A1i

+ σ2
A2i

2

)
+
(

1− S − H

2

)
[σ2
A2i + (−αci )2]

= Sσ2
A1i + (1− S)σ2

A2i + (1−H)(αci )
2

Putting these results together, for any derivative line with indices S and H, the variance
associated with the ith locus is

σ2
A(i) = Sσ2

A1i + (1− S)σ2
A2i + [4S(1− S)−H](αci )

2 (11.17)

Adding the environmental variance, summing over all loci, and recalling Equation 11.15,
the expected phenotypic variance for a line with properties S and H is

σ2 = σ2
E + Sσ2

A1
+ (1− S)σ2

A2
+ 2[4S(1− S)−H]σ2

S (11.18)

For example, for the B1 backcross (H = 1/2 and S = 3/4) and the B2 backcross (H = 1/2
and S = 1/4),

σ2(B1) =σ2
E +

3
4
σ2
A1

+
1
4
σ2
A2

+
1
2
σ2
S (11.19a)

σ2(B2) =σ2
E +

1
4
σ2
A1

+
3
4
σ2
A2

+
1
2
σ2
S (11.19b)

We are now equipped with all of the statistical machinery necessary to develop a
predictive model for line variances. Analogous to the model developed above for line means,
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we let v be the vector of observed phenotypic variances for the various lines, a be the vector
of variance components (σ2

E , σ
2
A1, σ

2
A2, and σ2

S), and M be the matrix of coefficients for the
lines, with all elements in the first column being equal to one, and values of S, (1− S), and
2[4S(1 − S) −H] being entered in the remaining three columns. The linear model for line
variances can then be summarized as

v = Ma + e (11.20)

where e is the vector of residual errors. The weighted least-squares estimates for the model
parameters are given by

â = (MTV−1M)−1MTV−1v (11.21)

where V is the sampling covariance matrix for the line variances. Provided the individuals
of the various lines are unrelated, then all of the elements of V are zero except those on
the diagonal. These are set equal to 2v2

j /(nj + 2), the unbiased estimator of the sampling
variance of a variance under the assumption of normality (Equation A1.10c), where nj is
the sample size, and vj is the observed phenotypic variance of the jth line.

There is one small remaining problem. Unless one is willing to assume that the parental
lines are completely homozygous, i.e. σ2

A1 = σ2
A2 = 0, Equation 11.21 cannot be solved

directly. The problem is that M is singular, because for any line, the coefficient forσ2
E is equal

to the sum of the coefficients forσ2
A1 andσ2

A2. This difficulty can be circumvented by deleting
the first column from M and reducing the variance component vector to aT = [σ2(P1),
σ2(P2), σ2

S ], where σ2(P1) = σ2
E + σ2

A1 and σ2(P2) = σ2
E + σ2

A2 are the phenotypic variances
for the two parental lines.

Hayman (1960b) took this analysis a step further in producing a maximum-likelihood
procedure. The diagonal elements of the matrix V have expectations equal to 2σ4

j /(nj + 2),
whereσ2

j represents the expectation of the appropriate entry in v. Under the assumption that
the additive model is correct, the projected least-squares values, v̂ = Mâ, should actually
be better estimates of the within-line variances than the original elements of v. This implies
that the elements of â should be computed a second time by use of Equation 11.21 after
substituting the elements of v̂ into V. This procedure is then iterated until the estimates of
â stabilize. (Note that during the iterative process, it is only the elements of the covariance
matrix V, and not those of the vector of observed variances v, that are modified recursively.)

Because V is diagonal with Vii = 2σ4
j /(nj + 2), Equation A3.11a gives the χ2 statistic

for goodness of fit of the observed variances to the predictions of the additive model as

χ2 =
k∑
j=1

(vj − v̂j)2

2 v̂ 2
j /(nj + 2)

(11.22)

where the v̂j are the final estimates of the σ2
j , and the degrees of freedom

associated with the test statistic equal the number of lines (k) minus three (the number
of variance components estimated).

Example 11.3. We now apply the joint-scaling test for variances to Harrison and Owen’s
(1964) data on human skin color. Recall from Example 11.2 that the analysis of means supports
the idea that this character has an additive genetic basis. On the other hand, the phenotypic
variances, recorded in the following table, appear to be rather inconsistent with the additive
model. For example, the F1 variance is much higher than the average of the P1 and P2 variances,
and even exceeds that of the F2. However, because the sampling variance of a variance is quite
large (as can be seen in the third row of the following table), there is some question as to the
significance of these differences.
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P1 P2 F1 F2 B1 B2

vj 14.918 21.098 31.748 26.382 37.366 37.766
nj 40 103 94 12 21 30
2v2
j /(nj + 2) 10.597 8.479 20.999 99.430 121.410 89.142

The coefficients for the variance components in the model,σ2(P1),σ2(P2) andσ2
S , are obtained

from Equation 11.18,

M =


1 0 0
0 1 0

0.5 0.5 0
0.5 0.5 1

0.75 0.25 0.5
0.25 0.75 0.5


Inserting the values from the table above, the initial sampling covariance matrix is

V =


10.597 0.000 0.000 0.000 0.000 0.000
0.000 8.479 0.000 0.000 0.000 0.000
0.000 0.000 20.999 0.000 0.000 0.000
0.000 0.000 0.000 99.430 0.000 0.000
0.000 0.000 0.000 0.000 121.410 0.000
0.000 0.000 0.000 0.000 0.000 89.142


Substituting into Equation 11.21, we obtain the initial set of least-squares parameter estimates,

â = (MTV−1M)−1MTV−1v =

 18.120
23.681
14.441


The following table shows how the parameter estimates change over the next several rounds
of iterations,

Iteration

Estimates 2 3 5 10 15 20 Final SE

Var(P1) 22.199 22.930 23.446 23.583 23.586 23.586 4.207
Var(P2) 25.994 25.505 25.185 25.103 25.102 25.102 3.166
Var(S) 17.163 17.038 16.876 16.830 16.829 16.829 10.411
χ2 14.135 10.432 10.175 10.102 10.101 10.101

