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Linkage Mapping And Characterizing QTLs:

Inbred Line Crosses
QTL detection experiments do not map a gene, but rather a genetic effect that might consist

of many linked genes within ∼ 30 cM of each other. Mapping loci in inbred crosses can,
therefore, disguise the genetic architecture of a QTL. Flint and Mott (2001)
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Crosses between completely inbred lines offer an ideal setting for detecting and mapping
QTLs by marker-trait associations, as all F1s are genetically identical and show complete
linkage disequilibrium for genes differing between lines. A number of crossing designs have
been proposed to exploit these features. While usually involving flies and crop plants, QTL
line-cross analysis has also been applied to a number of other animal species, especially
mice (e.g., Frankel 1995; Flint and Mackay 2009; Aylor et al. 2011; Atamni et al. 2018). More
recently, QTL mapping designs have exploited special biological features of the species being
used, such as fungal systems (Liti and Louis 2012). A particularly interesting example is
the mapping of QTLs for honey bees foraging behavior using designs that exploited the
haploid nature of the males (Hunt et al. 1995; 2007; Rüppel et al. 2004).

We note that the heyday of linkage-based QTL mapping (i.e., using a set of individuals
from a cross or pedigree), that was at its height when our first edition was published, has
now likely passed. Thanks to modern genomics, association mapping (using a dense set
of markers in a population sample; Chapter 20) is now feasible for just about any species.
This allows for a much larger, and (usually) easier to gather, sample than one requiring
that all individuals come from a cross or pedigree, coupled with much finer mapping
resolution (kilobase, rather than megabase, scales in many cases). However, linkage-based
QTL mapping is still viable for many questions and introduces some of the statistical issues
for association mapping that we examine more deeply in Chapter 20. Cross-based QTL
mapping (this chapter) and association mapping (Chapter 20) also examine different genetic
architectures. The former examines the genetic basis of differentiation between the parental
lines generating the cross, the latter examines the nature of segregating variation for the
focal trait in a given population. These two architectures can be largely independent, as the
former may be shaped by selection for trait divergence, while the later may be shaped (in
part) by selection against deleterious alleles (Chapter 15; WL Chapter 28).

While the vast QTL mapping literature may seem complex to the uninitiated, it is
based on a few simple ideas. We start by reviewing these foundational building blocks,
first considering basic line-cross designs useful for QTL mapping. The key element from
which the formal theory of QTL mapping is constructed is the conditional probability of a
particular QTL genotype given an observed marker genotype. These probabilities allow a full
development of the two principal methods for QTL detection and estimation: least-squares
(LS) linear models (which use differences in marker mean) and maximum likelihood (ML,
and, by extension, Bayesian methods) which use information from the entire marker-trait
distribution. Both approaches are examined in some detail. We conclude our discussion of
statistical issues by considering adjustments for multiple comparisons, examine methods
that accommodate multiple linked QTLs, develop more complex designs, discuss the bias in
effect size estimates introduced by the Beavis effect (or the winner’s curse), and consider the
sample sizes required to achieve a given power for detecting, and locating, a QTL. Finally,
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we reward the persevering reader with a review of some interesting studies that have used
inbred lines for QTL mapping.

FOUNDATIONS OF LINE-CROSS MAPPING

The idea behind using marker information to map and characterize QTLs is quite simple:
by crossing two inbred lines, the excess of parental over recombination gametes at linked
loci (Chapter 5) generates linkage disequilibrium in their progeny (Example 5.6). This in
turn creates associations between alleles at marker loci and alleles at linked segregating
QTLs. A number of diverse experimental designs and statistical methodologies have been
developed to exploit this information. Our attempt to make this approach more accessible
starts with an overview of some of the basic experimental designs and key tools for the
analysis of results from these designs.

Basic Crossing Designs

The large number of possible designs can be categorized by the type of line-cross populations
used for generating disequilibrium (e.g., F2 vs. backcross populations), the population in
which individuals are genotyped, the population in which phenotypes are scored, and the
unit of marker analysis used (e.g., single markers vs. interval mapping). We consider these
in turn.

Starting with two completely inbred parental lines, P1 and P2, a number of line-cross
populations derived from their F1 can be used for QTL mapping. The F2, or intercross,
design examines marker-trait associations in the progeny from a cross (or selfing) of F1s,
while the backcross design examines marker-trait associations in the progeny formed by
backcrossing the F1 to one (or both) of the parental lines. While these are the most widely
used designs, other line-cross populations can offer further advantages (and disadvantages).
As discussed in Chapter 17, the F1 can be used to create recombinant inbred lines (RILs) and
doubled haploid lines (DHLs). While generation of these lines is a laborious process, they
allow marker-trait associations to be scored in a completely homozygous background and
offer the ability (via replication) of scoring the line phenotype with arbitrary precision and
across multiple environments. The F2 design has an advantage over designs using backcross,
RIL, or DHL populations, because it generates three genotypes at each marker locus, which
allows the estimation of the degree of dominance associated with detected QTLs. Designs
using an Ft population (formed by randomly mating F1s for t − 1 generations) allow for
even higher resolution of QTL map positions than do F2s, albeit at the expense of decreased
power of QTL detection (due to lower effective marker density). The properties of such
advanced intercross lines (AILs) are discussed below.

More complex designs can be considered wherein individuals are genotyped in one
population, while trait values are scored in a future population derived from the genotyped
individuals. Fisch et al. (1996) present a general treatment for such designs. One example is
the F2:3 design, wherein F2 individuals are genotyped and then selfed (Zhang and Xu 2004).
The trait value associated with a genotyped individual is estimated by the mean value of the
resulting F3 family. Scoring the phenotype as the mean of several individuals (as opposed
to measurement of a single individual) can offer increased power over a standard F2 design
by reducing the sampling variance.

Designs combining information from multiple crosses (Chapter 11) are expected to be
more powerful than those involving a single cross, and a number of such designs have been
proposed, in particular, for estimating components associated with dominance and hetero-
sis. One can augment these designs with markers to use them for QTL mapping. Examples
include diallel designs whose basic structure is examined in Chapters 23 and 25 (Rebaı̈
and Goffinet 1993; Rebaı̈ et al. 1994a), and Comstock and Robinson’s (1952) classic Design
III wherein the F2 from two inbred lines is backcrossed to both parental lines (Cockerham
and Zeng 1996). We consider such multiple-line designs later in the chapter. Finally, several
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workers have considered designs involving crosses between lines that are not completely
inbred, such as a cross of an outbred line to a completely inbred tester (Beckmann and Soller
1988; Dudley 1992; Haley et al. 1994).

Experimental designs are also classified by the unit of marker analysis chosen by the
investigator. Marker-trait associations can be assessed using one-, two-, or multiple-locus
marker genotypes. Under a single-marker analysis, the distribution of trait values is ex-
amined separately for each marker locus. Each marker-trait association test is performed
independent of information from all other markers, so that a chromosome with n markers
offers n separate single-marker tests. As discussed below, single-marker analysis is gener-
ally a good choice when the goal is simple detection of a QTL linked to a marker, rather
than estimation of its position and effects. Under interval mapping (or flanking-marker
analysis), a separate analysis is performed for each pair of adjacent marker loci. Here one
computes the probability of a putative QTL at a series of discrete locations between the two
markers defining the target interval. The use of such two-locus marker genotypes results
in n − 1 separate tests of marker-trait associations for a chromosome with n markers (one
for each marker interval). Interval mapping offers a further increase in power of detection
(albeit usually a slight one) and more precise estimates of QTL effects and position. Both
single-marker and interval mapping approaches are biased when multiple QTLs are linked
to the marker/interval being considered.

Methods simultaneously using three or more marker loci attempt to reduce or remove
such bias. Composite interval mapping (Jansen 1993b, 1994b; Zeng 1993, 1994; Jansen
and Stam 1994) considers a marker interval plus a few other well-chosen markers in each
analysis, so that (as above) n − 1 tests for interval-trait associations are performed on a
chromosome with n markers. Multiple interval mapping extends this approach by simul-
taneously fitting multiple intervals (Kao et al. 1999; Zeng et al. 1999). Finally, multipoint
mapping considers all of the linked markers on a chromosome simultaneously, resulting in
a single analysis for each chromosome (Kearsey and Hyne 1994; Hyne and Kearsey 1995;
Wu and Li 1994, 1996a, 1996b; Charmet et al. 1998).

Conditional Probabilities of QTL Genotypes

The basic element upon which the formal theory of QTL mapping is built is the conditional
probability that the QTL genotype is Qk, given the observed (possibly multilocus) marker
genotype is Mj . From the definition of a conditional probability (Equation 3.3a), this is

Pr(Qk |Mj) =
Pr(QkMj)
Pr(Mj)

(18.1)

The joint and marginal probabilities, Pr(QkMj) and Pr(Mj), are functions of the experi-
mental design and the linkage map (the position of the putative QTLs with respect to the
marker loci). Computing these probabilities is a relatively simple matter of bookkeeping
(see Example 18.1), but can get rather tedious as the number of markers and/or QTLs under
consideration increases.

When computing joint probabilities involving more than two loci, one must also ac-
count for recombinational interference between loci (Chapter 17). Consider a single QTL
flanked by two markers, M1 and M2. The gamete frequencies depend on three parameters:
the recombination frequency c12 between markers, the recombination frequency c1 between
marker M1 and the QTL, and the recombination frequency c2 between the QTL and marker
M2. Under the assumption of no interference, c12 = c1+c2−2c1c2, while c12 = c1+c2 under
complete interference (Chapter 17). When c12 is small, gamete frequencies are essentially
identical under either interference assumption. Typically, c12 is assumed known, leaving
two unknown recombination parameters (c1 and c2) under general assumptions about in-
terference. In either case, there is only one parameter to estimate, as assuming complete
interference c2 = c12 − c1, and assuming no interference c2 = (c12 − c1)/(1 − 2c1). Note
that 1/(1 − 2c1) has values of 1.11, 1.25, 1.67, and 2 for c1 values of 0.05, 0.1, 0.2, and 0.25,
respectively. Hence, for flanking-marker analysis, we restrict attention to the single recom-
bination parameter c1, the distance from marker locus M1 to the QTL. When considering
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analysis of single-marker loci, for notational ease we drop the subscript, using c in place of
c1.

Conditional probabilities involving more than three linked loci are generally dealt
with by first assuming an appropriate mapping function on which distances are additive
(Chapter 17), and then translating these distances into recombination frequencies. When a
large number of markers is considered, missing marker information can become a problem.
Many individuals can be left with incomplete multilocus marker genotypes, excluding them
from further analysis. Martı́nez and Curnow (1992) show how information from linked
markers can be used to estimate the genotype at missing or incomplete (i.e., dominant)
markers. Predicting the values of missing marker genotypes, imputation, is an important
concept that arises in association mapping, and will be considered in detail in Chapter 20.

Example 18.1. Consider a single-marker analysis using the F2 formed by crossing two inbred
lines, MMQQ ×mmqq. If the recombination frequency between the marker locus and the
QTL is c, the expected F1 gamete frequencies (Chapter 5) are

Pr(MQ) = Pr(mq) = (1− c)/2, Pr(Mq) = Pr(mQ) = c/2

The probability that an F2 individual is MMQQ is Pr(MQ) · Pr(MQ) = [ (1 − c)/2 ]2.
Likewise, 2 · Pr(MQ) · Pr(mQ) = 2( c/2 )[ (1 − c)/2 ] is the probability of an MmQQ
individual, and so on. Because the probabilities of the marker genotypes MM , Mm, and
mm are 1/4, 1/2, and 1/4, Equation 18.1 gives the F2 conditional probabilities as

Pr(QQ |MM ) = (1− c)2, Pr(Qq |MM ) = 2c(1− c), Pr(qq |MM ) = c2

Pr(QQ |Mm ) = c(1− c), Pr(Qq |Mm ) = (1− c)2 + c2, Pr(qq |Mm ) = c(1− c)

Pr(QQ |mm ) = c2, Pr(Qq |mm ) = 2c(1− c), Pr(qq |mm ) = (1− c)2

This same logic extends to multiple marker loci. Suppose the QTL is flanked by two scored
markers, and consider the F2 in a cross of lines fixed for M1QM2 and m1qm2. What are the
conditional probabilities of the QTL genotypes when the marker genotype is M1M1M2M2?
Because all F1s are M1QM2/m1qm2, under the assumptions of no interference, the frequency
of F1 gametes involving M1M2 are

Pr(M1QM2) = (1− c1)(1− c2)/2, Pr(M1qM2) = c1 c2/2

giving expected frequencies in the F2 of M1M1M2M2 offspring as

Pr(M1QM2/M1QM2) = [ (1− c1)(1− c2)/2 ]2

Pr(M1QM2/M1qM2) = 2 [ (1− c1)(1− c2)/2 ] [ c1 c2/2 ]
Pr(M1qM2/M1qM2) = ( c1 c2/2 )2

where c2 = (c12 − c1)/(1 − 2c1). The overall frequency of M1M1M2M2 individuals,
Pr(M1M1M2M2), is the sum of the three above terms, or (1 − c12)2/4. Substituting into
Equation 18.1 gives

Pr(QQ |M1M1M2M2) =
(1− c1)2(1− c2)2

(1− c12)2

Pr(Qq |M1M1M2M2) =
2c1c2(1− c1)(1− c2)

(1− c12)2
(18.2)

Pr(qq |M1M1M2M2) =
c2
1 c2

2

(1− c12)2
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Conditional probabilities for other marker genotypes are computed in a similar fashion.
Because c1c2 ≤ (c12/2)2 is usually very small if c12 is moderate to small, essentially all
M1M1M2M2 individuals are QQ. For example, assuming c1 = c2 = c12/2 (the worst case),
the conditional probabilities of an M1M1M2M2 individual being QQ are 0.96, 0.98, and 0.99
for c1 = c2 = 0.25, 0.2, and 0.1.

We now consider the conditional probabilities for other single-marker line cross de-
signs, starting with backcrosses. For a B1 population, where the F1 is backcrossed to P1

(with genotype MMQQ), one parental gamete is always MQ. Hence, for a single-marker
analysis, there are only two marker genotypes, MM and Mm. Using the frequencies for
the four possible gametes (Example 18.1) of the F1 parent gives the following conditional
probabilities

Pr(QQ |MM ) = 1− c, Pr(Qq |MM ) = c

Pr(QQ |Mm ) = c, Pr(Qq |Mm ) = 1− c (18.3a)

Likewise, when backcrossing to the P2 (mmqq), the two possible single-locus marker geno-
types are Mm and mm, and the conditional probabilities become

Pr(qq |mm ) = 1− c, Pr(Qq |mm ) = c

Pr(qq |Mm ) = c, Pr(Qq |Mm ) = 1− c (18.3b)

Historically, backcross designs were often used when only dominant markers (e. g., RAPDs;
Chapter 8) were available. However, the backcross design can be driven by the biology of
the problem. A good example is genetics of speciation (Chapter 17), wherein backcrosses
of a hybrid (F1) to one species can be viable, while the reciprocal backcross and the hybrid-
hybrid (F1×F1) crosses are not.

For designs involving more than one generation of recombination, the single generation
recombination frequency c is simply replaced by a corrected frequency c̃ that is a function
of the particular design. We consider three such designs: advanced intercross lines (AILs),
recombinant inbred lines (RILs), and double-haploid lines (DHLs).

Advanced intercross lines (Darvasi and Soller 1995; Liu et al. 1996) are obtained by
crossing two inbred lines, but instead of stopping at the F2, random mating proceeds for t
generations, generating an Ft. In this case, unlike the strategy used to create RILs (Chapter
17), inbreeding is avoided by keeping the breeding population size large. As the result of
the multiple rounds of recombination, markers in an Ft individual show an expansion of
the genetic map relative to an F2, with the expected frequency of a recombinant gamete in
the Ft for a pair of loci at recombination fraction c (following from Equation 5.16c) being

c̃ =
1− (1− c)t−2(1− 2c)

2
' t

2
c (18.4)

where the approximation holds for c t ¿ 1 (Darvasi and Soller 1995; Liu et al. 1996). For
example, if the marker-QTL recombination frequency is c = 0.01, only 1% of the F2 gametes
are recombinant (Mq, mQ), but this increases to 2.5% in an F5 and 9.1% in an F20. The
conditional genotype probabilities for an Ft AIL are given by the F2-design expressions in
Example 18.1, with c̃ substituted for c.

Recombinant inbred lines (RILs) also involve several generations of recombination,
but here genotypes are eventually fixed by inbreeding (Chapter 12). Starting with a MQ/mq
F1 parent, there are only four possible genotypes in the resulting RILs: MMQQ, MMqq,
mmQQ, and mmqq. The frequency of recombinant gametes (Mq, mQ) in RILs approaches a
limiting value of c̃ = 2c/(1 + 2c) for selfed lines and c̃ = 4c/(1 + 6c) for lines formed by
brother-sister mating (Haldane and Waddington 1931). Thus, the expected frequencies of
genotypes in RILs are
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Line genotype Frequency

MMQQ, mmqq (1− c̃ )/2
MMqq, mmQQ c̃/2

While doubled-haploid lines (DHLs) also have only these four genotypes, they are formed
by a single generation of meiosis (if based on using F1s), so that c̃ = c. If based on F2s,
Equation 18.4 gives c̃ = 3c/2 + c2. Hence, among either RILs or DHLs, the conditional QTL
probabilities are

Pr(QQ |MM) = 1− c̃, Pr(qq |MM) = c̃

Pr(QQ |mm) = c̃, Pr(qq |mm) = 1− c̃ (18.5a)

where

c̃ =


c, 1.5c + c2 for F1 and F2 DHL, respectively
2c/(1 + 2c) for RILs formed by selfing
4c/(1 + 6c) for RILs formed by brother-sister mating

(18.5b)

Values of c̃ for intermediate generations of inbreeding are given by Teuscher et al. (2006).

Expected Marker-class Means

With these conditional probabilities in hand, the expected trait values for the various marker
genotypes follow immediately. Suppose there are N QTL genotypes, Q1, · · · , QN , where the
mean of the kth QTL genotype is µQk

. The mean value for marker genotype Mj is just

µMj
=

N∑
k=1

µQk
Pr( Qk |Mj ) (18.6)

The QTL effects enter through the µQk
, while the QTL positions enter through the condi-

tional probabilities Pr( Qk |Mj ). Equation 18.6 is completely general, allowing for multilo-
cus marker genotypes and multiple QTLs.

Example 18.2. Consider the single-marker F2 design with a single QTL linked (at recombi-
nation frequency c) to the marker. Denote the QTL genotypic values by

µQQ = µ + 2a, µQq = µ + a(1 + k), and µqq = µ

where a measures the additive value and k the degree of dominance (d = ak; Chapter 4).
Applying the conditional probabilities developed in Example 18.1 to Equation 18.6, the mean
values for the marker genotypes become

µMM = µ + 2a(1− c)2 + 2c(1− c)(1 + k)a
µMm = µ + 2ac(1− c) + [1− 2c(1− c)](1 + k)a
µmm = µ + 2ac2 + 2c(1− c)(1 + k)a

If the marker and QTL are unlinked (c = 1/2), all marker genotypes have the same mean,
µ + a[1 + (k/2)]. Rearranging these equations gives

(µMM − µmm)/2 = a(1− 2c) = a∗ (18.7a)

µMm − (µMM + µmm)/2
(µMM − µmm)/2

= k(1− 2c) = k∗ (18.7b)
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Hence, one strategy for detecting QTLs is to test for significant differences between the
mean trait values associated with different marker genotypes. This is the basis for QTL de-
tection via regression or ANOVA, which we generically refer to as least-squares (LS) linear
model approaches (Chapter 10).

This example shows that while contrasts of single-marker means can be used to estimate
both a∗ and k∗, these underestimate the magnitude of a and k by the (unknown) fraction
1 − 2c. If the marker and QTL are tightly linked, this error is small, but it increases rather
dramatically as c approaches 1/2. A small difference between marker-homozygote means is
thus compatible with either a tightly linked QTL of small effect or a loosely linked QTL of
large effect. As we will show shortly, when multilocus marker genotypes are considered, the
use of appropriate combinations of marker means allows for separate estimates of QTL effects
(a, k) and position (c).

If there are N QTLs linked to the marker, the ith of which is at recombination frequency
ci from the marker and has associated additive and dominance effects ai and ki, then (from
Edwards et al. 1987),

(µMM − µmm)/2 =
N∑

i=1

a∗i (18.8a)

µMm − (µMM + µmm)/2
(µMM − µmm)/2

=
N∑

i=1

a∗i k
∗
i

/ N∑
i=1

a∗i (18.8b)

where a∗i = ai(1 − 2ci) and k∗i = ki(1 − 2ci). If some of the linked QTLs have effects of
opposite sign, some cancellation occurs, reducing the marker-trait association. Moreover, with
multiple linked QTLs, the degrees of dominance (ki) are confounded with the homozygous
effects (ai).

Marker-class means for other designs follow by applying the appropriate conditional
probabilities to Equation 18.6. For example, for the B1 (= F1× P1) design, from Equation
18.3a,

µMM − µMm = (µQQ − µQq)(1− 2c) = a(1− k)(1− 2c) (18.9a)

Thus, under a backcross design the scaled QTL effects are influenced strongly by the (un-
known) degree of dominance k. If Q is completely dominant to q, k = 1, and there is no
marker-QTL effect. Conversely, if q is dominant to Q, k = −1 and the scaled effect becomes
2a(1−2c), which is the same as under an F2 design. Recalling Equation 18.3b, the reciprocal
backcross (B2 = F1 × P2) yields a similar expression,

µMm − µmm = (µQq − µqq)(1− 2c) = a(1 + k)(1− 2c) (18.9b)

Note that the ratio of Equation 18.9a to 18.9b gives (1 − k)/(1 + k), so that (provided only
a single QTL is linked to the marker) an estimate of k can be obtained if one has access to
both backcross populations (B1 and B2).

The expressions developed in Example 18.2 for F2 analysis hold for an Ft population,
provided c̃ (given by Equation 18.4) replaces c. For example, µMM −µmm = 2a(1−2 c̃ ), and
so forth. Because (1−2c) > (1−2c̃ ), AILs have smaller differences between marker means,
and hence reduced power of QTL detection, relative to the F2 design. Despite this, Darvasi
and Soller (1995) advocate the use of AILs for fine-mapping of QTLs, as the expansion of the
genetic map (relative to the F2) offers a higher precision (improved mapping resolution) of
estimates of QTL position.

For RILs and DHLs, the recombination parameter c̃ is given by Equation 18.5b, and
from Equations 18.5a and 18.6 it follows that

µMM = µQQ (1− c̃ ) + µqq c̃ and µmm = µQQ c̃ + µqq (1− c̃ ) (18.10a)
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giving
µMM − µmm

2
= a (1− 2 c̃ ) = a∗ (18.10b)

again providing an estimate of a composite parameter of the QTL effect (a) and position (c).
Because c̃ is smallest in DHLs (see Equation 18.5b), the largest marker effect (and greatest
power for QTL detection) occurs in this type of line, followed by selfed RILs, and finally by
sib-mated RILs. Conversely, the map expansion from recombination during line formation
that reduces power increases the precision of QTL position estimates. Hence, confidence
intervals are smallest for sib-mated RILs and largest for DHLs.

Finally, note that by considering two-locus (rather than single-locus) marker means,
separate estimates of QTL effect and position can be obtained. Taking the genotype at two
adjacent marker loci (M1/m1 and M2/m2) as the unit of analysis, consider the difference
between the contrasting double homozygotes in an F2. If the markers flank a QTL, then
under the assumption of no interference, Equation 18.2 (and its analog for m1m1m2m2

probabilities) implies

µM1M1M2M2 − µm1m1m2m2

2
= a

(
1− c1 − c2

1− c1 − c2 + 2c1 c2

)
' a (1− 2c1 c2) (18.11a)

where c1 is the M1 – QTL recombination frequency. Equation 18.11a is essentially equal to
a when the distance between flanking markers c12 ≤ 0.20, as here (1− 2c1 c2) ≥ 0.98. Thus,
recalling from Equation 18.7a that µM1M1 − µm1m1 = 2a(1 − 2c1), we can obtain estimates
of the recombination frequencies by substituting Equation 18.11a for a and rearranging to
give

c1 =
1
2

(
1− µM1M1 − µm1m1

2a

)

' 1
2

(
1− µM1M1 − µm1m1

µM1M1M2M2 − µm1m1m2m2

)
(18.11b)

Using the same logic (and bookkeeping), estimates for other flanking-marker designs were
developed by Knapp et al. (1990), Knapp and Bridges (1990), and Knapp (1991).

Marker Variances and Higher-order Moments

In addition to differing in trait means, marker genotypes can also differ in higher-order mo-
ments as well, such as the variance or skew. Such differences can arise in segregating pop-
ulations (e.g., F2s) simply as a consequence of changes in the mixture proportions of QTL
genotypes among different marker genotypes (Example 18.1). Such differences are not un-
common. For example, in a cross of tomato species, Weller et al. (1988) found significantly
different variances for 28% (40 of 180) of the possible marker-trait associations, while 17%
showed significant differences in skewness.

Several workers have suggested the use of these higher-order moments for detection
of a linked QTL and estimation of its effects (Zhuchenko et al. 1978, 1979; Korol et al. 1981,
1983, 1987; Ginzburg 1983; Asins and Carbonell 1988; Zhang et al. 1992). One difficulty with
this approach is that variances (and higher moments) are estimated with far less precision
than means, reducing both the power of detection and the accuracy of estimates. Another
complication is that not all designs are capable of revealing significant changes in higher
moments (e.g., Asins and Carbonell 1988).

RILs and DHLs provide one case where functions of higher-order moments (e.g., a
correlation coefficient) can be exploited. Here, single-locus marker information can be used
to estimate the recombination frequency c (Hu et al. 1995). As shown in Table 18.1, coding the
alternative marker homozygotes as x = ±1, the expected marker-trait correlation becomes

ρ =
σ(z, x)

σ(x) σ(z)
=

a(1− 2c̃ )√
a2 + σ2

e

=
1− 2c̃√
1 + C2

(18.12a)
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Table 18.1 The expected correlation between marker genotype (coded as x = 1 for MM, x = −1
for mm) and phenotypic value z can be used to estimate c. We assume that the difference in QTL
means is E(zQQ) − E(zqq) = 2a and that the phenotypic distributions conditioned on the QTL
genotypes have common (within-line) variance σ2

e . Because σ(x, z) and σ2(z) are unchanged by a
change in the mean of z (Chapter 3), we can arbitrarily set E(zQQ) = −E(zqq) = a. Coded this way,
E(x) = E(z) = 0, simplifying calculation of σ(x, z) and σ2(z).

Genotype Freq. x E[z]

MMQQ (1− c̃ )/2 1 µQQ = a
MMqq c̃/2 1 µqq = −a
mmQQ c̃/2 −1 µQQ = a
mmqq (1− c̃ )/2 −1 µqq = −a

σ(x, z) = E(x · z) = a(1− 2c̃ ), σ2(x) = E(x2) = 1

σ2(z) = E(z2) = (1/2)[E(zQQ)2 + σ2
e ] + (1/2)[E(zqq)2 + σ2

e ] = a2 + σ2
e

where C = σe/a, with a being the QTL effect and σ2
e being the within-line variance (see Table

18.1). (The C term was neglected by Hu et al. 1995.) Equation 18.12a assumes no segregation
distortion (both RIL homozygotes have equal frequency). Rearranging and letting r be an
estimate of ρ suggests the estimator

c̃ =
1− r

√
1 + C2

2
≤ 1− r

2
(18.12b)

While the value of C is unknown, by ignoring it one can obtain an upwardly biased estimate
of c by first taking c̃ = (1 − r)/2 and then using Equation 18.5b to translate this value of c̃
into c. Rearranging Equation 18.10b,

a =
µMM − µmm

2(1− 2 c̃ )
(18.12c)

which, upon using 0 ≤ c̃ ≤ (1− r)/2, gives

µMM − µmm

2
≤ a ≤ µMM − µmm

2r
(18.12d)

Hence, the use of both the observed correlation r and the difference in marker means
(zMM − zmm) allows the estimation of upper bounds for both c and a.

Variance QTLs (vQTLs)

While differences in trait variance across marker genotypes could simply reflects differences
on the weights on underlying, but equally variable, distributions, they also could have a
much more interesting cause: the QTL genotypes themselves may actually have different
variances. This is commonly seen among inbred lines (WL Chapter 17), where some marker
genotypes are more variable than others. Denoted as vQTLs (variance QTLs) by Rönnegård
and Valdar (2011) and veQTLS (variance in expression-level traits) by Huang et al. (2015),
such QTLs denote sites where the trait variance differs over marker genotypes. In some
settngs, vQTLs can be of more interest than QTLs impacting the mean (Weller and Wyler
1992). For example, a reduction in the variance of flowering time shortens the harvesting
window, and by reducing costs this may be more significant than changing mean harvesting
time per se. While candidate vQTLs could be tagged simply using among-marker differences
in variance (e.g., Edwards et al. 1987), a number of more formal approaches to specifically
map vQTLs have been proposed (Ordas et al. 2008; Paré et al. 2010; Struchlain et al. 2010;
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Visscher and Posthuma 2010; Jimenez-Gomes et al. 2011; Rönnegård and Valdar 2011, 2012;
Hothorn et al. 2012; Shen et al. 2012).

Differences in trait variances among QTL genotypes can result from two different, but
not mutually exclusive, causes (WL Chapter 17). They could reflect differences in sensi-
tivity to environmental conditions (G × E), such that the environmental variance of, say,
QQ is 20, while that for qq is 10. Alternatively, they may reflect sensitivity to genetic back-
grounds (epistasis). Indeed, Paré et al. (2010) and Deng and Paré (2011) suggested that using
variance heterogeneity across markers as a preliminary scan for potentially epistatic loci.
Distinguishing between genetic vs. environmental sensitivity as causes for vQTLs can be
done using panels of RILs (e.g., Fraser and Schadt 2010; see WL Example 17.1). Within a
given RIL, one can use replication to estimate the within-line variance very accuracy (sensi-
tivity to environmental conditions). Conversely, one can measure the among-line variance
in RILs means for a given marker genotype, which is a direct measure of sensitivity to
genetic background.

Genome-wide Significance Level with Multiple Tests

A final statistical issue to address is the problem of the proper significance level for an entire
mapping experiment. This is the issue of multiple comparisons, which is examined in much
greater detail in Appendix 6. The basic concern is as follows. Suppose that 100 markers are
tested for departure from the null (no linkage to a QTL), each using an α value of 0.05 (the
probability of a false positive: incorrectly declaring linkage when the marker is unlinked
to a QTL). If all 100 markers were unlinked to QTLs, we would still (on average) declare
0.05·100 = 5 as being significant (linked to a QTL), resulting in (on avenge) 5 false positives.
The level of error control, α, for any single test is referred to as the comparison-wise error
rate (CWER). In contrast, the family-wide error rate (FWER), γ, is the probability of one
(or more) false positives over the entire collection of tests. In the mapping literature, the term
genome-wide error rate (GWER) is often used in place of FWER.

If n independent tests, each with significance level α, are conducted, the probability γ
that at least one test shows a false positive (the FWER) is

γ = 1− (1− α)n (18.13a)

For our values of α = 0.05 and n = 100, γ = 0.9940. Setting α = 0.01 for each individual
test, the probability of at least one false positive in 25 tests is 0.22, which increases to 0.633
for 100 tests, and is essentially one for 500 tests. The latter number of tests is not uncommon
in QTL mapping studies (n is several orders of magnitude larger in association studies;
Chapter 20). Hence, unless we use a very stringent significance value for each test, we run a
very high risk of declaring false associations. This tighter stringency for each test results in
a higher Type II error rate (failing to declare a linked marker as being significant), resulting
in a tradeoff between power of detection and control of the experiment-wide error rate
(Appendix 6).

Suppose we wish to achieve an overall significance level γ for the entire experiment.
With n independent tests, the standard Bonferroni correction for multiple comparisons,
derived by rearranging Equation 18.13a, states that an overall significance level γ requires
that each individual test be based on a significance level of

α = 1− (1− γ)1/n ' γ

n
(18.13b)

This standard Bonferroni correction is too strict for two reasons. First, sequential Bonferroni
corrections (Holm’s, Simes-Hochberg, Hommel’s; Appendix 6), which follow from proce-
dures based on the ordered p values of the tests (Example A6.4), still control the FWER, but
with less stringent control on the CWER. The second issue is that Equation 18.13b assumes
independent tests. This is appropriate for tests using unlinked markers (such as those on
different chromosomes), but is problematic for markers on the same chomosome. Linked
markers result in tests generally being positively correlated, which has the effect that the
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effective number of tests, ne, is less than n. Hence, one correction is to adjust for the effective
number of tests (usually done separately for each chromosome). Appendix 6 reviews ne es-
timates based on the eigenvalues of the correlation matrix of the tests, such as the methods
of Cheverud (2000) and Li and Ji (2005) (Equations A6.5a and A6.5b).