The standard errors are the square roots of the diagonal elements of the final estimate of
(MTV−1M)−1.Using the final set of parameter estimates, the predicted line variances (v̂j),
obtained from Equation 11.18, and their standard errors, obtained as the square roots of the
diagonal elements of M(MTV−1M)−1MT , are

P1 P2 F1 F2 B1 B2

v̂j 23.586 25.102 24.344 41.172 32.379 33.137
SE 4.207 3.166 2.306 9.845 5.042 5.187

The final χ2 value (10.101) is rather large, but because of possible nonnormality of the
data, its statistical interpretation is somewhat questionable. Because the difference between ob-
served and expected line variances is less than two standard errors (2[SE(vj)2 + SE(v̂j)2]1/2)
for all lines, there seems to be no strong justification for rejecting the additive model.
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Figure 11.2 Observed means and variances (± twice the standard errors) of human skin color
in relation to the predictions of the additive model. The maximum-likelihood predictions are
given by the line on the left graph and the open circles on the triangle on the right graph.
(From Harrison and Owens 1964.)

A graphical comparison of the observed and predicted means and variances of human
skin color (Figure 11.2) serves to illustrate two important points. First, due to the large
standard errors of variance estimates, scaling tests based on variances are much less powerful
than those based on means. Thus, while the preceding methodology can be generalized to
compute the dominance and epistatic components of the segregational variance (Mather
and Jinks 1982), the statistical reliability of such analyses is very low, and we will not pursue
it further.

Second, the additive model leads to some very simple geometric relationships (Figure
11.2). The expected line means are linear functions of the proportion of genes derived from
each parental line. The expected line variances fall on a triangle, the vertices of which repre-
sent the expected P1, P2, and F2 variances. The expected F1 variance lies on the midpoint of
the line leading from P1 to P2, while the expected B1 and B2 variances lie on the midpoints
of the lines from P1 to F2 and P2 to F2, respectively.

BIOMETRICAL APPROACHES TO THE ESTIMATION OF GENE NUMBER

We now turn to a second application of line-cross analysis—estimation of the number of
segregating loci responsible for quantitative variation. The subject is of importance for
several reasons. First, since the beginning of the last century (Chapter 1), there has been
considerable debate as to whether most large evolutionary changes are due to a small
number of macromutations or to gradual substitution of minor allelic variants at a large
number of loci (Gould 1980; Charlesworth et al. 1982; Gottlieb 1984; Coyne and Lande
1985; Orr and Coyne 1992; Wu and Palopoli 1994; WL Chapter 25). Second, from a more
statistical point of view, the nice properties of normal theory that facilitate quantitative-
genetic analysis become violated to a greater degree as the number of segregating loci
becomes smaller. The ideal setting for much of quantitative-genetic theory is a very large
number of loci, all with small effects, the so-called infinitesimal model (WL Chapter 24).
Third, for situations in which most of the genetic variation is a function of one or two
genes with major effects, a fine-scale Mendelian analysis (through the direct observation
of segregation ratios) will often be possible, provided the environmental component of
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variance is not of overwhelming importance (Chapter 16).
There are two general approaches to estimating gene number. The biometrical ap-

proach, which is the subject of this chapter, is based on statistical properties (means and vari-
ances) of phenotype distributions, and uses these properties to indirectly infer the number of
segregating factors that are likely to be responsible for them. The second approach involves
the search for associations between segregating molecular markers and quantitative-genetic
variation (Chapters 17–20). While these more direct molecular approaches have largely sup-
planted biometerical approaches, the latter are both of historical importance and still have
utility. For example, Nandamuri et al. (2017) used this approach to estimate the number of
genes involved in the regulation of opsin gene expression in Cichlid fish.

Although we are ultimately interested in the total number of loci (n) contributing to the
variance in trait expression, most estimates of n are actually measures of the effective num-
ber of factors (ne) by which the characters in two lines differ. This quantity is equivalent
to the number of freely segregating loci with equal effects that would yield the observed
pattern of line means and variances. It is important to realize that estimates of ne do not
include the potentially large fraction of loci that do not vary between lines, yet could lead to
phenotypic differences given the right kinds of mutations. In addition, ne cannot exceed the
number of independently segregating chromosomal segments, i.e., the number of chromo-
somes plus the mean number of recombination events per gamete (the segregation index).
In eukaryotes, there are usually one to two recombination events per chromosome. Thus,
the maximum possible value of ne is usually two to three times the haploid chromosome
number, although each segregating unit can contain many loci.

In the following section, we will first describe an estimator, n̂e, for the effective number
of factors. We will then describe a more refined estimator, n̂, which provides estimates
that are closer to the actual number of loci. Procedures for estimating ne involve a number
of assumptions, the most important of which is additivity of gene action. Thus, prior to
analysis, a serious attempt should be made to find a scale on which the observed line
means and variances are consistent with the additive model. The joint-scaling tests described
on the previous pages provide an approach for testing the effectiveness of various scale
transformations (see also Chapter 14).

The Castle-Wright Estimator

The most widely used method for estimating ne utilizes information on the phenotypic
means and variances of two parental lines and their line-cross derivatives (F1, F2, B1, B2,
etc.) As first developed by Castle (1921) with his graduate student Sewall Wright (1968),
the method was intended for use with inbred parental lines. Lande (1981) generalized it for
use with genetically variable base populations, and the theory developed below is based on
his modifications, and those of Cockerham (1986). In addition to additive gene action, the
Castle-Wright technique assumes unlinked loci and equality of allelic effects, although we
relax the latter assumption in the following derivation. It also assumes that all genes with a
positive influence on the trait are sorted into one line and all those with negative influences
into the other. Hence, such estimates are essentially of the difference in the net number of
plus alleles that the lines differ by, and hence are underestimates of the true number of
segregating differences.