A more robust approach for obtaining overall significance levels utilizes resampling
procedures such as permutation tests, wherein the original analysis is replicated many
times on data sets generated by appropriate reshuffling of the original data to simulate
draws from the null (Churchill and Doerge 1994; Doerge and Churchill 1996). Let mi and zi

denote the vector of marker genotypes and the trait value(s), respectively, for individual i.
The original data is of the form (z1,m1), (z2,m2), · · · , (zk,mk) and one uses some method
to search for associations between zi and one (or more) of the elements of mi. Under the
null, there is no association between z and m. A resampled data set would be (say) of
the form (z15,m1), (z105,m2), · · · , (z27,mk), randomizing z over different draws of m, as
would be expected under the null. The test statistic is then computed on this new sample,
and this procedure is repeated many times, generating an empirical distribution of the test
under the null hypothesis of no marker-trait associations. For example, if the highest test
score over all markers in the randomized samples exceeds 4 in only 2.5% of the samples,
any marker with a score above 4 is significant at the a FWER of γ = 0.025. Note that
one can obtain significance levels on either a per chromosome (using the distribution of
randomized scores for that chromosome) or an entire genome basis. Churchill and Doerge
suggest that 1,000 resamplings is sufficient for a significance level of 5%, but that 10,000
or more resamplings may be required to generate a stable critical value for the 1% level.
By keeping the marker information (mi) for each individual together, this approach nicely
accounts for missing markers, differences in marker densities, correlations among markers,
and any nonrandom segregation of marker alleles. The latter is not uncommon in crosses
between widely divergent lines.

A key assumption of permutation tests is that the permuted sampling units are ex-
changeable under the null (Welch 1990). Consider the case of selective genotyping (Chapter
17), wherein one phenotypes a sample of individuals, but only genotypes a selected subset
of these. In this setting, threshold values must be computed using stratified permutation
tests (Manichaikul et al. 2007), where only those phenotypes with associated genotypes are
shuffled over the genotypes. Similarly, with family-based QTL mapping (Chapter 19), care
use to taken to find the appropriate unit for shuffling.

An alternative strategy for error control under multiple comparisons is the idea of the
false discovery rate (FDR). As detailed in Appendix 6, instead of attempting to limit the
number of false positives over the entire set of tested markers (FWER), one limits the fraction
of false positives among the set of tests that are declared to be significant. For example, setting
an FDR control of five percent implies that one expects only 5% of the significant tests to
be false positives. Conversely, setting an FWER of 5% says that there is only a 5% chance
that the entire experiment would have one (or more) false positives. The FWER results in
more stringent control (and thus less power) than FDR. The FWER setting assumes that
essentially none of the tests are true positives, while the FDR framework assumes that some
nontrivial fraction of the tests are indeed true positives. Appendix 6 examines the subtle,
but quite important, differences between these approaches in detail.

FDR is often used in association studies (Chapter 20), and has been proposed for use in
linkage-based QTL mapping (Weller et al. 1998; Lee et al. 2002; Sabatti et al. 2003; Bernardo
2004; Benjamini and Yekutieli 2005). However, Chen and Storey (2006) noted the standard
FDR method is not appropriate when a set of linked markers are each tested, as signal from the
same underlying QTL generates multiple discoveries that are taken as distinct. They instead
suggest an FDR-related approach that builds on the Churchill and Doerge resampling ap-
prach, essentially looking at the distribution of the second highest genome-wide scores (see
Appendix 6 for details). We will return to multiple comparisons adjustments in Chapter 20,
as association mapping has major differences relative to linkage-based mapping. It has a far
higher number of markers, many more linked markers, but a smaller fraction of correlated
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markers among these tested (most markers on the same chromosome are uncorrelated in the
GWAS setting, as they are essentially in linkage equilibrium; Chapter 5). Further, association
mapping can be computationally intensive, limiting the utility of resampling.

Example 18.3 When the marker density on a chromosome is low, Bonferroni corrections are
reasonable. Lander and Botstein (1989) called this the sparse-map case, where consecutive
markers are well-separated. At the other extreme is the dense-map case, where the spac-
ing between consecutive markers approaches zero. Such settings arise when each point on
a chromsome generates a test statistic. Lander and Botstein (1989; Lander and Schork 1994;
Lander and Kruglyak 1995) approximated this process by using an Orenstein-Uhlenbeck dif-
fusion (LW Appendix 1). Here the value of the test statistics under the null as one moves along
a chromosome is approximated by Brownian motion (generating correlations among adjacent
tests) with a restoring force that constrains the variance of the process. Their model assumes
the Haldane mapping function (Chapter 17) and uniform recombination rates throughout the
genome to model the covariance function between marker genotypes (and, hence, between
tests based on these genotypes). Using this framework, results from random-walk theory give
approximate expressions for the probability that the walk exceeds some value T over some
defined duration (here, the genome length).

In particular, if X is the linkage statistics (a LR value or t or more general score test), then
the FWER, γT = Pr(X > T somewhere in the genome), can be approximately relatived to
the point-test value (CWER), αT = Pr(X > T at a single site), by

γT ' [C + 2ρGh(T )]αT (18.13c)

where C is the number of chromosomes, G the genome length (in Morgans), ρ is a measure
of the crossover rate in the design (values tabulated in Lander and Kruglyak 1995), and h(T )
depends on the test (Lander and Schork 1994). Note by comparison to Equation 18.13b that
[C + 2ρGh(T )] is a measure of the effective number of tests. See Feingold et al. (1993),
Dupuis and Sigmund (1999), Piepho (2001a), Zou et al. (2004) and Kao and Ho (2012) for
further discussions on dense-map approximations.

Selective Genotyping and Phenotyping

As introduced in Chapter 17, one mapping design is selective genotyping: a large sample
of individuals are phenotyped, with a subset, usually those showing extreme values, chosen
for genotyping. This design is partly a relict of the halcyon days when phenotyping was
much cheaper than genotyping. Such a design can produce biased estimates unless suitable
corrections are performed (Lander and Botstein 1989; Darvasi and Soller 1992; Muranty
and Goffinet 1997; Muranty et al. 1997; Ronin et al. 1998; Johnson et al. 1999; Xu and Vogl
2000; Lee et al. 2014). An especially interesting approach to adjust for bias was suggested by
Henshall and Goddard (1999). Typically, QTL detection searches for markers showing an
association between trait value as a function of the number of copies of a reference marker
allele (trait value conditioned on the marker value). Henshall and Goddard suggested that
one instead looks at the expected number of copies of a reference allele as a function of trait
value (marker value conditioned on the trait value). In effect, this is a logistic regression of
allele frequency on trait value. The idea is that the frequency of a focal allele influencing the
trait should increase with trait value.

One extension of selective genotyping is to multiple traits. Lin and Ritland (1997)
suggested that an individual be genotyped when they display extreme values in at least
one of the traits, while Muranty et al. (1997) suggested using a weighted index combining
the traits of interest and then selecting individuals with extreme index values. Another
variant of selective genotyping is selective mapping: the use of selective genotyping to
improve map resolution. The idea is to genotype individuals using low marker density
(framework markers) and then increase the density of genotyping for those individuals
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showing recombinations within the region of interest (Vision et al 2000; Ronin et al. 2003;
Xu et al. 2005). Finally, one can go full-circle with selective phenotyping: individuals are
chosen to be phenotyped by some marker genotype criteria, such as maximal diversity
within a target regions (Jin et al. 2004; Sen et al. 2005, 2009; Fu and Jansen 2006).

QTL DETECTION AND ESTIMATION USING LS LINEAR MODELS

We now have all of the necessary machinery in place to consider particular methods for
QTL detection and estimation in greater detail. In a LS linear model framework, detection
is very straightforward, while estimation of effects and positions can be more challenging.
Equations 18.7–18.11 show the general estimation strategy for linear models: one constructs
some appropriate contrast of marker genotype means for the parameter(s) of interest (the
method-of-moments approach). As we will shortly demonstrate, likelihood (Appendix 4)
provides a much better overall framework for estimation, so we will focus solely on using
linear models for QTL detection.

Linear Model Detection of Continuous Traits

As noted above, the simplest test for a marker-trait association involves the comparison
of the trait means of alternate marker genotypes. When only two genotypes are compared
(such as with single-marker backcross-, RIL-, or DHL-designs), this can be accomplished
with a simple t test. Many designs, however, involve more than two marker genotypes.
For example, the single-marker F2 design has three marker genotypes: MM, Mm, mm. In
such cases, all marker genotypic means (or some subset of them) can be compared by using
standard LS linear-model approaches, such as ANOVA or regression.

The simplest framework is gene-dosage regression (also called the additive model),
which assumes a single marker locus and only additive effects at a single linked QTL. The
phenotypic value zik of the kth individual with marker genotype i is modeled as a mean
value µ plus an (additive) marker effect b and a residual error eik,

zik = µ + bNi + eik (18.14a)

where Ni is the number of copies (or gene dosage) of the focal marker allele (e.g., values
of 0, 1, and 2, for mm, Mm, and MM , respectively). A significant value of b implies one (or
more) QTLs linked to the marker. Note that this is a one degree-of-freedom test.

A more general approach that accommodates dominance, and easily extends to multi-
ple markers (i.e., multilocus marker genotypes), is given by the general genotype model

zik = µ + bi + eik (18.14b)

This is a one-way ANOVA model (Chapter 22), with the presence of a linked QTL being
indicated by a significant between-marker variance (i.e., one, or more, of the bi is signifi-
cantly different from zero). The associated degrees-of-freedom is the total number of marker
genotypes minus one. Equivalently, we can express this model given by Equation 18.14b as
a multiple regression, with the phenotypic value for individual j given by

zj = µ +
n∑

i=1

bi xij + ej (18.14c)

where the xij are n indicator variables (one for each marker genotype),

xij =
{

1 if individual j has marker genotype i,

0 otherwise.

The number of marker genotypes (n) in Equations 18.14b and 18.14c depend on both the
number of marker loci and the type of design being used. With a single marker, n = 2 for
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a backcross, RIL, or DH design, while n = 3 for an F2 design (using codominant markers).
When two or more marker loci are simultaneously considered, bi corresponds to the effect
of a multilocus marker genotype, and n is the number of such genotypes considered in the
analysis. In the regression framework, evidence of a linked QTL is provided by a significant
r2, the fraction of character variance accounted for by the marker genotypes (Chapter 10).
Finally, as mentioned above, the presence of a linked QTL can cause different marker geno-
types to have different trait variances. If the difference in variance between marker classes
is substantial, the standard ANOVA assumption of variance homogeneity is violated and
corrections are required for hypothesis testing (Asins and Carbonell 1988; Xu 1995).

Estimation of dominance requires information on all three genotypes at a marker locus,
i.e., an F2, Ft, or other design (such as both backcross populations). In these cases, dominance
can be estimated using an appropriate weighted combination of the marker means (e.g.,
Equations 18.7b and 18.8b). For a single marker locus, a simple test for dominance is whether
Equation 18.14b gives a significantly better fit than the strictly additive model (Equation
18.14a).

Epistasis between QTLs can be modeled by including interaction terms (Chapter 10).
Here, an individual with genotype i at one marker locus and genotype k at a second is
modeled as z = µ + ai + bk + Iik + e, where a and b denote the single-locus marker effects,
and I is the interaction term due to epistasis between QTLs linked to those marker loci. In
linear regression form this model becomes

zj = µ +
n1∑
i

ai xij +
n2∑
k

bk ykj +
n1∑
i

n2∑
k

Iik xij ykj + ej (18.14d)

where xij and ykj are indicator variables for two different marker genotypes (with n1 and
n2 genotypes, respectively). Significant ai and/or bk terms indicate significant effects at
the individual marker loci (main or marginal effects), while significant Iik terms indicate
epistasis between the effects of the two markers. More formally, we could express these
interaction terms using our general epistatic model (Equation 5.5), e.g., Kao and Zeng
(2002) and Zeng et al. (2005).

Essentially the same approach can be used to look for QTL× environment interactions
(Chapter 27) when markers are examined over several environments. The basic model for
an individual with marker genotype i measured in the kth environment is z = µ + bi +
Ek + Iik +e, where a significant Ek indicates an environmental effect, while a significant Iik

implies a marker × environment interaction. For example, if the character has significant
sex-specific effects, these can be incorporated by using the model z = µ+bi +sk +Iik +e for
an individual of marker genotype i and sex k. A significant sk implies a significant sex effect,
while a significant Iik implies a significant marker× sex interaction. Long et al. (1995) gave
an example of the utility of this approach, finding very significant sex-specific effects for
bristle number in Drosophila. Detecting QTL × environment interaction is examined more
fully in Chapter 27.

Example 18.4. Edwards et al. (1987) examined two F2 maize populations. Cross 1 consisted
of 1776 individuals scored for 16 markers, while Cross 2 used a different set of parental lines
and consisted of 1930 individuals scored for 20 markers. As the frequency distribution (below)
shows, the detected marker effects (measured by the fraction r2 of total F2 phenotypic variance
accounted for by each significant marker-trait association) were generally quite small.

A total of 82 vegetative characters were examined, with 60% (Cross 1) and 64% (Cross
2) of all possible marker-trait combinations showing significant effects (at the α = 0.05 level)
using single-marker ANOVA. On average, each trait showed 10 (Cross 1) and 14 (Cross 2)
significant marker associations. Dominance was common, while pairwise epistasis, as tested
by incorporating a marker×marker interaction term into the linear model (Equation 18.14d),
was rare. The same two F2 populations were used by Stuber et al. (1987) to examine 25 yield-
related characters, with similar results. In that study, most marker-trait combinations were
significant (66% and 72% at the α = 0.05 level), and most marker effects were small (over
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half of the significant associations having r2 values less than two percent). As a group, yield-
related traits displayed more dominance than vegetative traits, but many yield traits were still
largely additive. Edwards et al. (1992) examined a subset of the vegetative characters in Cross
2, using a much larger number of markers (114 RFLPs). While only 187 F2 individuals were
scored, 15% of marker-trait associations were significant, and the overall results with respect
to the distribution of effects were similar to those for the 1987 experiments
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Detecting QTLs for Dichotomous Traits: The Cochran-Armitage Trend Test

Many QTL experiments are concerned with dichotomous (binary) traits, such as disease or
pest resistance in crop plants or disease susceptibility in humans. In many cases, one can
score quantitative physiological traits contributing to the binary trait, such as blood pressure
or number of lesions per leaf, and the above methodology for QTL detection with continuous
traits applies. However, such variables are often either unknown or unmeasured, and the
data are simply scored as presence/absence values (or cases versus controls in the medical
literature). The simplest procedure to detect marker-trait associations in this setting is to
test for independence using standard association tables (such as χ2 or Fisher’s exact tests).
As shown in the table below, the n total observations are partitioned into counts for each
particular class, e.g., nP1 is the sample number of Mm individuals showing the trait.

Marker Genotype
mm Mm MM Totals

Present nP0 nP1 nP2 nP

Absent nA0 nA1 nA2 nA

Totals n0 n1 n2 n

This same approach easily extended to polychotomous (ordinal) characters. With three
marker genotypes and two trait values, the result χ2 test has two degrees of freedom, with
a significant value indicating linkage to one (or more) QTLs.

Note that the contingency table approach is akin to Equation 18.14b, making no assump-
tions about the trait values (percentage showing the trait) associated with each genotype,
hence the two degrees of freedom for the test. A more powerful approach, akin the gene
dosage regression (Equation 18.14a), is the Cochran-Armitage trend test (Cochran 1954;
Armitage 1955) which uses one degree of freedom to test for a trend in proportions as the
gene dosage increases. The basic structure of the test is as follows. First one chooses a weight
vector τ = (τ0, τ1, τ2) which is an assumption about the nature of the trend over the three
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genotypes. The resulting test statistic becomes

T =
nAnP

n
·

[
2∑

i=0

τi

(
nPi

nP
− nAi

nA

)]2

2∑
i=0

τ2
i

ni

n
−

(
2∑

i=0

τi
ni

n

)2 (18.15)

where, for large samples, T ∼ χ2
1. The classical Cochran-Armitage test assumes τ =

(0, 0.5, 1), namely an additive trend. Note that one can easily modify Equation 18.15 un-
der the assumption that M is linked to a completely dominant (τ = [0, 1, 1]), or recessive
(τ = [0, 0, 1]), QTL allele. Lee (2015) discusses optimal weighting schemes under other sce-
narios. Note that if we use new weights ki = aτi (all the weights are scaled by the same
constant), the a values in the numerator and denominator cancel, recovering Equation 18.15.

Example 18.5. Consider the following data from Zhang et al. (2005), who examined the
association between genotypes at the DNA repair gene ADPRT and lung cancer:

Genotype
mm Mm MM Totals

Present 307 [0.461] 509 [0.502] 184 [0.573] 1000
Absent 359 [0.539] 504 [0.498] 137 [0.427] 1000
Totals 666 1013 321 2000

The number in the square bracket is the fraction of the marker class with (Present) or without
(Absent) lung cancer. There appears to be a trend with lung cancer risk increasing with the
number of copies of M. Is this statistically significant? Performing a standard χ2 test on
this contingency table returns a test statistic value of 10.9664, with an associated p value of
Pr(χ2

2 ≥ 10.9664) = 0.0042. The Fisher-exact test returns (to four decimal places) the same
p value.