Letting αci be the composite additive effect for the ith locus, the mean phenotype of the
P1 line can be written asµ(P1) = µ0+

∑n
i=1 α

c
i = µ0+nαci , whereαci is the average composite

additive effect of a locus. That for the P2 line is µ(P2) = µ0 − nαci . Thus, the expected
difference in mean phenotypes isµ(P1)−µ(P2) = 2nαci . The segregational variance, defined
in Equation 11.15, can also be written as

σ2
S = n[σ2(αci ) + (αci )

2]/2 (11.23a)

where σ2(αci ) is the variance of composite effects among loci. The trick to deriving an
estimator of ne is to note that the expected squared difference between parental line means
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is

[µ(P1)− µ(P2)]2 = E

[(
2

n∑
i=1

αci

)2 ]
= 4n

[
(αci )2 + (n− 1)(αci )2

]
= 4n

[
n(αci )2 + σ2(αci )

]
(11.23b)

Taking the ratio of these two expressions yields

[µ(P1)− µ(P2)]2

σ2
S

=
8[n(αci )

2 + σ2(αci ) ]
(αci )2 + σ2(αci )

which upon rearrangement yields

ne =
[µ(P1)− µ(P2)]2(1 + Cα)

8σ2
S

− Cα (11.23c)

whereCα = σ2(αci )/(αci )
2 is the squared coefficient of variation of the locus-specific additive

effects. In the very unlikely event that all of the assumptions of the model hold, then Equation
11.23c would define the actual number of loci. In recognition of the fact that one or more
assumptions are likely to be violated, Equation 11.23c is denoted as a measure of the effective
number of factors, ne. In effect, Equation 11.23c states that the line means and segregational
variance are distributed in the same way that would occur if the two populations were
differentiated at ne freely recombining loci with equal and additive effects.

In general, Cα is an unobservable quantity, but it must be positive. Ignoring this term
for the time being, and substituting observed quantities for expectations, we obtain a biased
estimator for the effective number of factors,

n̂e =
[z̄(P1)− z̄(P2)]2 − Var[z̄(P1)]− Var[z̄(P2)]

8Var(S)
(11.24)

hereafter referred to as the Castle-Wright estimator, where the z̄(Pi) and Var[z̄(Pi)] are,
respectively, the observed means and sampling variances of the means for the ith parental
line. Estimates of ne in the literature often ignore the two Var terms in the numerator,
but these are required to correct for the sampling error of the estimates of the line means
(Cockerham 1986).

When data are available for the backcross generations, the segregational variance es-
timate, Var(S), can be obtained by the weighted least-squares procedure described above.
In the absence of backcrosses, it can be computed as a linear function of the observed
phenotypic variances within lines, either as

V̂ar(S) =


Var(F2)− Var(F1) (11.24b)

Var(F2)− 2Var(F1) + Var(P1) + Var(P2)
4

(11.24c)

The importance of using least-squares estimates whenever possible is seen from Example
11.3, where Var(F2)− Var(F1) is negative, but the least-squares estimate of σ2

S is 17.
The large-sample variance of ne, obtained from the equation for the variance of a ratio

under the assumption of normality (Equation A1.19b), is approximately

Var(n̂e) ' n̂2
e

[
4{Var[z̄(P1)] + Var[z̄(P2)]}

[z̄(P1)− z̄(P2)]2
+

Var[Var(S)]
[Var(S)]2

]
(11.25a)

If Var(S) is estimated by least-squares analysis, its sampling variance, Var[Var(S)], is ob-
tained directly from the matrix (MTV−1M)−1, as described above. Otherwise, it is esti-
mated by the sum of the variances of the variances used to compute Var(S), each weighted
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by the square of the appropriate coefficient. For example, if Var(S) is estimated by Var(F2)−
Var(F1), then

Var[Var(S)] =
2[Var(F2)]2

nF2 + 2
+

2[Var(F1)]2

nF1 + 2
(11.25b)

where nF2 and nF1 are the sample sizes. This follows because Var(F1) and Var(F2) are
independent estimates, and because under the assumption of normality, the large-sample
variance of a variance is 2Var2/(n+ 2) (Equation A1.10c).

We noted above that failure to account for the variation in composite effects among
segregating loci, i.e., ignoring Cα, will tend to depress n̂e below the true number of segre-
gating loci. Additional factors will usually result in a further downward bias. For example,
if the genes with positive effects are distributed among both parental lines, the difference
between the parental line means will be less than the maximum value because the positive
effects of genes at some loci will be canceled by negative effects at others. Consider the case
of one line being fixed for +1 genes at locus 1 and−1 genes at locus 2 and another line being
fixed for−1 genes at locus 1 and +1 genes at locus 2. The number of segregating loci in the F2

generation is two, but because both parental lines have mean phenotypes equal to zero, the
expected value of ne yielded by Equation 11.24a equals zero. Such problems become imme-
diately apparent when F2 individuals exhibit phenotypes outside of the range of variation
in both parental lines, a phenomenon known as transgressive segregation (Chapter 18), but
the absence of such individuals does not rule out the possibility of transgression. In order
to minimize such interpretative difficulties, most investigators utilize parental lines with
the maximum range of variation between mean phenotypes. This is often accomplished by
artificially selecting lines in the upward and downward direction for several generations
prior to crossing.

By inflating the estimated segregational variance, linkage will also cause n̂e to be down-
wardly biased. Letting cij be the recombination fraction between loci i and j, a more general
formula for the segregational variance in the F2 generation is

σ2
S =

1
2

 n∑
i=1

(αci )
2 +

n∑
i=1

n∑
j 6=i

αciα
c
j(1− 2cij)

 (11.26a)

where the term on the right is the disequilibrium covariance (generated by linkage creating
an excess of parental gametes; Chapter 5). Assuming that the effects of pairs of alleles are
uncorrelated with their map distances, then Equation 11.26a simplifies to

σ2
S =

n

2

[
σ2(αci ) + (αci )2 + (n− 1)(1− 2c̄)(αci )2

]
(11.26b)

In principle, the disequilibrium contribution to σ2
S can be removed by taking the F2 gener-

ation through several additional generations of random mating, because this reduces the
disequilibrium covariance by the factor (1−c) each generation (Chapters 5 and 20). A mod-
ified estimate of the segregational variance can then be obtained as the difference between
the variance in the advanced generation and that in the F1 line.

An alternative way to deal with the problem of linkage is to use this more general
expression for σ2

S given by Equation 11.26b, combined with our previous expression for
the expected squared difference between line means to define the relationship between the
effective number of factors and the actual number of loci. Substituting Equation 11.26b into
11.23c and rearranging leads to the expression

n =
2 c̄ ne + Cα(ne − 1)

1− ne(1− 2c̄)
(11.27)

which reduces to Equation 11.23c for the special case in which c̄ = 0.5.Zeng (1992) suggested
that by substituting the estimate n̂e, obtained by use of Equation 11.24a, into this expression,
nearly unbiased estimates of the actual number of loci (n) are achievable.
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In order to take advantage of Zeng’s suggestion, we require, at the very least, estimates
of c̄ and Cα. We have already provided a number of estimates of c̄ in Table 11.2, showing
how these can be obtained from genetic maps of chromosomes under the assumption of
randomly distributed loci. For many species, such detailed information is not available.
However, provided the haploid chromosome number M is known, then a downwardly
biased estimate of c̄ is given by

c̄ =
M − 1

2M
(11.28)

which assumes that recombination only occurs between pairs of genes on different chro-
mosomes (by independent assortment), and that all chromosomes contain equal numbers
of genes. Fortunately, estimates of c̄ using this approximation are not greatly different than
the more refined estimates obtained by use of Equation 11.3. For example, for humans
(M = 23), maize (M = 10), and Arabidopsis (M = 5), Equation 11.28 yields estimates of
c̄ = 0.478, 0.450, and 0.400, respectively, which contrast with the more exact computations,
0.490, 0.474, and 0.443. Thus, provided the minimum amount of information exists on the
cytology of the organism, fairly reasonable estimates of c̄ are achievable.

The squared coefficient of variation of effects, Cα, is much more elusive < Newer
references on distribution of effect sizes?>. While estimates of the distribution of allelic
effects are expected to be generated in the future as QTL mapping continues (Chapters 17–
20), the only available estimates of this parameter derive from Keightley’s (1994) analysis of
data from mutation-accumulation experiments performed on lines of Drosophila melanogaster
(Chapter 15). For abdominal bristle number, sternopleural bristle number, and viability, Cα
is on the order of 6, 24, and 17, respectively. Unfortunately, aside from the fact that these
estimates have very large sampling variances, it is unclear how similar the spectrum of
effects of spontaneous mutations is to that of the effects of alleles normally segregating
in natural populations. To the extent that they are representative, such high values of Cα
suggest a very leptokurtic (L-shaped) distribution of allelic effects, with a very high density
of small effects and a long tail to the right. For comparison, with a half-normal distribution
(truncated at the mean), Cα = 0.57, and with a negative exponential distribution, Cα = 1.0.

The modifications suggested above are not trivial, as the magnitude of bias that varia-
tion in allelic effects and linkage causes with the Castle-Wright estimator can be quite large.
Consider, for example, the situation in which Cα = 15, the average of the results reported
above, and suppose that the Castle-Wright estimator yields n̂e = 4. Substituting into Equa-
tion 11.27, such an estimate in humans (c̄ = 0.49) would be compatible with the presence
of 53 actual loci, while for C. elegans (c̄ = 0.42), it would imply the presence of 134 loci.
Assuming constant allelic effects (Cα = 0), the estimate for humans would be essentially
unbiased, as n̂ still equals four, but for C. elegans, n̂ = 9.

By inflating the segregational variance in the F2, nonadditive gene action is still another
factor that has a downward influence on estimates derived by the Castle-Wright estimator.
However, provided dominance is the primary source of nonadditivity, then the use of
2Var(F2) − Var(B1) − Var(B2) as the estimate of the segregational variance in Equation
11.24a can eliminate most of the problem (Wright 1968; Ollivier and Janss 1993). Because
the expectation of this quantity is identical to σ2

S defined in Equation 11.26b, Equation 11.27
applies as well.

In summary, we find that violations of the various assumptions of the Castle-Wright
model usually conspire to ensure that n̂e is an underestimate of the actual number of loci
contributing to the divergence of lines. Although the bias can be very substantial (Zeng et
al. 1990), most of it can be eliminated by making the modifications suggested above, i.e., by
first computing n̂e by use of Equation 11.24a, then substituting this estimate and estimates
of Cα and c̄ into Equation 11.27, and solving. An approximate expression for the sampling
variance of the improved estimate of the actual number of loci is given by

Var(n̂) =
4c̄2(1 + Cα)2Var(n̂e)

[1− n̂e(1− 2c̄)]4
(11.29)
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(Zeng 1992), where Var(n̂e) is defined in Equation 11.25a. Simulations by Zeng (1992) suggest
that n̂ provides much more reasonable estimates of the number of loci (n), than does n̂e.
However, the sampling variance of n̂ can be quite large. Even negative estimates are possible,
when by chance the estimate of σ2

S is negative. (Negativity can occur with the Castle-Wright
estimator as well.) Thus, any attempt to estimate n by either approach should be based on
large sample sizes (ideally, with hundreds of individuals measured in each line).

Example 11.4. In previous examples involving human skin color, we found that z̄(P1) =
14.4 and z̄(P2) = 41.0. Squaring the standard errors of the means yields Var[z̄(P1)] = 0.205
and Var[z̄(P2)] = 0.373. The estimated segregational variance (Example 11.3) is Var(S) =
17.264, and its sampling variance is obtained by squaring its standard error, Var[Var(S)] =
11.0332 = 121.724. Substituting into Equation 11.24a, we obtain n̂e = 5.1. Substituting into
Equation 11.25a, Var(n̂e) = 10.703, giving the standard error of n̂e as 10.7031/2 ' 3.3.
Thus, the data suggest the hypothesis that the majority of the genetic difference in skin color
between the major races of man is a consequence of a very small number of segregating
factors. It should be kept in mind, however, that because of the low degree of accuracy of the
estimated segregational variance, n̂e is a highly uncertain measure of the effective number of
factors. Supposing, for heuristic purposes, that the estimate n̂e is accurate, what might the
actual number of loci (n) contributing to the character be? From Table 11.2, we know that
the mean recombination fraction for randomly distributed genes is extremely high in humans
(c̄ = 0.49). Substituting this and ne = 5 into Equation 11.27, we obtain

n =
4.9 + 4Cα

0.9
Assuming that all loci have equal effects (Cα = 0), which seems unlikely, then n = 5.4. For
Cα = 1, 10, and 100, n = 10, 50, and 450. Thus, if the squared coefficient of variation of
effects is much greater than one, the actual number of loci may greatly exceed the effective
number of factors.