To compute the Cochran-Armitage statistic (assumping an additive trend), note that

nAnP

n
=

1000 · 1000
2000

= 500

2∑
i=0

τi

(
nPi

nP
− nAi

nA

)
= 0.5

(
509
1000

− 504
1000

)
+ 1

(
184
1000

− 137
1000

)
= 0.0495

2∑
i=0

τ2
i

ni

n
=

1
4
· 1013
2000

+ 1 · 321
2000

= 0.2871

2∑
i=0

τi
ni

n
=

1
2
· 1013
2000

+ 1 · 321
2000

= 0.4138

Substituing these values into Equation 18.15 gives

T = 500 · 0.04952

0.2871− 0.41382
= 10.5733

The associated p value is Pr(χ2
1 ≥ 10.5733) = 0.0011. Note the nearly four-fold smaller p

value relative to a standard χ2 test, which results from the Cochran-Armitage test requiring fewer
degrees of freedom.
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QTL DETECTION AND ESTIMATION VIA MAXIMUM LIKELIHOOD

Maximum likelihood (ML) methods (Appendix 4) are especially popular in the QTL map-
ping literature. While LS linear models use only marker means, ML uses the full information
from the marker-trait distribution and, as such, is expected to be more powerful. The trade-
off is that ML is computationally intensive, requiring rather special programs to solve the
likelihood equations, while linear model analysis can be performed with almost any stan-
dard statistical package. Further, while modifying the basic model (such as adding extra
factors) is rather trivial in the linear model framework, with ML new likelihood functions
need to be constructed and solved for each variant of the original model. Although writing
down a set of likelihood equations for the model of interest is relatively straightforward
(e.g., Example 18.6), obtaining the ML estimates is more difficult. One approach outlined
in Appendix 4 is to use specialized algorithms, of which EM (expectation-maximization)
methods have been successfully adapted to many of the mixture-model problems in QTL
mapping (e.g., Lander and Botstein 1989; Carbonell and Gerig 1991; Luo and Kearsey 1992;
van Ooijen 1992; Carbonell et al. 1992; Luo and Wolliams 1993; Jansen 1992, 1993a, 1994a,
1996; Jansen and Stam 1994; Kao and Zeng 1997; Xu et al 2003; Chen 2005; Xu et al 2005;
Xu and Hu 2010). Alternatively, as we discuss later, a creative use of regressions can often
provide excellent approximations to ML solutions. For the remainder of this chapter, we
assume that the reader has recently read Chapter 16 and Appendix 4, which introduces
much of the ML machinery used here.

Assuming that the distribution of phenotypes for an individual with QTL genotype Qk

is normal with genotypic-specific mean µQk
and common variance σ2, and following the

logic of Chapter 16, the likelihood for an individual with phenotypic value z and marker
genotype Mj becomes

`(z |Mj ) =
N∑

k=1

ϕ(z, µQk
, σ2) Pr( Qk |Mj ) (18.16)

where ϕ(z, µQk
, σ2) denotes the density function for a normal distribution with mean µQk

and variance σ2 (Equation 16.5c), and a total of N QTL genotypes is assumed. This likelihood
is a mixture-model distribution (Chapter 16). The mixing proportions, Pr( Qk |Mj ), are
functions of the genetic map (the assumed position(s) of the QTL(s) with respect to the
observed markers) and the experimental design, while the QTL effects enter only though
the means µQk

and variance σ2 of the underlying distributions.

Example 18.6. Consider the single-marker F2 design with a single QTL linked to the marker.
Making the standard assumption that phenotypes are normally distributed about each QTL
genotype, substitution of the F2 conditional probabilities (Example 18.1) into Equation 18.16
gives the likelihood functions for the three different marker genotypes as

`(z |MM) = (1− c)2ϕ(z, µQQ, σ2) + 2c(1− c) ϕ(z, µQq, σ
2) + c2ϕ(z, µqq, σ

2)

`(z |Mm) = c(1− c)ϕ(z, µQQ, σ2) +
[
(1− c)2 + c2

]
ϕ(z, µQq, σ

2)

+ c(1− c)ϕ(z, µqq, σ
2)

`(z |mm) = c2ϕ(z, µQQ, σ2) + 2c(1− c) ϕ(z, µQq, σ
2) + (1− c)2ϕ(z, µqq, σ

2)

as obtained by Weller (1986). For example, if individual one has trait value 10 and marker
genotype MM , then its contribution to the likelihood function is

`(z1 |M1) = (1− c)2ϕ(10, µQQ, σ2) + 2c(1− c) ϕ(10, µQq, σ
2) + c2ϕ(10, µqq, σ

2)

The total likelihood for n F2 individuals is the product of the individual likelihoods,

`(z) =
n∏

i=1

`(zi |Mi)
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While rather complex, the total likelihood is a function of just five parameters: the QTL
position (c), the three QTL means (µQQ, µQq, µqq), and the common variance (σ2).

The standard likelihood model assumes continuous trait values and normally disturbed
residuals, although likelihood models have been developed to map continuous traits with
censored observations (Diao et al. 2004). However, a variety of important traits are discrete.
Much of human genetics deals with dichotomous (binary) traits, which have binomially
distributed residuals (Chapter 2). Plant breeders often score resistance in an ordinal fash-
ion, such as fully resistant, partly resistant, or fully susceptible. Such polychotomous traits
have multinomially distributed residuals (Chapter 2). As we saw with segregation analy-
sis (Chapter 16), the likelihood equations can be modified to handle such traits by using
generalized linear models (Chapters 14 and 20). Dichotomous and polychotomous traits
can be modeled through the use of logistic regressions and probit scales (Ghosh et al. 1993;
Hackett and Weller 1995; Visscher et al. 1996a; Xu and Atchley 1996; Rao and Xu 1998; Yi
and Xu 2000; Deng et al. 2006). While the generalized linear model framework is formally
appropriate in such cases, often (as a first pass), the discrete structure of the data is ignored
by an investigator, treating them as if they were continuous (e. g., coding alternative bi-
nary characters as 0/1) and applying standard ML. When flanking markers are used, this
approach gives essentially the same power and precision as methods specifically designed
for polychotomous traits (Hackett and Weller 1995; Visscher et al. 1996a), but when single
markers are used, this approach can give estimates for QTL position that are rather seriously
biased (Hackett and Weller 1995).

A final class of discrete data are those that can take on a value of zero and otherwise
have a very limited range of possible values, such as number of eggs laid by a wild bird.
Again, one could treat these discrete values as continuous and use standard ML, but such
data are usually poorly approximated by a normal distribution. For example, they often
have inflated zero values (an excess of zero values). Such data are best treated as Poisson-
distributed (perhaps with extra point mass at zero; Chapter 14, WL Chapter 29). In the
generalized linear model framework, such data are modeled using log-linear models (Cui
et al. 2006; Cui and Yang 2009). Chen and Liu (2009) and Xu and Hu (2010) present a general
EM treatment for using generalized linear models in QTL mapping. An alternative approach
for treating nonnormally distributed characters is given by Kruglyak and Lander (1995c),
who develop a nonparametric interval mapping procedure.

Finally, we note that Bayesian analysis (Appendix 7) is essentially a generalization of
likelihood methods, incorporating any prior information to yield a posterior distribution for
the unknown parameters. There is a growing literature for Bayesian-based QTL mapping
(e.g., Hoeschele and VanRaden 1993a, 1993b; Satagopan et al 1996; Thaller and Hoeschele
1996a, 1996b; Sillanpää and Arjas 1998; Yi et al. 2003; Zhang et al. 2005; Xu et al. 2009). Sen and
Churchill (2001) present a unified treatment, based on conditioning on the unobserved QTL
genotype (akin to Equation 18.6), which allows the issues of QTL position and QTL effect
to be separated into two independent and manageable parts. Using this partitioned, they
developed an MCMC approach (Appendix 8) to accommodate multiple, interacting QTLs,
allowing for non-normally distributed traits, as well as accommodating missing genotype
data and genotyping errors. Two powerful uses of Bayesian methods are in estimating the
number of QTLs and dealing epistasis, and we will return to these later in the chapter.

Likelihood Maps (Profile Plots)

In the likelihood framework, tests of whether a QTL is linked to the marker(s) under con-
sideration are based on the likelihood-ratio statistic,

LR = −2 ln
[

max `r(z)
max `(z)

]
where max `r(z), given by Equation 16.8, is the maximum of the likelihood function under
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Figure 18.1 Likelihood map (or profile) for QTL positions on chromosome 10 in a cross of
two tomato species. Evidence for a QTL is provided when the likelihood function exceeds
the significance threshold (indicated by the horizontal line). The upper dashed curve gives
the LOD score for fruit pH as a function of map position, showing strong evidence of a QTL
near the middle of the chromosome. The lower two curves (solid and broken) are for fruit
weight and soluble-solid concentration, neither of which shows a significant QTL effect on
this chromosome. (After Paterson et al. 1988.)

the null hypothesis of no segregating QTL (i.e., under the assumption that the phenotypic
distribution is a single normal). This test statistic is approximately χ2-distributed, with the
degrees of freedom given by the extra number of fitted parameters in the full model. For
a model assuming a single QTL, most designs have five parameters in the full model (the
three QTL means, the common variance, and the QTL position), and two in the reduced
model (the mean and variance), giving three degrees of freedom. Certain designs (such as a
backcross, RIL, or DHL) involve situations where only two QTL means enter (e.g., QQ and
qq for RILs/DHLs, Qq and QQ or qq for a backcross), and here the likelihood ratio test has
two degrees of freedom.

The amount of support for a QTL at a particular map position is often displayed graph-
ically through the use of likelihood maps (Figures 18.1 and 18.2), also called profile plots,
which graph the likelihood-ratio statistic (or a closely related quantity) as a function of map
position of the putative QTL. For example, the value of the likelihood map at c = 0.05 gives
the likelihood-ratio statistic that a QTL is at recombination fraction 0.05 from the marker
vs. a model assuming no QTL. This approach for displaying the support for a QTL was in-
troduced by Lander and Botstein (1989), who plotted the LOD (likelihood of odds) scores
(Morton 1955b). The LOD score for a particular value of c is related to the likelihood-ratio
test statistic (LR) by

LOD(c) = log10

[
max `r(z)
max `(z, c )

]
=

LR(c)
2 ln 10

' LR(c)
4.61

(18.17)

showing that the LOD score is simply a constant times the likelihood-ratio statistic. Here
max `(z, c) denotes the maximum of the likelihood function given a QTL at recombination
frequency c from the marker. Another variant is simply to plot max `(z, c) instead of the
likelihood-ratio statistic, as the restricted likelihood, max `r(z), is the same for each value
of c. Testing over the entire genome yields a genomic scan for QTLs.

The likelihood profile projects the multidimensional likelihood surface (which is a
function of the QTL means, the common variance, and the map position) on to a single di-
mension, that of the map position, c. The ML estimate of c is that which yields the maximum
value on the likelihood map, and the values for the QTL means and variance that maximize
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Figure 18.2 Hypothetical likelihood map for the marker-QTL recombination frequency c in
a single-marker analysis. Points connected by straight lines are used to remind the reader that
likelihood maps are computed by plotting the maximum of the likelihood function for each c
value, usually done by considering steps of 0.01 to 0.05. A QTL is indicated if any part of the
likelihood map exceeds a critical value. In such cases, the ML estimate for map position is the
value of c giving the highest likelihood. Approximate confidence intervals for QTL position
(one-LOD support intervals) are often constructed by including the set of all c values giving
likelihoods within one LOD score of the maximum value.

the likelihood given this value of c are the ML estimates for the QTL effects. Thus, in the
likelihood framework, detection of a linked QTL and estimation of its position are coupled—if
the likelihood ratio exceeds the critical threshold for that chromosome, it provides evidence
for a linked QTL, whose position is estimated by the peak of the likelihood map. If the peak
does not exceed this threshold, there is no evidence for a linked QTL.

Precision of ML Estimates of QTL Position

Because ML estimates are approximately normally distributed for large sample sizes, con-
fidence intervals for QTL effects and position can be approximated using the asymptotic
sampling variances for the ML estimates (Appendix 4). Approximate confidence intervals
are often constructed using the one-LOD rule (Figure 18.2), with the confidence interval
being defined by all those values falling within one LOD score of the maximum value (Con-
neally et al. 1985; Lander and Botstein 1989). The motivation for such one-LOD support
intervals follows from the fact that the large-sample distribution of the LR statistic follows a
χ2 distribution. If only one parameter in the likelihood function is allowed to vary, as when
testing whether c equals a particular value (say the observed ML estimate), the LR statistic
has one degree of freedom. Because a one-LOD change corresponds to an LR change of
4.61 (Equation 18.17), which for a χ2 with one degree of freedom corresponds to a signifi-
cance value of 0.04 (e.g., Pr(χ2

1 ≥ 4.61) = 0.04), it follows that one-LOD support intervals
approximate 95% confidence intervals under the appropriate settings.

While widely used, the one-LOD rule is a large-sample property, and, as such, is only
an approximation. When the true QTL effect is small, this approach often yields intervals
that are too small. Mangin et al. (1994a, 1994b) showed that one-LOD confidence intervals
have between 60% and 95% probability of actually containing small-effects QTLs, and they
developed an improved method for such cases. This observation lead to a series of LOD-
drop rules using intervals based on decreases in LOD scores in excess of one. For example,
simulation studies led van Ooijen (1992) to suggest that support intervals should be based
on two-LOD differences in order to have a high probability of containing the QTL, while
Dupuis and Siegmund (1999) suggested using a 1.5-LOD support interval. Very extensive
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simulations (using 450 CPU days!) by Manichaikul et al. (2006) showed that the LOD drop
value increased with decreasing power (i.e., smaller QTL effects), ranging from around 2
for low power to close to 1.5 to 1 for high power. Visscher and Goddard (2004) showed that
the likelihood surface around the MLE is often rather leptokurtic (Chapter 2), rather than
the quadratic required by asymptotic theory for the one-LOD rule to be valid.

A more rigorous approach, although still a large-sample approximation, for obtaining
standard errors of both map position and QTL effects is to use the inverse of the Fisher
information matrix associated with the likelihood function (Appendix 4). Kao and Zeng
(1997) and Chen (2005) showed how to obtain this asymptotic matrix in an EM frame-
work. Bayesian methods (Appendix 7) offer another approach, and tend to have better
small-sample properties than likelihood. Example 18.7 outlines a Bayesian credible inter-
val approach, based on areas under the likelihood profile, suggested by Sen and Churchill
(2001).

Resampling methods have been suggested as a robust procedure for constructing con-
fidence intervals for QTL position, and Visscher et al. (1996b), Walling et al. (1998, 2002), and
Talbot et al. (1999) suggested using a nonparametric bootstrap approach (Efron 1979, 1982).
Suppose the original data set consists of n individuals. A bootstrap sample is generated by
drawing n values, with replacement, from the original data set. Such a sample will have some
of the original observations present multiple times and others not present at all. A series
of N such samples are generated and an estimate (map position in this case) is computed
for each, generating a distribution of estimates (the empirical bootstrap distribution). The
resulting 95% bootstrap confidence interval has as its lower value the estimate correspond-
ing to the 2.5% cumulative frequency point of the empirical bootstrap distribution, while
the upper value is that corresponding to the upper 97.5% of the bootstrap distribution.
While the bootstrap approach is generally fairly robust, for QTL mapping it appears to be
compromised by the bias from ML (and regression) methods tending to place QTLs exactly
at the markers, as opposed to between them (Walling et al. 2002; Manichaikul et al. 2006).
Manichaikul et al. noted that a consequence of this feature is that the accuracy of bootstrap
confidence intervals critically depends on where the true QTL is relative to the markers, and,
as a result, recommend that LOD drop off or Bayesian credible intervals (Example 18.7) be
used instead, as these tend to be a bit more robust to true QTL position.

The length of the confidence interval is influenced by the number of individuals sam-
pled, the effect of the QTL in question, and the marker density. Darvasi et al. (1993) showed
that precision is not significantly increased by increasing marker density beyond a certain
point (around one marker every 5 to 10 cM). Given such a dense map, van Ooijen (1992)
found that ML mapping using flanking markers with reasonable sample sizes (200–300
F2 or backcross individuals) allowed a QTL accounting for 5% of the total variance to be
mapped to a 40 cM interval, while one accounting for 10% could be mapped to a 20 cM
interval. Unfortunately, these interval sizes are distressingly large for cloning QTLs or even
defining their positions to smaller intervals for RIL construction. Equation 18.44b (below)
gives a simple approximation for the sample size required for a desired interval length.