A survey of estimates of n̂e is given in Table 11.6. It should be emphasized that each
estimate only applies to the specific pair of parental lines and that substantial differences
would be likely if other parental stocks were used. Furthermore, the data are adequately
described by an additive model in only a few cases, so most of the estimates are definitely
biased in the downward direction by nonadditive gene action. Despite these limitations,
while several of the analyses imply that a dozen or more loci are responsible for the differ-
entiation of characters between parental lines, a number of cases suggest the possibility that
a single major factor is involved. The latter conclusion may, of course, be substantially in
error due to the approximate and biased nature of the biometrical approach. Nevertheless,
the Castle-Wright model serves as a flag for situations in which a leading-factor (major
gene) hypothesis (Chapter 15) warrants consideration.

Effect of the Leading Factor

If the assumptions of additive gene action and unlinked loci hold, then ne provides some
information on the effect of the leading factor (the locus accounting for the largest amount
of the difference between parental means). Let φmax = 2αcmax/[µ(P1) − µ(P2)] be the pro-
portion of the difference between parental means attributable to the largest factor, and
denote its effect by αcmax. Equation 11.26a yields the inequality σ2

S ≥ (αcmax)/2,which upon
substitution into Equation 11.23c gives

φmax ≤
√

1 + Cα
ne + Cα

(11.30a)

as an estimate of the upper bound on the effect of the leading segregating factor. Because



24 CHAPTER 11

Table 11.6 A sample of estimates (± their standard errors) of the effective number of segregating
factors differentiating parental lines, obtained by use of Equation 11.24a. Whenever possible, the seg-
regational variance was obtained by least-squares analysis. Under the additive model column + and
− denote agreement and incompatibility with an additive model.

Additive
Species Character n̂e Model Reference

Corn log(% oil + 1.87) 18± 2 + Sprague and Brimhall 1949
time to silking 1± 1 − Mohamed 1959
time to shed pollen 1± 1 −
ln (height) 4± 1 − Emerson and East 1913
ln (nodes) 5± 1 +
ln (internode length) 1± 1 −
ln (ear length) 13± 3 −
ln (seed weight) 13± 3 −

Lima beans seed size 17± 2 − Ryder 1958

Red pepper fruit shape 3± 1 − Khambononda 1950
fruit weight 13± 1 −

Rice plant height 1± 1 − Mohamed and Hanna 1964

Goldenrod (Solidago) date of anthesis 6± 2 − Goodwin 1944

Nicotiana Langsdorffii corolla length 13± 1 − Smith 1937
× N. Sanderae

Mimulus nasutus ln(flowering time) 1± 1 + Fenster and Ritland 1994
×M. guttatus corolla width 2± 1 +

stamen level 3± 1 +
Mimulus guttatus flower width 5± 2 + Macnair and Cumbes 1989
×M. cupriphilus flower height 4± 1 +

pistil length 18± 18 +
corolla length 6± 3 +

Tomato log10 (fruit weight) 12± 1 − Powers 1942

Pearl millet height 4± 1 − Burton 1951
(Pennisetum) 4± 1 −

internode length 2± 1 −
leaves/stem 5± 1 −

7± 1
Drosophila melanogaster ln (longevity) 1± 1 − Luckinbill et al. 1988

Drosophila tripunctata ovipos. site pref. 1± 1 − Jaenike 1987

Drosophila heteroneura head length 7± 4 + Templeton 1977
× D. silvestris head width 1± 1 +

Cave fish (Astyanax) eye diameter 6± 1 − Wilkens 1971

Chickens weight 5± 1 − Waters 1931

Mice log10 (weight) 12± 1 − Chai 1956

each segregating factor contains one or more loci, φmax is also an upper bound on the
effect of the leading locus. Lander and Botstein (1989) proposed a simple idea that yields
a lower bound estimate for the effect of the leading factor. Under the assumption that one
strain contains all “positive” genes and the other all “negative” genes (which might be
approximated if the two strains were obtained by intense selection in opposite directions
from a common stock), there must be at least one segregating factor with an effect at least
as great as [µ(P2)− µ(P1)]/ne. Expressed in terms of the proportion of the total difference,
this effect is simply

φmax ≥ 1/ne (11.30b)

Alternatively, from the standpoint of individual loci, an estimate of the minimum effect of
the leading locus is 1/n. Finally, because (from Equation 11.27) there are at least 2c̄ne loci,
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the maximum value of the average allelic effect is

φ̄max = 1/(2c̄ne) (11.30c)

Estimates of the statistical bounds on the effects of leading factors are of practical
importance, because they can provide insight into the likely utility of molecular marker-
based searches for loci with major effects (Chapters 17–20). Unfortunately, none of the
above-mentioned statistics is particularly informative in this regard. Even when they are
reliable, large estimates of the upper bound of the leading factor do not necessarily imply
that any locus actually has a large effect, and although a large φmin implies that at least
one locus has a major effect, a small φmin does not rule out the possibility of several loci
with major effects. Further, as we detail in Chapter 20, a small GWAS effect does not imply
a small allelic effect, as GWAS effect sizes are usually based on variances. An allele of large
effect that is rare can have a small variance, and (as detailed in Chapter 20), an inverse
relationship between allele effect size and allele frequency is often seen, with large-effect
alleles tending to be rare (at low frequencies).

Zeng (1992) suggested an alternative approach to predicting the effects of leading
factors. Given an estimate ofCα, one first derives the estimate of the number of loci, n̂. This
provides an estimate of the mean allelic effect as

α̂ = [z̄(P1)− z̄(P2)]/n̂ (11.31)

Together, α̂ and Cα then provide the first two moments of the distribution of allelic effects.
If the form of the distribution is specified and uniquely defined by the mean and variance,
one can then draw n̂ random effects from the distribution, order them, and evaluate the
relative contributions of the various factors to the parental line divergence. As noted above,
even slightly different values ofCα can lead to very different estimates of n.However, Zeng
(1992) found that the number of significant loci (for example, the number that account for
90% of the total divergence) is extremely insensitive to changes inCα, changing by only five
or so over a range in which n changes by hundreds. Thus, for large surveys in which highly
reliable estimates of phenotypic means and variances can be acquired, Zeng’s approach has
promise as a means of estimating the number of major factors.

Example 11.5. Here we present an alternative analytical approach for estimating the number
of leading factors and their effects. This approach assumes that something is known about
the form of the distribution of allelic effects. Let p(α) be the probability density function of
the effects, αi, and let F (α) be the cumulative frequency distribution, the probability that the
effect of a randomly drawn gene is less than α. By definition, dF (α)/dα = p(α). Suppose
now that n genes are randomly drawn from the distribution p(α), and rank ordered in terms
of increasing effect, such that α1 is the smallest effect and αn is the largest effect (the leading
factor). From the perspective of genetic analysis, one would like to know the expected effects of
αn, αn−1, αn−2, and so on. The theory of order statistics (Harter 1961; Sarhan and Greenberg
1962; Harter 1970a, 1970b; Kendall and Stuart 1977; David 1981) provides a potential solution.

Consider the rth smallest value in the set of random draws of n genes. The probability
that at least r draws in a sample do not exceed the value α is

Fr(α) =
n∑
i=r

(
n

i

)
[F (α)]i[1− F (α)]n−i (11.32a)

which leads to the probability density function for the rth order statistic,

pr(α) =
dFr(α)
dα

=
n!

(r − 1)!(n− r)! [F (α)]r−1[1− F (α)]n−rp(α) (11.32b)
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Thus, the expected value of the rth smallest factor is given by

E[αr] =
∫ +∞

−∞
αpr(α)dα (11.32c)

which, for the leading factor, reduces to

E[αn] = n

∫ +∞

−∞
α[F (α)]n−1p(α)dα (11.32d)

An estimate of the proportional contribution of the leading factor to the line differentiation is
2E(αn)/[z̄(P1)− z̄(P2)].

These expressions only outline a general approach. Their actual implementation requires
that one define the form of the probability density function p(α) (for example, a normal or a
gamma distribution), and then characterize the function in terms of its parameters (usually the
mean and variance of effects). Once an estimate of the number of loci (n) has been acquired
(for example, by the use of Equation 11.27), these parameters are specified. The mean effect is
estimated by ᾱ = [z̄(P1)− z̄(P2)]/2n, and the variance is defined by ᾱ2Cα.

Table 11.7 Expected means and variances for line crosses derived from two haploid parental lines,
under the assumption of zero linkage and additive gene action. Composite additive effects are defined
as haploid effects, so that parental line divergence is still 2αc1 as in the diploid model.

Line Mean Variance

P1 µ0 − αc1 σ2
E

P2 µ0 + αc1 σ2
E

F1 µ0 σ2
E + σ2

S

F2 µ0 σ2
E + σ2

S

B1 µ0 − 0.5αc1 σ2
E + 3

4σ
2
S

B2 µ0 + 0.5αc1 σ2
E + 3

4σ
2
S

Extension to Haploids

The Castle-Wright model can be extended to the estimation of gene number in haploid
organisms without great difficulty (Chovnick and Fox 1953). Because most haploids can be
maintained clonally, we assume that the environment is the sole source of variation within
the parental lines. The expected means and variances of the derived generations are laid
out in Table 11.7. Note that the F1 generation exhibits the same segregational variance as
the F2 due to the complete segregation of parental genes following fertilization and the
production of haploid progeny. This segregational variance is

σ2
S =

n∑
i=1

0.5[(αci − 0)2 + (−αci − 0)2] = n[σ2(αci ) + (αci )
2] (11.33)

which is twice the expectation in the case of diploidy. Thus, the estimation equation for ne
with haploid organisms is the same as in the case of diploidy except that 4Var(S), rather than
8Var(S), appears in the denominator of Equations 11.23c and 11.24a. The equation for the
sampling variance for n̂e needs to be multiplied by four, but the estimators for gene number,
Equations 11.27 and 11.29, still apply provided the segregational variance is estimated in
the F1 generation.
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Table 11.8 The proportion of deviant derived lines that are expected to contain a single gene from
the donor parent (last column). (Data from Wehrhahn and Allard 1965.)

n k pk p(1) p(r ≥ 1) p(1)/p(r ≥ 1)

4 2 1
8 0.335 0.414 0.809

3 1
16 0.206 0.227 0.905

4 1
32 0.114 0.119 0.953

10 2 1
8 0.376 0.624 0.510

3 1
16 0.350 0.650 0.735

4 1
32 0.235 0.765 0.863

A very similar strategy can be employed with doubled-haploid lines. Such lines, which can
be produced by a variety of cytological techniques (Kermicle 1969; Nitzsche and Wenzel
1977; Choo 1981), are homozygous at all loci. If two such parental lines are crossed to
produce an F1 generation, and a random sample of F1 gametes is used to produce a new
series of doubled haploids, the effective number of factors differentiating any two lines can
be obtained by computing the segregational variance as half the difference between the
F1 doubled-haploid variance and the average variance in the P1 and P2, and employing
Equation 11.24a (Choo and Reinbergs 1982). (The segregational variance is inflated twofold
by the enforcement of homozygosity at each locus in doubled haploids.) The most reasonable
estimate ofne obtained with this approach utilizes parental lines with the highest and lowest
mean phenotypes in a random sample from the population. However, with even a moderate
number of segregating loci, the probability of obtaining the two most extreme lines possible
is low unless the number of lines assayed is very large. Choo and Reinbergs (1982) used
this technique to show that at least eight segregating factors contribute to the variation i
grain yield, heading date, and plant height in barley. For additional biometrical approaches
to gene number estimation in doubled haploids, see Snape et al. (1984). Further extension
of the Castle-Wright approach were offered by Comstock and Enfled (1981) who allow for
genes to act in a multiplicative (as opposed to additive) fashion, and by Jones (2001) who
considered sex linkage and haplodiploidy.