One strategy for increasing the precision of mapping is to use lines with expanded
genetic maps, such as RILs or AILs. With these designs, estimates of the map position are
in terms of the cumulative recombination frequency c̃ ' τc (where τ > 1; Equation 18.5),
so that the confidence interval for c is reduced by a factor of 1/τ . For example, recombinant
inbred lines have a two- to four-fold expansion of the map (Equation 18.5b), and hence
reduce the length of the confidence interval for c by 1/2 to 1/4 relative to an F2. Even more
dramatic reductions are possible using advanced intercross lines. A sample size and marker
density that yields a 20 cM confidence interval in an F2 design gives a 3.4 cM confidence
interval for the same QTL in an F10 design. (This follows from Equation 17.4, which shows
that a Haldane distance of 20 cM, corresponding to c = 0.165, translates into c̃ = c/5 = 0.033
and a Haldane distance of 3.4 cM with an F10 AIL.) Similarly, an F20 design would give a
1.7 cM confidence interval.
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Example 18.7. Sen and Churchill (2001) proposed an approximate Bayes credible interval
for QTL position. Bayesian analysis is examined in more detail in Appendix 7, but the basic
idea (Equation A7.3d) is that one starts with some initial prior distribution p(c) for QTL
position, and then updates this information with data z via the likelihood `(z, c), to yield
posterior distribution for the QTL position,

p(c | z) =
`(z, c) p(c)∫
`(z, c) p(c) dc

=
`(z, c)∫
`(z, c) dc

Integration is performed to ensure that the posterior is a proper probability distribution (the
area under the posterior is one). The right-hand simplification follows when one assumes a flat
prior, p(c) = 1/L (L being the length of the chromosome in Morgans), namely we assume, a
priori, that all map position values are equally likely QTL locations. Sen and Churchill noted
that this distribution can be approximated using profile likelihoods. Using Equation 18.17 to
express `(z, c) in terms of LOD scores,

p(c | z) ' 10LOD(c)∑L
i=1 10LOD(ci)

where LOD(c) is the LOD score if the QTL is assumed to be at map position c on a chromosome,
and the sum is over the possible c values (moving from one end of a chromosome to the other).
Using p(c | z), a 95% credible interval is simply the smallest interval in c (map position) that
contains 95% of the probability mass of c. Manichaikul et al. (2006) found that this approach
tended to outperform the bootstrap.

ML Interval Mapping

ML mapping with line crosses usually employs the genotypes of a pair of flanking markers
as the unit of analysis. The likelihood functions for such ML interval mapping (IM) follow
from Equation 18.16 using the appropriate conditional probabilities for QTL genotypes
given the two-locus marker genotypes (Jensen 1989; Lander and Botstein 1989; Knapp et al.
1990, Carbonell et al. 1992; van Ooijen 1992; Korol et al. 1996). Example 18.8 shows the basic
structure of the resulting likelihood functions. As with single-marker analysis, support for
a QTL is evaluated with a likelihood profile over a region (typically a chromosome; Figures
18.1 and 18.5) with the peak of the likelihood profile corresponding to the ML estimate of
QTL position within that region and its significance given by a likelihood-ratio test.

Example 18.8. Likelihood functions for interval mapping follow by substituting the appro-
priate conditional probabilities into Equation 18.16. For example, consider the F2 formed by
crossing two inbred lines. Assuming no interference, from Equation 18.2 the likelihood for
marker genotype M1M1M2M2 is

`(z |M1M1M2M2) =
[
(1− c1)2 (1− c2)2

(1− c12)2

]
· ϕ(z, µQQ, σ2)

+
[
2 c1 c2 (1− c1) (1− c2)

(1− c12)2

]
· ϕ(z, µQq, σ

2)

+
[

c2
1 c2

2

(1− c12)2

]
· ϕ(z, µqq, σ

2)
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Likelihoods for the other eight flanking-marker genotypes follow similarly and can be found
in Luo and Kearsey (1992), Carbonell et al. (1992), and van Ooijen (1992). Even though these
likelihoods involve three recombination parameters (c12, c1, c2), the distance between mark-
ers (c12) is usually taken as known, and hence c2 = (c12 − c1)/(1 − 2 c1) (assuming no
interference) or c2 = c12−c1 (complete interference). This leaves five parameters to estimate:
three QTL means, the common variance σ2, and the position c1 of the putative QTL within the
interval. Likelihoods for other designs follow using the appropriate conditional probabilities.

One of the first applications of ML interval mapping was performed by Paterson et
al. (1988), who examined 237 backcross individuals in a cross between the tomato species
Lycopersicon esculentum and L. chmielewskii for several fruit-related traits (Figure 18.1 gives
the chromosome 10 likelihood maps for three traits). By using 68 markers (63 RFLP and 5
isozyme variants), 95% of the genome was within 20 cM of a marker. Six QTLs affecting fruit
mass, four affecting concentration of soluble solids, and five affecting fruit pH were detected.
A follow-up study (Paterson et al. 1990) using NILs (Chapter 17) detected additional QTLs.
However, this finer mapping could not confirm the presence of one putative QTL that
showed a highly significant peak on the likelihood map in the 1988 study, suggesting it was
a false positive.

With ML interval mapping, the likelihood map for an entire chromosome is constructed
by splicing together the likelihood maps for each successive interval. If the order of markers
on a particular chromosome is M1 – M2 – M3 – · · · – Mn, the likelihood map for the M1 –
M2 interval is constructed using only marker information from these two loci, the profile
plot for the M2 – M3 interval uses only information from M2 and M3, etc.

Given the multiple-test nature of these plots (because each map is actually a set of
multiple intervals), the appropriate threshold value for the collection of internal maps that
constitutes the likelihood map for a chromosome is debatable. Knott and Haley (1992a) noted
that the total number of independent tests is bounded above by the number of intervals
examined, but because these intervals are linked, they are not independent tests (Zeng
1993). The lower bound is set by the number of chromosomes examined, as these segregate
independently. Hence, we first set a threshold level for each chromosome that ensures
a desired genome-wide significance level for the entire collection of chromosomes. If C
chromosomes are examined, Equation 18.13b implies that in order to obtain a genome-
wide significance level γ, the significance level used to set thresholds for each chromosome
is

1− (1− γ)1/C ' γ/C (18.18)

Rebaı̈ et al. (1994b) suggested an improved approach that takes into account differences
in chromosome lengths. Turning now to the significance values for intervals on a given
chromosome, suppose the chromosome of interest has m intervals and we have set the
chromosome-wide significance as γi. Simulation studies by Zeng (1994) suggest that if the
number of markers is not too large, then, for large sample sizes, the critical value for each
interval is approximately given by a χ2

k value with significance γi/m. Here k is the number
of free parameters in the likelihood-ratio test. Approximations assuming a dense marker
map have been developed (Example 18.3; Lander and Botstein 1989; Feingold et al. 1993;
Lander and Schork 1994; Lander and Kruglyak 1995; Piepho 2001a; Kao and Ho 2012), as
have those for a sparse marker map (Zeng 1994; Rebaı̈ et al. 1994b). Simulations by Doerge
and Rebaı̈ (1996) show that dense marker approximations (assuming a very large number of
markers per chromosome) are conservative, with the probability of a test statistic exceeding
the α-level threshold being less than α when no QTL is present. For comparison among
the intervals on a specific chromosome, one can use sequential Bonferroni tests, as well as
adjusting for the effective number of tests, both previously discussed above.
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Example 18.9. Suppose five chromosomes are used for ML-interval mapping in an F2 design.
Chromosomes 1 through 5 have 10, 5, 20, 30, and 40 markers, respectively. In order to achieve a
genome-wide level of significance of γ = 0.10, what are the approximate critical values for each
chromosome? Applying Equation 18.18, the overall level of significance for each chromosome
is 1−(1−0.1)1/5 = 0.021.

The critical values for each chromosome vary with the number of markers. For chromo-
some 1, the significance levels for each test become approximately 0.021/10 = 0.0021. Recall
that the degrees of freedom for the test of no QTLs in an F2 design are 5−2 = 3. Because
Pr(χ2

3 >14.71) = 0.0021, this implies that the critical values for the likelihood ratios for chro-
mosome 1 is 14.7. Similarly, the critical values for the remaining four chromosomes are 13.2,
16.2, 17.0, and 17.6.

An alternative approach to obtaining critical values is to use permutation tests to set the
threshold levels (Churchill and Doerge 1994; Doerge and Churchill 1996). This resampling
procedure has the advantage of being robust to the actual distribution of effects. Further,
resampling is superior to analytical approximations for data with missing and incomplete
marker information, as the permutation test, by keeping genotypes intact during reshuffling,
automatically incorporates the special nature of each data set (Doerge and Rebaı̈ 1996).
Piepho (2001a) noted that resampling can be computationally intensive, and suggested
an approximate threshold approach that is much less demanding. He used results from
Davies (1987) for situations where a nuisance parameter is only present in the alternative
hypothesis (here, the QTL position, which is absence under the null). Using this theory,
Piepho developed an approximation method that uses information from the geometry of
the profile plot (the number of times the derivative of the profile plot changes along a
chromosome) to obtain a chromosome-wide error rate.

Finally, it should be mentioned that the null hypothesis usually assumed, that of no
QTLs, may be misleading. Crossed lines are often chosen because they differ in traits of
interest, so that there is certainly segregating genetic variance in the F2 and other line-cross
populations. Visscher and Haley (1996) noted that if such background variance is present,
it results in a more frequent rejection of the null hypothesis of no QTL than expected. They
argued the more appropriate null hypothesis should be that, taking the strain differences
into account, the amount of genetic variance explained by a chromosome segment is that
expected by chance, and they propose several tests of this hypothesis. Xu (2013) presented
general mixed model to account for nonadditive (dominance and epistasis) background
variation.

Approximating ML Interval Mapping by Haley-Knott Regressions

One problem with ML estimators is that they can be rather computationally demanding.
Among other things, this limits the applicability of resampling methods, which require
thousands of ML estimates to be computed per experiment. Fortunately, a simple regression
procedure usually gives an excellent approximation of the likelihood map for ML interval
mapping (Haley and Knott 1992; Martı́nez and Curnow 1992; Xu 1995, 1998; Kao 2000). This
procedure greatly facilitates resampling, as regressions are quickly and easily computed.
Haley and Knott’s (1992) idea is to express the regression coefficients as a function of the
unknown QTL parameters. Using the Falconer parameterization for genotypic means,

µQQ = µ + a, µQq = µ + d, µqq = µ− a (18.19a)

this is done by considering the regression

zj = µ + a · x(Mj) + d · y(Mj) + ej (18.19b)
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The variables x and y, which depend on both the flanking-marker genotype of the individual
(M ) and the assumed map position of the putative QTL, are obtained as follows. Taking the
expectation of Equation 18.19b over all individuals with marker genotype Mi gives

µMi
= µ + a · x(Mi) + d · y(Mi) (18.20a)

From Equation 18.6,

µMi
= (µ + a) Pr(QQ |Mi) + (µ + d) Pr(Qq |Mi) + (µ− a) Pr(qq |Mi)
= µ + a ·

[
Pr(QQ |Mi)− Pr(qq |Mi)

]
+ d · Pr(Qq |Mi) (18.20b)

Equating like terms in Equations 18.20a and 18.20b gives the conditional means of x and y,
given marker genotype, as

x(Mi) = Pr(QQ |Mi )− Pr(qq |Mi), y(Mi) = Pr(Qq |Mi) (18.21)

Thus, the x and y values are functions of the conditional QTL probabilities given the
flanking-marker genotypes. For the F2 design with no interference, Equation 18.2 gives

x(M1M1M2M2) =
(1− c1)2(1− c2)2 − c2

1 c2
2

(1− c12)2

y(M1M1M2M2) =
2c1c2(1− c1)(1− c2)

(1− c12)2

Haley and Knott give expressions for the eight other F2 marker genotypes, and values for
other designs easily follow when the appropriate conditional probabilities are employed.
This regression approach was independently suggested by Martı́nez and Curnow (1992)
for the analysis of backcross populations. These authors also detailed how missing marker
information can be accommodated (Martı́nez and Curnow 1994a).

By analogy with likelihood maps, the regression given by Equation 18.19b is computed
for each c1 value within the M1 – M2 interval, with the value giving the regression with the
largest r2 being taken as the estimate of QTL position. For each c1 value, Equation 18.21
yields the set of x and y values, allowing µ, a, and d to be estimated by ordinary least-squares
regression (Equation 10.9a),

bc1 =

 µ̂
â
d̂

 =
(
XT

c1
Xc1

)−1
XT

c1
z (18.22)

where the ith row of the design matrix Xc1 is (1, x(Mi, c1), y(Mi, c1) ).
Haley and Knott show that r2 plots for this regression are related to likelihood plots.

Assuming that phenotypes are normally distributed about each QTL genotype, then if the
QTL is completely linked to either marker (c1 = 0 or c1 = c), the residuals for the regression
given by Equation 18.19b are normally distributed. In this case, the regression estimates are
also ML estimates and the likelihood-ratio test can be expressed as

LR = n ln
(

SST

SSE

)
= −n ln(1− r2) (18.23)

where SST and SSE are the total and error (or residual) sums of squares associated with the
regression (Equations A3.16a and A3.16c), with the second equality following from Equa-
tion A3.15. If the QTL is not completely linked to either marker, the distribution of residuals
follows a mixture of normals, as some marker genotype classes will contain different QTL
genotypes. ML accommodates this mixture of normals, while LS does not. However, Haley
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and Knott (1992) and Rebaı̈ et al. (1995) showed that the function given by Equation 18.23
often gives extremely similar values to the true likelihood ratio. Haley and Knott suggested
that the number of degrees of freedom appropriate for this test is the number of estimated
QTL parameters plus an additional degree of freedom for map position c1. Xu (1995) noted
that this regression approximation tends to overestimate the residual variance, and pre-
sented a correction. More generally, if the linear model has additional factors (accounting
for, say, differences due to sex and age), the LR test is modified to become

LR = n ln
(

SSE(reduced)
SSE(full)

)
(18.24)

where the error sums of squares are now for the full model and the reduced model (the latter
incorporating all factors but the QTL effects). Improvements building on the Haley-Knott
regression approach (such as iteratively reweighted least squares) have been proposed (Xu
1998a, 1998b; Feenstra et al. 2006; Han and Xu 2008).

Example 18.10. Consider the following hypothetical data set: 10 F2 individuals scored
for flanking marker genotypes M1/m1 and M2/m2, separated by recombination frequency
c12 = 0.30. The following marker genotypes and their associated character values are ob-
served:

M1m1M2m2 M1M1M2M2 M1m1M2M2 m1m1M2m2 M1M1M2m2

3.9 5.6 3.7 3.9 5.3

m1m1m2m2 M1m1M2M2 M1M1M2M2 M1m1M2M2 M1m1M2m2

1.1 3.6 5.4 3.7 3.3

This yields the observation vector

zT = (3.9, 5.6, 3.7, 3.9, 5.3, 1.1, 3.6, 5.4, 3.7, 3.3)

Assuming no interference, c2 = (0.3 − c1)/(1 − 2c1). For each c1 value within the M1 -
M2 interval (0≤ c1 ≤ 0.3), a regression is fitted by first using Equation 18.21 to compute the
elements of the design matrix for that value of c1 and then using Equation 18.22 to obtain the
regression coefficients. For example, consider three different QTL positions: c1 = 0 (QTL at
marker M1), c1 = 0.15 (QTL in the middle), and c1 = 0.3 (QTL at marker M2). The resulting
regressions for these three c1 values are

c1 µ̂ â d̂ r2

0.00 3.97 1.47 −0.33 0.730
0.15 3.70 1.89 −0.26 0.732
0.30 2.75 1.65 1.35 0.597

These regressions are obtained using the design matrices

X0 =



1 0 1
1 1 0
1 0 1
1 −1 0
1 1 0
1 −1 0
1 0 1
1 1 0
1 0 1
1 0 1


, X0.15 =



1 0.00 0.85
1 0.91 0.09
1 0.35 0.60
1 −0.56 0.40
1 0.56 0.40
1 −0.91 0.09
1 0.35 0.60
1 0.91 0.09
1 0.35 0.60
1 0.00 0.85


, X0.3 =



1 0 1
1 1 0
1 1 0
1 0 1
1 0 1
1 −1 0
1 1 0
1 1 0
1 1 0
1 0 1


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To complete the analysis, regressions are computed for the full range of c1 values over
the M1 - M2 interval, generating the following plot of regression r2 as a function of c1.

Recombination frequency, c1, between marker and QTL

L
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D
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The maximum value of r2 (0.76) occurs at c1 = 0.09, and the associated regression
coefficients are µ̂ = 3.90, â = 1.76 and d̂ = −0.46. Hence, the data suggest that a QTL lies
between these two markers at recombination fraction c1 = 0.09 from marker locus M1, with
estimated genotypic means

µ̂QQ = µ̂ + â = 5.66, µ̂Qq = µ̂ + d̂ = 3.44, µ̂qq = µ̂− â = 2.14

Does this example show significant evidence of a QTL? From Equation 18.23, with n = 10
and r2 = 0.76, the likelihood ratio (LR) becomes −10 · ln(1−0.76) = 14.27. Note that only
two QTL parameters are fitted (a and d ) because the reduced model fits a mean µ. Hence, the
critical value for the likelihood ratio is a χ2 with three degrees of freedom (for a, d, c1),

Pr[ χ2
3 > −n ln(1− r2) ] = Pr[χ2

3 > 14.27 ] = 0.003

showing that the QTL effect is indeed significant.
Approximate confidence intervals can be constructed by using those values giving scores

within one LOD of the maximum value. We can translate r2 values into LOD scores by using
LOD = LR/4.61 =−n ln(1− r2)/4.61. The MLE has r2 = 0.76 and n = 10, for a LOD score
of −10 ln(1−0.762)/4.61 = 3.10. Hence any c1 value with a LOD score of 2.10 or greater is
in the one-LOD support interval for QTL position. The resulting interval is c1 = 0 to 0.28, so
that although there is very strong evidence for a QTL, there is extreme uncertainty as to its
position within the interval. This is not surprising given the very small sample size.