Example 11.6. Croft and Simchen (1965) isolated dikaryotic mycelia from wild populations
of the fungus Collybia velutipes and from these extracted asexually and sexually derived
monokaryotic (haploid) spores. (A dikaryotic mycelium is a filament comprised of fused
cells of two different parental origins, each containing a haploid nucleus). The growth rates
of germinating spores were then assayed on a laboratory medium. Barring mutations, the
growth rate of each asexual propagule is expected to be representative of one of the parental
lines, because these propagules contain a single, nonrecombinant nucleus. On the other hand,
the sexually derived progeny will exhibit segregational variance. Frequency distributions are
given below for both types of offspring for one particular isolate.
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The mean growth rates of the two parental types differ by z̄(P1) − z̄(P2) = 39.45
(mm/10 days), and the sampling variances of the two means are Var[z̄(P1)] = 2.43 and
Var[z̄(P2)] = 0.53. The variance of growth rate among haploid replicates is 26.80, while
the excess variance among sexual propagules is 277.80. Taking the latter quantity to be an
estimate of the segregational variance, Var(S), substitution into Equation 11.24a (multiplied
by 2) yields n̂e = 1.4. The standard error is approximately 0.5. These results are reasonably
consistent with those obtained from four other isolates: 1±0.2, 5±0.8, 3±0.3, and 1±0.1.
Thus, it seems likely that most of the growth rate differences among parental strains may be
attributable to one to three loci.

OTHER BIOMETRICAL APPROACHES TO GENE NUMBER ESTIMATION

In outlining the Castle-Wright model, we emphasized several assumptions, violations of
which tend to result in underestimation of the actual number of segregating loci. Although
two potential problems, gametic phase disequilibrium and dominance, appear to be recon-
cilable, two others are less tractable—transgressive segregation (both lines contain plus and
minus alleles) and variation among loci for allelic effects. We now consider three approaches
that have been developed to circumvent these problems, all involving the use of species
that can be self-fertilized.

The Inbred-backcross Technique

Wehrhahn and Allard (1965) developed a useful technique that yields estimates of both the
minimum number of genetic factors responsible for the differentiation of two lines and the
magnitude of the locus-specific effects. Two pure lines are crossed to form F1 individuals,
each of which is then backcrossed to one of the parental populations (say the P1) for k gener-
ations (i.e., an F1×P1 cross, followed by a cross of their progeny to the P1, etc.) The backcross
descendants are then inbred for several generations to fix any segregating factors. The ra-
tionale for this breeding scheme is that as k becomes large, the probability that any inbred
backcross line will retain more than one allele from the donor parent (the P2) becomes
small. The effects of individual genes can then be ascertained by comparing the pheno-
typic means of the recurrent parent (P1) and the derived lines. A unique advantage of the
inbred-backcross technique is that, after single-gene deviant lines have been isolated, lines
with pairs of various genes can be constructed to evaluate epistatic effects between specific
isolated factors. Likewise, genotype× environment interaction involving individual genes
can be examined by growing lines in different environments.

A more formal statement of these arguments is as follows. The probability that a specific
gene from the P2 is incorporated into a specific line after k generations of backcrossing is
pk = (1/2)k+1. If n freely segregating factors are responsible for the character difference
between the P1 and P2, then the probability that a derived line retains just one of the P2

alleles is

p(1) = npk(1− pk)n−1 (11.34a)

This follows directly from the binomial distribution, because each gene is retained or lost
independently with probability pk. The probability that a derived line contains at least one
P2 gene is

p(r ≥ 1) = 1− (1− pk)n (11.34b)

The ratio p(1)/p(r ≥ 1) is the conditional probability that any deviant derivative line con-
tains only a single P2 gene. Table 11.8 shows that unless n is very large, this probability is
very high after only three or four generations of backcrossing.

If, by statistical comparison of phenotypic means, a fraction p̂(r ≥ 1) of the inbred-
backcross lines is observed to differ significantly from the P1, then a minimum estimate of
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the number of effective factors can be found by rearrangement of Equation 11.34b,

n̂WA =
ln[1− p̂(r ≥ 1)]
ln(1− 0.5k+1)

(11.35)

(Mulitze and Baker 1985a, 1985b). Unlike the Castle-Wright estimator, Equation 11.35 yields
estimates of ne that are essentially independent of the degree of transgression of gene effects
in the P1 and P2, i.e., a gene with a low effect in an otherwise high-performing line can be
detected when substituted into a low-performing line.

Example 11.7. Wehrhahn and Allard (1965) crossed two pure lines of wheat (Ramona and
Baart 46) with very different heading dates (flowering times). Two successive backcrosses were
made to Ramona, followed by three generations of selfing, to produce 69 inbred backcross
lines. How many lines are expected to contain any specific Baart 46 gene? Because k = 2, we
havepk = (1/2)3 = 1/8, and because there are69 total lines, 69/8 = 8.6 of these are expected
to carry a Baart 46 gene at a specified locus. From the properties of the binomial distribution,
the standard error of the estimate is [69pk(1 − pk)]1/2 = 2.8. The distribution of heading
date in the derived lines shows three groups of deviants from the Ramona distribution: (1) a
group of eight very late lines that appear to contain a factor with major effect (black bars), (2) a
group of 14 lines with slightly late heading dates (striped bars), and (3) a group of three lines
with earlier heading dates (gray bars). The means and 95% confidence limits for the parental
lines are given by the vertical and horizontal lines, and the three groups of deviants from the
Ramona (recurrent) line are differentially shaded.
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By other means, the authors showed rather convincingly that the group of 14 was het-
erogeneous for two factors. Thus, the difference in heading date between the two parental
lines is caused by at least four effective factors, one of which operates in a direction opposite
to the others. These four factors accounted for 96% of the line differentiation (80% was due
to the leading factor), so if additional loci are involved, their effects must be very small. To
see that the observations in the figure are consistent with Equation 11.35, let p̂(r ≥ 1) =
(8 + 14 + 3)/69 = 0.362. We then obtain n̂WA = 3.4, which rounds up to 4.