DEALING WITH MULTIPLE LINKED QTLs

All of the methods discussed so far are best characterized as one-at-a-time approaches
for mapping QTLs, as they all assume a single QTL linked to the marker(s) of interest.
While such methods can detect the presence of multiple QTLs (e.g., finding marker effects
on a number of different chromosomes), they cannot discern whether significant effects at
several linked markers/intervals are due to a common QTL or due to several linked QTLs.
The presence of multiple linked QTLs also introduces serious biases into estimates of QTL
effects and positions derived from the one-at-a-time approach. We have already mentioned
that several tightly linked QTL, depending on the sign of their effects, can result in either
an enhanced (same signs), or reduced (alternating signs), marker signal (Equation 18.8a).

A much more subtle effect is that while the presence of multiple (significant) peaks
on a likelihood profile for a given chromosome is generally taken as an indication of mul-
tiple QTLs, such peaks do not necessarily correspond to the correct QTL positions (Martı́nez
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Figure 18.3 A false (or ghost) QTL generated by using a single-QTL likelihood function
when two linked QTLs are actually present.

and Curnow 1992; Haley and Knott 1992; Wright and Kong 1997). Figure 18.3 gives an
example of two linked QTLs embedded within four markers. Using a likelihood function
that assumes only a single QTL, interval mapping correctly indicates likelihood peaks in
the intervals flanked by M1 – M2 and M3 – M4. However, the resulting map also shows a
much higher peak between M2 – M3, incorrectly suggesting the presence of a third QTL in
this region. Under a single QTL model, analysis would start with this central peak first.

One approach to mitigate the impact of a detected QTL on the signal from other QTLs is
to include the closest marker (or flanking marker interval) as a cofactor in the analysis. This
has the effect of reducing or removing background segregation variance contributed by the
detected QTL, reducing the residual variance for the marker/interval under consideration,
increasing the power for detection and improving the precision of estimates. Example 18.11
(below) provides a dramatic illustration of this. Adding a cofactor for a detected QTL to
Equation 18.14a would yield

zik = µ + bNi + hMi + eik

where Mi is the gene dosage in individuals i from the marker associated with the putative
QTL, and Ni the dosage for the current marker being tested. Alternatively, one could first
adjust the data to

z∗ik = zik − hMi

and then use these adjusted values to fit additional QTL effects. Dominance effects at the
detected QTL can be accommodated by using Equation 18.14c.

While this cofactor approach works well when the detected QTL is unlinked to the
region being probed for additional QTLs, it can introduce serious bias when testing for
QTLs linked to the detected location. In particular, Figure 18.3 showed that using markers
associated with the highest peak would force the detected QTL in the wrong location.
While specific tests for the presence of linked QTLs in adjacent intervals using sets of three
overlapping markers have been suggested (Martı́nez and Curnow 1992, 1994b; Haley and
Knott 1992), these are not without problems (Whittaker et al. 1996).

Most of the single-QTL methods developed above can be extended to multiple QTLs
by considering additional marker loci and using conditional probabilities for multilocus
genotypes. This approach has been used to develop explicit models for two or three linked
QTLs (e.g., Knapp 1991; Haley and Knott 1992; Martı́nez and Curnow 1992, 1994b; Jansen
1996; Satagopan et al. 1996; Wright and Kong 1997; Goffinet and Mangin 1998). We focus here
on three particularly flexible regression-based approaches. The first is marker-difference
regression, which considers all of the markers on one chromosome in a single analysis
by using the regression of differences between the mean values of different genotypes.
The second is composite interval mapping (CIM), which controls for both the effects of
linked and unlinked QTLs by using the appropriate marker cofactors. This approach can
be extended to multiple interval mapping (MIM) to simultaneously fit multiple linked
intervals (Kao and Zeng 1997; Kao et al. 1999; Kao and Zeng 2002; Chen 2005; Verbyla et
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al. 2007). Finally, Wright and Mowers (1994) and Whittaker et al. (1996) have shown how
positional information for linked QTLs can be extracted from the regression coefficients of
a standard multiple regression incorporating several linked markers.

Example 18.11. Lin et al. (1995) examined flowering date through ML interval mapping of
370 F2 individuals from a cross between cultivated and exotic sorghum (Sorghum bicolor× S.
propinquum). Only a single QTL for flowering date was detected, and this accounted for 85.7%
of the total variance. The data were then adjusted to account for the effects of this major gene
by using (z − bi) in place of the trait value z for an individual with genotype i at a marker
linked to the major gene. Here, the bi (1≤ i ≤ 3) are the regression coefficients generated by a
standard marker-trait regression using this marker locus. While the uncorrected F2 phenotypic
distribution was clearly bimodal, the adjusted data did not appear to deviate from normality.
Using the marker-adjusted data, two additional QTLs for flowering time were found (both
unlinked to the original QTL), accounting for an additional 8.3% and 4.2% of the total variance.
This example illustrates the potential importance of including additional marker information
into the analysis when multiple QTLs are present. In this case, removing the effects of a major
unlinked QTL reduced the residual variance sufficiently to enable detection of additional,
smaller-effect, QTLs.

Marker-Difference Regression

Two groups (Kearsey and Hyne 1994; Hyne and Kearsey 1995; Wu and Li 1994, 1996a, 1996b)
proposed a very simple, yet powerful, regression method that simultaneously considers all
of the markers on a single chromosome. While the authors refer to this method as marker
regression or joint mapping, we will use the more descriptive term marker-difference
regression, or MDR, to emphasize that this approach is rather different from the regressions
that we have considered up to this point. With MDR, each data point in the regression
corresponds to a marker mean value, rather than to values for single individuals (as in our
previous regressions). While this data structure results in far fewer points in the regression,
the use of means allows the inclusion of individuals missing some marker information and
also allows the joint incorporation of information from several experiments. Because the
method only considers differences between the marker homozygotes, it is best suited for
a collection of RILs or DH lines. It can also be formulated to apply to a BC analysis by
contrasting the homozygote and heterozygote.

The motivation for MDR follows from Equation 18.7a. We first present the method
under the assumption of a single QTL to illustrate the main points before extending it to
multiple QTLs. Suppose there are n linked markers on a chromosome containing a single
QTL (with alleles Q and q). If the ith marker is at recombination frequency ci from the QTL,
the expected difference between marker homozygote means is

yi = µ(MiMi)− µ(mimi) = 2a(1− 2ci)

Thus, if we plot the differences yi vs. (1 − 2ci) for each marker on the chromosome, the
resulting n points are expected to fall on a straight line passing through the origin with
slope 2a = µQQ − µqq . Figure 18.4 illustrates this point, showing two regressions using
the same set of marker differences but assuming two different locations for the QTL. The
regression computed using the correct position of the QTL is linear, while that assuming
the incorrect position is highly nonlinear. As with Haley-Knott regressions, one slides the
position of a putative QTL along the chromosome, computing a regression at each point.
The regression giving the best fit (i.e., the largest r2) corresponds to the estimate of QTL
position, and the slope of that regression divided by two provides an estimate of the QTL
effect, a.
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Figure 18.4 Marker-difference regression plot for the data given in Example 18.12. Open
circles assume a QTL at map position 90 cM, closed circles a QTL at position 60 cM (the true
position). Note that the relationship is linear when the correct position is used, but highly
nonlinear under the incorrect position. Further note by comparing the open and solid points
that their vertical positions are the same (each corresponding to a difference in marker ho-
mozgotes), but their horizontal (location x) values change as we change assumptions as to
where the QTL is located (e.g., the solid point at 0.55 corresponds to the open point at 1.0)

To formally develop this approach, suppose that there are n linked markers scored
along a single chromosome, and consider the regression

yi = z(MiMi)− z(mimi) = β xi + ei (18.25)

with the xi = 1 − 2ci values obtained by fixing the QTL position and then computing ci

for each marker (the marker-putative QTL distance). Because the residuals are correlated
and potentially heteroscedastic, generalized least-squares regression (Chapter 10) must be
used, with

β̂ =
(
XT V−1X

)−1
XT V−1y (18.26a)

which has sample variance
σ2(β̂) =

(
XT V−1X

)−1
(18.26b)

where

y =

 y1
...

yn

 , X =

 1− 2c1
...

1− 2cn

 (18.26c)

and

Vij =


Var(MiMi)
n(MiMi)

+
Var(mimi)
n(mimi)

i = j

(1− 2cij)
√

Vii Vjj i 6= j

(18.26d)

where Var(Mx) is the sample variance of z(Mx), n(Mx) is the sample size for marker class
Mx, and cij is the distance between markers i and j (Wu and Li 1996a).

Assuming normally distributed residuals, from Equation A3.11a the residual sum of
squares,

SSE = êT V−1ê = (y−Xβ̂ )T V−1(y−Xβ̂ ) (18.27)
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follows a χ2 distribution with n− 2 degrees of freedom (n data points minus two estimated
parameters, the QTL effect β = 2a and the assumed position). The test for a significant QTL
effect compares the SSE for this regression with that for the regression assuming no marker
effect (yi = µ + ei). The SSE for the reduced model is also χ2-distributed, but with n − 1
degrees of freedom. Recalling (Equation A5.14c) the additivity property of the chi-square,
the difference in residual sums of squares for these two models follows a χ2

1 distribution
under the null hypothesis. Hence, the regression is significant at the α level if SSE(reduced
model)−SSE(QTL model) exceeds χ2

1(α), the α-level cutoff for a χ2
1. Separate regressions are

computed for each chromosome, so that to obtain a genome-wide level of significanceγ, each
chromosomal regression is tested with significance level α = 1− (1− γ)1/C ' γ/C, where
C is the number of chromosomes examined. Piepho (2001b) noted that the χ2 assumption
only approximate, and suggested an improved significance test for MDR.

Example 18.12. Consider the following hypothetical data (plotted in Figure 18.4) generated
by assuming a single QTL with effect a = 2.0 at map position 60 cM along a chromosome
containing six markers:

Marker Position (cM) z(MiMi)− z(mimi)

10 1.26
25 2.06
50 3.04
65 3.54
75 2.90
90 2.15

SS
E

Position of QTL (in cM)
5550 60 65 70

696154

5

4

4.27

3

2

1

0

We assume that the variance associated with each marker class is the same with Var(Mx)
= 5, and that 50 individuals of each marker class were scored, giving Vii = 2· 5/50 = 0.2.
Using this and the cij values with Equation 18.26d fills out the rest of V. For a MDR analysis,
one computes a separate regression for each possible QTL position. Consider the regression
for a QTL assumed to be at map position 50 cM. For the first marker, the QTL-marker map
distance is 40 cM, which (assuming a Haldane map distance; Equation 17.3) translates into a
recombination frequency of

c1 = [1− e(−2·0.4)]/2 ' 0.275

giving x1 = (1−2 c1) = 0.45, and the data point associated this marker becomes (0.45, 1.26).
Computing the remaining data points and applying Equations 18.26 and 18.27 gives a regres-
sion with SSE = 11.03. After this procedure is repeated for all positions along the chromosome,
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the resulting plot of SSE vs. putative QTL position (shown above) exhibits a minimum value
(0.43) at map position 61, and hence r2 is maximized at this position (see Equation A3.15).

Whether the fit under the single-QTL model is a significant improvement over a model
assuming no QTL can be assessed by comparing the error sum of squares of the QTL model
(SSE = 0.43) with the error sum of squares of the reduced (no QTL) model yi = µ + ei.
Because the QTL model fits an extra parameter, the difference in sums of squares follows a
χ2 distribution with one degree of freedom under the hypothesis of no QTL effect. For the
reduced model, SSE = 19.16, which is obtained by setting X equal to a vector of ones and
applying Equation 18.26a. Hence, the QTL effect is highly significant as

Pr(χ2
1 > 19.16− 0.43) = Pr(χ2

1 > 18.73) = 0.000015

The adequacy of the single-QTL model can be assessed by noting that if this model is correct,
SSE follows a χ2

4 distribution (there are six data points and two fitted parameters, for four
degrees of freedom). Because Pr(χ2

4 > 0.43) = 0.99, SSE is not larger than expected by chance,
suggesting that there is no need to consider additional QTLs.

Using the estimated map position, the resulting regression has slope 3.84, giving the

estimated QTL effect as â = 3.84/2 = 1.92. From Equation 18.26b, σ2(2 â ) =
(
XT V−1X

)−1

= 0.16, giving the standard error of â as
√

0.16/2 = 0.20. Because SSE follows a χ2
1 distribution,

the 95% confidence interval for QTL position contains those values giving regressions with
SSE not exceeding χ2

1(0.05) = 3.84 of the minimal SSE value of 0.43 (i.e., SSE values less than
4.27). This gives the confidence interval for the QTL position as 54 to 69 cM (see figure).

This approach easily extends to multiple QTLs. Recalling Equation 18.8a, if there are
N linked QTLs, the jth of which is at recombination frequency cji from marker i, then
(assuming no epistasis),

yi = µ(MiMi)− µ(mimi) = 2a1(1− 2c1i) + · · · + 2aN (1− 2cNi) (18.28a)

This immediately suggests the multiple regression

yi = β1 · x1i + · · · + βN · xNi + ei (18.28b)

where xji = (1− 2cji) and βj = 2aj . The estimates are still given by Equation 18.26a, with
y and V being defined in the univariate case, and

β =

 β1
...

βN

 and X =

 1− 2c11 · · · 1− 2cN1
...

. . .
...

1− 2c1n · · · 1− 2cNn


where N is the number of assumed QTLs, and n is the number of markers. As above, one
computes the regression over the set of all possible QTL positions, with the estimates of
QTL positions being given by the regression with the smallest SSE value (or largest r2).
Each additional QTL reduces the degrees of freedom of SSE by two (one for QTL effect,
one for position). The test for whether adding another QTL significantly improves the fit
compares the difference in the resulting two error sums of squares (for models assuming
N versus N − 1 QTLs) with the appropriate critical value for a χ2

2. Extension of the MDR
approach to allow for interacting QTLs was given by Charmet et al. (1998).

Interval Mapping with Marker Cofactors

The careful reader will note that marker-difference regression does not require knowledge
of the multilocus marker genotypes of any individual, as all that enters into the analy-
sis are the population means for each separate marker. An alternative approach for dealing
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Figure 18.5 Likelihood plots for the X chromosome for QTLs influencing body weight in
mice. The likelihood map under standard ML interval mapping (dashed line) shows a single
very broad peak. Using the same data, the CIM likelihood map (solid lines) shows two distinct
peaks. Bw1 and Bw2 denote the two putative body-weight QTLs, and the dots on the chro-
mosome indicate the positions of the marker loci. Note that the ML interval mapping curve
shows a ghost QTL, giving the largest peak between the true flanking QTLs (c.f., Figure 18.3).
(After Dragani et al. 1995.)

with multiple QTLs that incorporates multilocus marker information from individuals is
to modify standard interval mapping to include additional markers as cofactors in the anal-
ysis. Using appropriate unlinked markers can partly account for the segregation variance
generated by unlinked QTLs (Jansen 1992, 1993b; Zeng 1993, 1994), while the effects of
linked QTLs can be reduced by including markers linked to the interval of interest (Stam
1991; Zeng 1993, 1994; Rodolphe and Lefort 1993). This general approach of adding marker
cofactors to an otherwise standard interval analysis, often referred to as composite interval
mapping (CIM), results in substantial increase in the precision of estimates of QTL position
(Jansen 1993b, 1994a, 1994b, 1996; Jansen and Stam 1994; Jansen et al. 1995; Zeng 1994; van
Ooijen 1994; Utz and Melchinger 1994). Figure 18.5 shows a rather dramatic example of the
improvement using CIM over interval analysis.