Genotype Assay

Jinks and Towey (1976; Towey and Jinks 1977) developed a method for estimating ne that
is similar in philosophy to the inbred-backcross technique. In this case, however, the F1

progeny of a cross between two pure lines are self-fertilized (instead of backcrossed). Their
descendants are also self-fertilized until generation Fk, where k is usually 2 to 5. Two ran-
dom (selfed) progeny are then raised from each Fk individual and selfed, and their off-
spring are assayed in a randomized design (Figure 11.3). A comparison of means (t test)
and variances (F test) between the two families is used to detect whether one or more
loci were segregating in the Fk grandparent. Not all heterozygotes are detected by this
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F1 F1

P1 × P2

F1 F1

Fk

Fk+1 Fk+1 Fk+1 Fk+1 Fk+1 Fk+1 Fk+1 Fk+1

Fk+2 Fk+2 Fk+2 Fk+2 Fk+2 Fk+2 Fk+2 Fk+2

Fk Fk Fk

Figure 11.3 The crossing scheme involved in the genotype assay technique of Jinks and
Towey (1976). Progeny from all generations beyond the F1 are obtained by selfing. In gener-
ation k + 2, multiple progeny are assayed from each of two sublines for each of the isolated
selfed lineages.
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Figure 11.4 The expected fraction of individuals in the F2, F3, and F5 generations detected
as segregating by a genotype assay on their grandchildren, under the assumptions leading to
Equation 11.36. (From Jinks and Towey 1976.)

approach, because the probability that two randomly chosen offspring of a heterozygous
parent will differ in genotype is only 5/8 (the probability that one is BB and the other is
Bb is 2× (1/4)× (1/2) = 1/4, that one is BB and the other is bb is 2× (1/4)× (1/4) = 1/8,
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and that one is Bb and the other is bb is 2 × (1/2) × (1/4) = 1/4). However, the observed
fraction of segregating grandparents can still be used to make inferences about n.

The logic behind this idea is as follows. Under continuous self-fertilization, heterozy-
gosity is reduced by 50% each generation, so that the probability that an Fk individual is
a heterozygote at a particular locus is (1/2)k−1. The probability that two assayed progeny
from a random Fk individual differ at this locus is then (5/8) · (1/2)k−1 = 5/2k+2. It follows
that the probability that the two descendant sublines differ at least at one segregating locus
is

P = 1−
(

1− 5
2k+2

)n
(11.36)

Rearranging and substituting observations for expectations, we obtain another estimator
for the effective number of segregating factors,

n̂JT =
ln(1− P̂ )

ln
(

1− 5
2k+2

) (11.37)

There are several potential causes of bias in this estimator, most of which will lead to
the usual underestimation of the actual number of loci. First, as in the inbred-backcross
technique, the observed fraction of intrapair differences (P̂ ) is a matter of statistical power,
increasing with the size of the assayed families, but decreasing with more stringent criteria
for statistical significance. Second, the number of segregating factors will be depressed
below the actual number of loci by linkage, the magnitude of this bias decreasing with
increasing k (more opportunity for recombination). Hill and Avery (1978) consider this
issue in some detail. Third, dominance, epistasis, and gametic phase disequilibrium can
cause the expected phenotypes associated with different genotypes to be the same. Taking
this masking problem into consideration, Jinks and Towey (1976) and Mulitze and Baker
(1985a) have derived an alternative to Equation 11.37 that yields an upper (rather than
lower) bound to ne.

The relationship between P and nJT varies rather substantially with the number of
generations (k) prior to the genotype assay (Figure 11.4). If there are only a few effective
factors, the greatest sensitivity is achieved (i.e., there is a strong response of P to n) when
k = 2, provided linkage is unimportant. However, if there are more than five segregating
loci, an F2 assay is of little use, whereas an F5 assay is quite sensitive.

Towey and Jinks (1977) applied the genotype assay to five generations of a cross between
two lines of Nicotiana rustica. Even after six generations of selfing, there was no obvious
decline in the fraction of descendant pairs exhibiting variation, for either flowering time or
plant height (Table 11.9). Consequently, the estimates of nJT for both characters increased
approximately tenfold throughout the study.

The authors interpreted this increase to be a consequence of the gradual elimination
of gametic phase disequilibrium through progressive rounds of recombination. If nothing
else, this interpretation justifies our earlier discussion about the bias caused by linkage.

Panse’s Technique

This infrequently utilized technique also starts with a cross between two pure lines. The
F1 individuals are self-fertilized to produce an F2 generation, the members of which are
selfed to produce a series of F3 families. For any segregating locus, half of the F2 individuals
are expected to be heterozygous and the remaining half homozygous. Assuming additive
effects, it follows from Chapter 4 that the genetic variance resulting from the ith locus in a
population in Hardy-Weinberg equilibrium is 2pqα2

i . This genetic variance is α2
i /2 for an

F3 family descending from a heterozygote, and zero otherwise. Thus, the average genetic
variance within F3 familes is

∑n
i=1 α

2
i /4, or σ2

A = nα2/4 for n loci with equal effects.
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Table 11.9 Minimum number of effective factors responsible for the differentiation of two lines of
tobacco (Nicotiana rustica) as determined by genotype assay in progressive generations (Fk). nJT is
computed with Equation 11.37 and rounded up to the nearest unit. (Date from Towey and Jinks 1977.)

Grandparent
Generation: F2 F3 F4 F5 F6

Flowering time
P̂ 0.200 0.450 0.314 0.233 0.306
n̂JT 1 4 5 7 19

Final height
P̂ 0.400 0.300 0.257 0.200 0.306
n̂JT 2 3 4 6 19

Panse (1940) showed how the variance of the genetic variance among F3 families can
be used to estimate ne. At the ith locus, the expected value of this quantity is (1/2)(α2

i /2)2−
(α2
i /4)2 = α4

i /16. Summing over all loci, and assuming equal effects, this value becomes
σ2(σ2

A) = nα4/16. Thus, the ratio of the squared mean genetic variance within F3 families
to the variance of those variances,

n̂P =
(σ2
A )2

σ2(σ2
A)

(11.38)

provides an estimate of the effective number of loci.
In addition to its assumption of unlinked loci with additive effects, a major difficulty

with this technique is its reliance on genetic variance estimates. It is difficult to determine
these with a great deal of precision and is even more difficult to procure good estimates of
the variance of σ2

A among lines.
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