Suppose the interval of interest is flanked by markers i and i+1. One way to incorporate
information from additional markers is to consider the sum over some collection of markers
outside the interval of interest, ∑

k 6=i,i+1

bk · xkj (18.29a)

where k denotes a marker locus and j the individual being considered. Letting Mk and mk

denote alternative alleles at the kth marker, the values of the indicator variable xkj depend
on the marker genotype of j, with

xkj =


1 if individual j has marker genotype MkMk

0 if individual j has marker genotype Mkmk

−1 if individual j has marker genotype mkmk

(18.29b)

This is simply a convenient recoding of the gene-dosage regression (Equation 18.14a) for
each marker. Hence, bk is an estimate of the additive marker effect for locus k. For a backcross
or RIL design, each marker has only two genotypes and the indicator variable takes on values
1 and −1. More generally, if there is considerable dominance, the effects of the kth marker
locus can be more fully accounted for by adding a dominance term to Equation 18.29a,∑

k 6=i,i+1

(bk · xkj + dk · wkj) (18.29c)
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Interval

i – 1 i i + 1 i + 2

Figure 18.6 Suppose the interval being examined by CIM is between markers i and i + 1.
Addition of the adjacent markers i− 1 and i + 2 as cofactors absorbs the effects of any linked
QTLs to the left of marker i − 1 and to the right of marker i + 2. Their inclusion, however,
does not remove the effects of QTLs present in the two intervals, (i− 1, i) and (i + 1, i + 2),
flanking the interval of interest.

where

wkj =


0 if individual j has marker genotype MkMk

1 if individual j has marker genotype Mkmk

0 if individual j has marker genotype mkmk

(18.29d)

Composite interval mapping proceeds by adding this regression term to the model
being considered. For example, upon adding marker cofactors, the Haley-Knott regression
focusing on the interval bracketed by markers i and i + 1 becomes

zj =
[

µ + a · x(Mi) + d · y(Mi)
]

+
∑

k 6=i,i+1

bk · xkj + ej (18.30)

Estimation of the QTL parameters (µ, a, d, ci) for the interval proceeds as before, e.g., x(Mi)
and y(Mi) are given by Equation 18.21 using marker loci i and i+1 as the flanking markers,
with ci being the putative QTL – marker i recombination frequency. For each ci value in the
interval, the regression given by Equation 18.30 is fitted (i.e., a, d, and the bk), and (as before)
the ci value giving the regression with the largest r2 is taken as the estimate of the QTL
position. The significance of the interval can be tested by using Equation 18.24 to compare
the full model (Equation 18.30) with the reduced model,

zj = µ +
∑

k 6=i,i+1

bk · xkj + ej (18.31)

which includes the marker cofactors but ignores the interval.
While most QTL mapping papers use some version of ML (or Bayesian) CIM, making it

seem a gold standard, there is some debate on just which markers should be added. While
there is no single solution, the two markers directly flanking the interval being analyzed
should always be included. Suppose the interval of interest is delimited by markers i and
i + 1 (Figure 18.6). Zeng (1994) showed that adding markers i − 1 and i + 2 as cofactors
accounts for all linked QTLs to the left of marker i − 1 and to the right of marker i + 2.
Thus, while these cofactors do not account for the effects of linked QTLs in the intervals
immediately adjacent to the one of interest (i.e., the intervals ( i− 1, i ) and ( i + 1, i + 2 ) in
Figure 18.6), they do account for all other linked QTLs.

The number of unlinked markers that should be used as cofactors is unclear, as inclusion
of too many factors greatly reduces power (Zeng 1994). Jansen and Stam (1994) recommend
that the number of cofactors not exceed 2

√
n, where n is the number of individuals in the

analysis. A first approach would be to include all unlinked markers showing significant
marker-trait associations (detected, for example, by standard single-marker regression). If
several linked markers from a single chromosome all show significant effects, one might
just use the marker having the largest effect. A related strategy, suggested by Jansen (1992,
1993b; Jansen and Stam 1994), is to first perform a multiple regression using all markers
and then eliminate those that are not significant. Piepho and Gauch (2001) extend this into
a more formal model selection framework.

A multiple-trait extension of composite interval mapping given by Jiang and Zeng
(1995) offers improved power for QTL detection and increased precision in estimation
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(relative to single-trait analysis) by incorporating the correlated error structure among traits
(see also Ronin et al. 1995, 1998; Korol et al. 1995; Weller et al. 1997). Jiang and Zeng
also develop likelihood-ratio tests for genotype × environment interaction and for tests
of pleiotropy versus close linkage (one pleiotropic QTL vs. multiple linked QTLs each
influencing separate characters).

Hypothesis testing and estimation for CIM follow by simple modifications of the ap-
propriate results for interval mapping. Zeng (1993, 1994) showed that CIM test statistics for
linked intervals are only weakly correlated, so that one can approximate each interval as an
independent test. Zeng also found that the likelihood ratios within each interval are close
to χ2-distributed, so that an overall significance level of γ for an experiment examining m
intervals can be obtained by equating the critical value within each interval to a χ2 with
significance level γ/m.

Resampling methods are easily extended to CIM. Doerge and Churchill (1996) sug-
gested the following permutation test to account for multiple QTLs. A standard permutation
test is first used to detect the marker with the greatest marker-trait association. Individuals
are then divided (or stratified) according to their genotypes at this marker locus, and per-
mutations are performed within each stratified group to generate new test statistics to find
the next most significant QTL. This procedure is repeated until no significant effects are de-
tected. Although permutation and bootstrap approaches are numerically intense, the rapid
computation of solutions using Haley-Knott regressions makes these approaches feasible.

Finally, we note that other mapping approaches besides interval mapping can be im-
proved by considering marker cofactors. For example, we can enhance the power of marker-
difference regression by including unlinked markers to reduce the residual variance from
unlinked QTLs. Because MDR uses the mean values for each marker, the individual data
must be adjusted first to remove the effects from unlinked QTLs. Suppose n markers (un-
linked to the chromosome of interest) are chosen because they show significant effects. The
marker-adjusted value z∗j of the original trait value of individual j, zj , is given by

z∗j = zj −
(

n∑
k=1

bk · xkj

)
(18.32)

and a MDR analysis is then performed using these adjusted values.

Detecting Multiple Linked QTLs Using Standard Marker-Trait Regressions

Consider the standard gene-dosage multiple regression of trait value on the single-locus
genotypes at each of n markers,

zj = µ +
n∑

k=1

bk · xkj + ej (18.33)

where j indexes the individual being considered, and the xkj are given by Equation 18.29b
(i.e., only considering additive effects). A rather remarkable finding, due to Wright and
Mowers (1994) and Whittaker et al. (1996), is that the regression coefficients bk for adjacent
markers provide information on whether these markers flank a QTL. Further, the bk can be
used in many cases to obtain direct estimates of QTL effect and position.

When a QTL is isolated—an interval contains a single QTL and both flanking intervals
are free of QTLs—the regression coefficients for the two markers immediately flanking the
QTL depend only on this QTL and are not influenced by other linked QTLs (Stam 1991;
Zeng 1993). A consequence of this finding is that markers flanking a QTL have regression
coefficients of the same sign, while markers not adjacent to a QTL (i.e., there is at least one
marker in the regression between the marker of interest and the nearest QTL) have expected
regression coefficients of zero. Hence, one can simply scan the regression coefficients to see
which intervals show support for a QTL (see Example 18.13).

Whittaker et al. (1996) further showed, for an isolated additive QTL, that the regression
coefficients for the flanking markers can be directly used to estimate QTL effect and position.



108 CHAPTER 18

Suppose markers i and i + 1 flank an isolated QTL. Whittaker et al. found that for an F2

population, the estimated distance from marker i to the QTL is

ci =
1
2

[
1−

√
1− 4 bi+1θi (1− θi)

bi+1 + bi (1− 2θi)

]
(18.34a)

where θi = ci,i+1 is the distance between the markers. Likewise, an estimate of the QTL’s
additive effect a, independent of amount of dominance at this QTL, is given by

a2 =
[ bi + (1− 2θi) bi+1 ] · [ bi+1 + (1− 2θi) bi ]

1− 2θi
(18.34b)

where both bi and bi+1 have the same sign as a.

Example 18.13. Whittaker et al. (1996) simulated 2000 F2 progeny with three chromosomes,
each with five markers evenly spaced at 25 cM (implying c ' 0.2 under Haldane’s mapping
function). QTLs were placed in the intervals flanked by markers (1, 2), (4, 5), (7, 8), (13, 14),
and (14, 15). The multiple regression involving all 15 markers (Equation 18.33) had associated
regression coefficients of:

Marker 1 2 3 4 5
bi −0.2996 −0.1422 −0.0221 0.2209 0.1956

Marker 6 7 8 9 10
bi −0.0189 −0.1922 −0.2404 0.0100 −0.0108

Marker 11 12 13 14 15
bi −0.0254 0.0371 0.3019 0.2644 0.3370

Looking for pairs of adjacent regression coefficients that have the same sign and are
both significantly different from zero (as judged using standard regression tests, not shown)
suggests evidence for QTLs in the intervals (1, 2), (4, 5), (7, 8), (13, 14), and (14, 15). The
regression using just these nine markers had essentially the same SSE as the full regression
using all 15 markers, suggesting that none of the omitted markers are adjacent to QTLs (or
they are adjacent to multiple linked QTLs whose effects cancel). However, removal of any one
of the nine markers results in a regression with a significantly greater error sum of squares,
supporting the hypothesis that all of these markers are adjacent to QTLs. Using these nine
markers only, the new regression coefficients become

Marker 1 2 4 5 7 8 13 14 15
bi −0.2975 −0.1323 0.2296 0.1962 −0.2407 −0.2377 0.3145 0.2640 0.3355

Because the QTLs in intervals (1, 2), (4, 5), and (7, 8) appear to be isolated (no evidence for
QTLs in adjacent intervals), Equations 18.34a and 18.34b can be used to estimate their effects
and positions. For the QTL in the interval flanked by markers 1 and 2,

c1 =
1
2

[
1−

√
1− 4 (−0.1323) · 0.2 (1− 0.2)

(−0.1323) + (−0.2975)(1− 2 · 0.2)

]
= 0.074

and the estimate of the squared effect of the QTL is

a2
1 =

[ (−0.2975) + (1− 2 · 0.2)(−0.1323) ] [ (−0.1323) + (1− 2 · 0.2)(−0.2975) ]
1− 2 · 0.2

= (0.442)2

implyinga1 = −0.442 (because the regression coefficients b1, b2 < 0). Similarly, the estimates
for the QTL in the interval (4, 5) are c4 = 0.105 and a4 = 0.440, while for the QTL in (7, 8), we
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find c7 = 0.112 and a7 = −0.494. The estimated values were rather close to the true values
used in the simulations (a4 = −a7 = −a1 = 0.447, c1 = 0.07, c4 = 0.11, and c7 = 0.11).

Whittaker et al. (1996) made a final important point that applies to all multiple-QTL
methods. Unless a QTL is isolated—it is the only QTL in a particular interval and the
flanking intervals lack QTLs—these methods cannot separate out the effects of multiple
linked QTLs. In particular, if an interval contains multiple QTLs, we cannot estimate their
effects and positions (or even the correct number of QTLs), a point stressed by McMillan
and Robertson (1974; Example 17.2). While one obvious solution is simply to increase the
marker density to the point where each QTL is indeed isolated, any increase in the marker
density must be accompanied by a sufficient increase in sample size to ensure that a sufficient
number of recombination events have occurred between adjacent markers.

MAPPING INTERACTIONS

Complications with Mapping Epistatic QTLs

When multiple QTLs are present, one must entertain the possibility of epistasic interactions
between them. Detecting, and mapping, such interacting loci has a number of challenges,
as we now detail. At first blush this task seems rather doable, as we have already detailed
how to modify linear models to search for interactions between two-locus (or higher-order)
marker genotypes (Equation 18.14d). Just as one could expand the gene-dosage single-
marker regression (Equation 18.14a) to allow for dominance (Equation 18.14b), Equation
18.14d can be further decomposed into estimates of specific epistatic interactions (e.g.,
Kao and Zeng 2002; Zeng et al. 2005; Alvarez-Castro and Carlborg 2007). While detecting
epistasis is thus seems straightforward, several critical (and delicate) issues remain. As a
result, there is still considerable debate about its importance in QTL mapping (Carlborg
and Haley 2004; Malmberg and Mauricio 2005). However, it is also becoming apparent that
when epistasis is present, models that incorporate searches for pairwise effects often have
higher power for detecting QTL than models that ignore possible interactions (Coffman et
al. 2005; Evans et al. 2006; Marchini et al. 2006; Verhoeven et al. 2010).

Most of these concerns revolve around the massive expansion in the number of possible
tests. For k markers, there are k potential tests for main effects, where single-locus marker
genotypes show significant differences in trait means. However, there are k(k − 1)/2 ad-
ditional tests for (two-locus) epistatic interactions, for a total of k(k + 1)/2. If 100 markers
are scored (a modest number for most QTL experiments), there 4950 tests for two-marker
interactions, for a total of 5050 tests. Hence, when epistasis is considered, the significance
threshold to control the genome-wide error rate (GWER) is considerably more strict than
when only single-marker tests are considered. With 100 markers, the standard Bonferroni
correction when only single-marker tests are considered to obtain a GWER of 5% would be
to test each marker using α = 0.05/100 = 5 · 10−4. However, when epistatic interactions
are included, to control the GWER all tests must now use α = 0.05/[101 · 100/2] = 1 · 10−5,
resulting in a significant loss in power. There is also the philosophical issue in that if tests
for epistasis are done, the number of all tests performed must be included in the GWER cor-
rection, even if none were significant. Thus, the cost of testing epistasis reduces the power
to detect main effects if both classes of tests are performed simultaneously. Conversely, in-
cluding interaction effects in a model can potentially reduce residual error, increasing the
power to detect weak margin effects (Carlborg and Andersson 2002). A second issue is that
we usually expect k(k+1)/2À n, with potentially far more epistatic parameters to estimate
than there are degrees of freedom (a saturated model).

The final concern is a more subtle issue in that the genotypic sample size for detecting
two-locus interactions is less than that for testing single-locus markers. For example, with a
design involving n F2s, the expected number of MiMi or mimi individuals is n/4, while the
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expected number ofMiMiMjMj ormimimjmj isn/16. Hence, two-locus marker differences
are measured with higher standard errors (due to the smaller sample size for each multilocus
genotype). This combination of more stringent testing coupled with higher standard errors
poses serious power constraints on detection.

Epistatic Mapping Strategies

While little can be done to address the epistatic sample-size issue (short of creating mapping
populations to test specific combinations of genotypes), three basic strategies have been
proposed to deal with the number of possible tests.

1. Test only among pairs of markers that both show significant main effects. If only
s ¿ k such markers are detected, then the additional number of tests, s(s − 1)/2 is
relatively modest.

2. Test all interactions between a significant main-effect marker and all other mark-
ers. These first two approaches are called marginal scans, requiring at least one marker
showing a marginal effect. The rough number of additional tests here is s(k − 1)/2,
which, while far more than the first strategy, is still less than testing all combinations.

3. Test all combinations, independent of whether they have significant main effects,
a full scan.

Most of the early scans for epistasis relied on strategy 1, making the assumption that if a
locus has a strong interaction effect with other loci, at least part of that will also be reflected
as a main (marginal) effect. This is often true when the loci involved exhibit somewhat
extreme allele frequencies (minor allele frequencies are small). However, by the nature of
a two-line cross, all segregating alleles have minor allele frequency of 1/2, the optimal
setting for large interaction effects with potentially small main effects (given the right type
of epistasic interaction; e.g., Jana 1971).

What do the data say? Unfortunately, significant epistatic effects between loci with
weak (i.e. nonsignificant) main effects can occur in QTL studies. Lark et al. (1995) reported
several examples of soybean QTLs where one locus had a significant main effect, but its
magnitude was strongly influenced by a second locus (which itself showed no significant
main effect). In a mouse QTL experiment on lung cancer susceptibility, Fijneman et al. (1996)
found that none of the four Sluc QTLs had detectable main effects under interval mapping,
while Sluc1 had a strong interaction with the (unlinked) Sluc2, and Sluc3 interacted with
the unlinked Sluc4. Similarly, Cubillos et al. (2011) found yeast growth loci only detectable
by their interaction effects. A larger study involving 20 yeast traits by Bloom et al. (2015)
detected 153 pairwise interactions. The vast majority of these had both loci showing sig-
nificant marginal effects. However, in 36 cases just one locus was significant, and in 16
cases neither locus was significant. Finally, Holland et al. (1997) found 35 significant QTLs
interactions in an oat experiment. Only four of these involved situations where both loci
had significant main effects, 28 had only one of the loci with significant main effects, and
for three interactions neither of the loci had significant main effects.

These observations suggestion that, depending on the nature of the study, strategy 3
must often be employed. Various schemes have been proposed for the challenging task
of testing all possible combinations of markers. As summarized by Broman and Speed
(2002), this is a model selection problem, choosing the best model from a set of candidates.
They note that this is a two-step process: (i) choose the model dimensionality (variable
selection; here number of QTLs and their corresponding associated markers), and then (ii)
search within this space for the best (by some criteria) model. A number of approaches have
been suggested to accomplish this task.

Kao et al. (1999), Zeng et al. (1999), Siegmund (2004), Storey et al. (2005), Baierl et al.
(2006), Stich et al. (2007), Bogdan et al. (2008), and Zou and Zeng (2008) proposed a step-
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wise selection process wherein one adds components to a regression (marker candidates
for direct and/or interaction effects), and then uses some model selection criteria, such
as AIC (Equation 16.9a) or BIC (Equation 16.9c), to compare non-nested models. Carlborg
et al. (2000) and Carlborg and Andersson (2002) searched for interacting pairs using ge-
netic algorithms, a computer science approach for maximization of a complex structure
by essentially evolving solutions and having them compete (Holland 1975). Other search
strategies have been proposed by Ljungberg et al. (2004), Pattin et al. (2009), and Wei et al.
(2010). Jannink and Jansen (2001) proposed a one-dimensional search for loci with strong
background interaction effects (which requires more than a two-way cross). Such loci then
could be used to seed strategy 2 above. The basic logic of this idea has been independently
suggested by a number of workers (Paré et al. 2010; Struchlain et al. 2010; Deng and Paré
2011; Hothorn et al. 2012).

Many of the methods for dealing with epistasis are set within a Bayesian framework
(Appendix 7), with a detailed overview of different approaches given by Yi and Shriner
(2008). The simulation methodology of MCMC sampler (Appendix 8) can offer an efficient
alternative strategy to a grid search, wherein QTLs are placed at regular intervals (e.g.,
1 cM) across the genome and models are fit given these assumed positions. Such a two-
dimensional search examines points on a grid where location (x, y) corresponds to a QTL at
genomic position x and a second at genomic position y. The resulting search is on a lower-
triangular space (x + y ≤ L, L being the total map length) and support could be presented
as either two-dimensional profile plots (e.g., in the form of a heat map over the entire space,
where the color of a region shows the strength of support for a pair of QTLs), or by only
highlighting significant regions. See Malmberg et al. (2005) for an example of the latter in
their search for fitness-related traits in Arabidopsis.

Yi et al. (2003) and Xu (2007) proposed using stochastic search variable selection
(SSVS). Introduced by George and McCulloch (1993, 1997), the SSVS approach starts with
some initial vector of weights associated with each of the potential model variables and
then uses an MCMC sampler to continually update these weights. The resulting variables
selected for final model is given by those that have sufficient posterior weight. Given this
set of chosen variables, the optimal model parameters are then estimated, e.g., once the
variables for a regression are chosen, the regression is them fit using those variables. Xu
(2007) noted that large sample sizes (at least 600) are required for SSVS to be efficient.

A more popular approach is to use a reversible jump MCMC (Green 1995). Here, the
dimensionality (number of QTL) is treated as a random variable, and one constructs an
MCMC with two levels. On one level, the MCMC samples within a fixed number of QTLs.
Level two, operating on a longer time scale, allows the sampler to jump up (or down) by one
QTL. This generates a posterior distribution for the number of QTL, and the posterior for
model parameters (locations and effects) within each QTL number class. Various versions
of this method have been proposed for QTL mapping, e.g., Heath (1997), Sillanpää and
Arjas (1998), Yi and Xu (2002a), Yi et al. (2003, 2007), and Yi (2004). A final approach is to
use the idea of shrinkage, where all of the model parameters are estimated, but estimates
are shrunk back towards a mean of zero, so that only those with substantial effects survive
the shrinkage. The reader might think that is a version of SSVS, but the later uses these
posterior weights to include or exclude model components which are then fit, whereas the
shrinkage approach fits everything, and then shrink most back to zero. This is done by either
treating model effects as random (Chapter 10) or by using penalized regression approaches
(Example 20.4). Examples of using these approaches for QTL mapping are given Wang et
al. (2005a), Zhang and Xu (2005), Zhang et al. (2005), Xu (2007, 2010), Yi and Xu (2008), Xu
et al. (2009), Cai et al. (2011), and Huang et al. (2015).

Example 18.14. Xu and Jia (2007) examined 7 traits in 145 DH barley lines, scored for 127
markers. Each DH line was replicated over an average of 25 plots, with the line means over
all plots used for trait values, resulting in very accurate estimates of line genotypic values. Xu
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and Jia used the method of Xu (2007) to fit 127 main effects and 127·126/2 = 8001 interaction
effects (all pairs of markers). For each effect, REML (Chapter 32) is used to estimate the variance
associated with that effect. These variances were then used to shrink the estimate (Equation
10.24b), with those effects with small variances being essentially shrunk to zero.

By construction, the only (pair-wise) sepistasis in DH lines is additive-by-additive. Xu
and Jia found an average of 11.7 main effects and 6 interaction effects over the seven traits. The
largest main effect accounted for around 18% of the phenotypic variance, while the largest in-
teraction effect was only 2.6%. Taking the sum of all significant effects (judged by 20 reshuffled
samples), main effects account for 35% of the variance, while interaction effects for only 6%.
Perhaps the most interesting result was that none of the significant epistatic effects had both of
their loci with significant main effects. Very surprisingly, 90% of all interactions had neither of
the loci with a significant main effect, with 10% having only one locus with a significant main
effect.

QTL x E Interactions

Another important potential interaction involves that between the environment and a de-
tected QTL (QTL × E). We offer just a few brief remarks on QTL × E, which is examined
in detail in Chapter 27. Two different approaches have been used to study this interaction:
the consistency of marker-trait associations across environments and linear models that in-
corporate specific terms for marker× environment interactions. The simplest model would
be a modification of Equation 18.14d, where bk is now the effect for enviroment k and Iik

the QTL × E interaction term. The consistency measure is a very crude metric of QTL × E,
simply asking whether a marker-trait association is detected in all scored environments. If
it is, this is generally taken as evidence against G×E, while detection of an association in
only some of the environments is often taken as evidence for G×E. However, a QTL can
have a significant effect in all environments even in the presence of very significant G×E
interaction (Chapter 27). Likewise, low power can result in a QTL being detected in only
some of the replicates of an experiment, even when its effects are identical across environ-
ments. Consistent with this expectation, Koester et al. (1993) found that QTLs with small
effects are less likely to be detected across environments than are QTLs with large effects.
By explicitly testing for marker× environment interactions (some of the Iik are significant),
linear model methods provide a more sensitive, and accurate, measure of G × E effects
(Chapter 27).

SAMPLES SIZES REQUIRED FOR QTL EXPERIMENTS

Before investing the time and expense in a QTL mapping experiment, it is critical to have
an understanding of the sample sizes required for the detection of QTLs of specified effects.
The probability of detecting a marker-trait association is increased by increasing the differ-
ence between means and/or by decreasing the within-marker class (or residual) variance.
Increasing the sample size reduces the within-class variance, while changing the experi-
mental design can increase the difference between means. Further, the residual variance
can often be decreased by adding explanatory factors to the model, such as sex- or age-
effects.

This section examines a number of issues related to sample size, power, and accuracy.
Sen et al. (2007) presented a general tool for aiding in the design of a QTL experiment that
considers many of these issues. The important bottom line is that most QTL experiments
are dramatically underpowered (de Koning and Haley 2005). A further point in terms of
resource expenditures is that adding more individuals to the study is almost always a better
strategy than adding more markers. This is strictly true from a statistical sense. However, this
strategy is also true from a practical standpoint, in that it is usually straightforward to store
DNA from individuals, allowing for subsequent more dense mapping within focal regions.
However, such denser mapping is only appropriate when there are a sufficient number of
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recombinant events between markers, which is a function of nc. Increasing density lowers
c, so that for fixed n (original sample size), as some point not enough recombinants are
expected between the dense markers and they become completely redundant.

Power and Sample Size

The following discussion of sample size is restricted to single-marker t tests using the F2

or backcross designs, where a QTL is indicated if the means for two alternative marker
genotypes are significantly different. Using the theory of power calculations (reviewed in
Appendix 5), simple expressions can be obtained for these designs. The broad utility of the
results developed below is that both theoretical (Simpson 1989, 1992; Haley and Knott 1992;
Darvasi et al. 1993; Rebaı̈ et al. 1995; Hu and Xu 2008; Kao and Zeng 2010) and empirical
(e.g., Stuber at el. 1992; deVicente and Tanksley 1993; Nodari et al. 1993; Damerval et al.
1994; Champux et al. 1995; Kennard and Harvey 1995; Mayer et al. 2004; Mayer 2005) studies
show that t tests and more elaborate flanking-marker methods have very similar power for
detection, especially when adjacent markers are no farther than 20 cM apart. Hence, the
sample size expressions developed below provide a baseline for most designs.

We start by considering the t test for an F2 design, where the presence of a linked QTL
is indicated when zMM − zmm is significantly different from zero. Suppose that the marker
is completely linked to a single QTL with additive value a, in which case E( zMM −zmm ) =
2a. Assuming that the distribution of phenotypes about each QTL genotype has constant
variance σ2

e , then if the numbers of MM and mm individuals measured are n1 and n2,

σ2 ( zMM − zmm) = σ2 ( zMM ) + σ2 ( zmm) =
(

1
n1

+
1
n2

)
σ2

e (18.35)

If n total F2 individuals are scored, we expect only one in four to be a particular marker
homozygote, giving n1 = n2 = n/4 and the expected variance 8 σ2

e/n. If r2
F2

denotes the
fraction of the total F2 phenotypic variance [σ2

z(F2) ] due to segregation at the QTL, then
σ2

e = (1 − r2
F2

) σ2
z(F2). Hence, if n is reasonably large, the observed difference in marker

means is approximately normally distributed, with

zMM − zmm ∼ N
[
2a, 8(1− r2

F2
) σ2

z(F2)/n
]

(18.36a)

Under the null hypothesis of no QTL, this difference is distributed as a normal with mean
zero and variance 8σ2

z(F2)/n.
Using the machinery developed in Appendix 5, the sample size required to have prob-

ability 1− β of detecting a QTL using a test with an α level of significance becomes

nF2 =
8(1− r2

F2
)

δ2
F2

 z(1−[α/2])√
1− r2

F2

+ z(1−β)

2

(18.36b)

where z(p) satisfies Pr( U ≤ z(p)) = p with U ∼ N(0, 1), and

δF2 =
µQQ − µqq

σz(F2)
=

2a

σz(F2)
(18.37a)

is the difference in QTL means in units of F2 phenotypic standard deviations. The variance
contributed by F2 segregation at this locus isσ2

Q(F2) = a2(2+k2)/4, wherek is the dominance
coefficient, implying

r2
F2

=
σ2

Q(F2)
σ2

z(F2)
=

a2(2 + k2)/4
σ2

z(F2)
=

δ2
F2

(2 + k2)
16

(18.37b)



114 CHAPTER 18

which for a completely additive QTL (k = 0) is r2
F2

= δ2
F2

/8. Using Equation 18.37b, we can
alternatively express the required sample size in terms of the fraction of variation accounted
for by the QTL,

nF2 =
(

1− r2
F2

r2
F2

)  z(1−[α/2])√
1− r2

F2

+ z(1−β)

2

[1 + (k2/2)] (18.38)

Example 18.15. What sample sizes are required to detect a completely linked QTL using a
test with α = 0.05 and β = 0.1 (i.e., a 5% probability of a false positive and a 10% probability
of missing a true association)? Note that Pr(U < 1.96) = 0.975 and Pr(U < 1.28) = 0.9, so that
z(1−[α/2]) = z(0.975) = 1.96 and z(1−β) = z(0.9) = 1.28. Substituting these into Equation 18.38
gives the following sample sizes for a completely additive (k = 0) and a completely dominant
or completely recessive (k±1) QTL whose segregation accounts for r2 of the total F2 variance:

r2 0.5 0.3 0.1 0.05 0.01

Additive QTL 16 31 101 206 1046

Dominant QTL 25 46 151 309 1568

Note that the presence of dominance can significantly inflate the required F2 sample size.

Turning now to the backcross designs, consider B1 = F1× P1 (i.e., MQ/mq×MQ/MQ).
Here n1 = n2 = n/2, while µQQ − µQq = a(1− k), giving

zMM − zMm ∼ N
[
a(1− k), 4(1− r2

B1
) σ2

z(B1)/n
]

(18.39a)

Using the same logic as above, the required sample size is found to be

nB1 =
(

1− r2
B1

r2
B1

)  z(1−[α/2])√
1− r2

B1

+ z(1−β)

2

(18.39b)

with

r2
B1

=
δ2
B1

4
, where δB1 =

a(1− k)
σz(B1)

(18.39c)

For the B2 population, the results are similar, except that the comparison is now zMm−zmm

and−k replaces k in the above expressions. Comparing the F2 and the backcross design (for
small to modest r2), the ratio of samples sizes to achieve the same power is approximately

nB1

nF2

'
[

2
(1− k)2

] [
σz(B1)
σz(F2)

]2

(18.40)

Thus, if the backcross and F2 phenotypic variances are the same, the backcross design
requires twice as many individuals as an F2 for a completely additive QTL (k = 0). When
dominance is present, depending on its direction relative to the backcross population used,
the backcross design can require more than twice as many individuals as an F2 (k > 0
for B1, k < 0 for B2) or fewer individuals than the F2. (If k = −1, the required sample
size for the B1 is only half of that for an F2 design.) A further complication is that the
phenotypic variance is generally rather different in the F2 and backcross populations due
to changes in the variance from segregation of background QTLs. In the F2 population,
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all QTL alleles have frequency 1/2, which gives maximum additive variance (provided all
QTLs are additive). In a backcross, the minor allele frequency is 1/4, and additive genetic
variance is often reduced significantly relative to that in the F2. Thus, if background QTLs
contribute significantly to the character, the backcross can show a reduced variance and
more power.

If the QTL is not completely linked to the marker, two corrections are required for the
above expressions. First, the difference in means for F2 homozygous marker genotypes now
estimates 2a(1− 2c). A more subtle correction is that the variance about the marker means
increases when c 6= 0, as the phenotypic distribution for each marker class is now a mixture
of distributions with different means (Equation 16.5d). In spite of these complications, to a
very good approximation the sample sizes required for a specific power of QTL detection
are given by n0/(1 − 2c)2, where n0 is the required sample size under complete linkage
(Soller et al. 1976; Soller and Genizi 1978). Thus, the power to detect a linked QTL falls off
as (1− 2c)2 decreases, being very weak when c > 0.2 (25 cM under the Haldane map).

Example 18.16. Suppose we wish to have a 90% chance of detecting (using a test with α =
0.05) a QTL whose segregation accounts for 10% the total F2 variance. Further assume that
all of the genetic variation at this locus is additive. From Example 18.15, 101 individuals are
required to detect this QTL using a completely linked marker. With a marker at recombination
frequency c from the QTL, n = 101/(1−2c)2, giving sample sizes of 281, 158, and 125 for c =
0.2, 0.1, 0.05, respectively.

One can increase the power to detect a linked QTL either by increasing the number of
markers (which decreases c and hence increases the difference between marker means) or by
increasing the number of individuals genotyped (which decreases the sampling variance).
To see the relative importance of each, note from Equation 18.36a that the t statistic has
approximate expected value

E

[
µMM − µmm

σ(zMM − zmm)

]
'
√

n (1− 2c)

[
a√

2 (1− r2
F2

) σz(F2)

]
(18.41)

The term in brackets on the right hand side is fixed for a given QTL, so that the test statistic
scales with the square root of the sample size. Increasing the number of markers results in
an increase in the test statistic, but there is a point of diminishing returns when markers are
already closely spaced. For example, for c = 0.2 (corresponding to markers spaced 50 cM
apart), moving to an infinitely dense map (c = 0) requires that only 36% as many individuals
be scored to give the same power. However, for markers spaced at c = 0.1 and 0.05, these
percentages become 81% and 90%.

Darvasi and Soller (1994b) showed, under rather general conditions, that the spacing
of markers giving the highest chance of detecting a QTL, given the constraint of scoring a
fixed total number of marker genotypes (marker loci× individuals) is 20 to 30 cM. Here each
QTL is no further than 10 to 15 cM (and on average is within 5 to 7.5 cM) from any marker.
Thus, for markers spaced 10 cM or closer, there is really little point in further increasing
the marker density when the goal is simple detection of a linked QTL. Increasing marker
density does become important if the goal is a highly precise estimate of QTL position or
the dissection of a cluster of tightly linked QTLs. However, in order to exploit increased
density, we also need to have a large enough sample size to realize a sufficient number of
recombinational events between the dense markers. Without such recombinations, added
markers are completely redundant. For example, Mayer et al. (2004) and Mayer (2005) used
simulation studies with 500 F2 individuals to show that increasing the marker density for
10cM to 5 cM significantly improves the precision of QTL estimations With fewer F2 indi-
viduals, there are not a sufficient number of recombination events to exploit the increased
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marker density. Thus, it very rarely pays to simply increase marker density without also
increasing sample size. One exception is the use of AIL lines, where extra generations (and
hence additional meioses) can exploit a denser marker map.

Example 18.17. As mentioned in Example 18.4, Edwards et al. (1987, 1992) examined the
same cross of two maize strains with two different designs. Their 1987 design used 1,776 F2

individuals and 17 markers, while their 1992 design used 187 F2 individuals and 114 markers.
The two designs represent a tradeoff between increased marker density (1992 design) and
increased sample size (1987 design), as both examined a somewhat similar number of total
marker genotypes (1776 × 17 = 30,200 vs. 187 × 114 = 21,300). Comparisons of c values in
the two studies is problematic, given that only a fraction of the genome was covered in the
1987 study (about 40% of the genome was within 20 cM of a marker), while under the 1992
design most of the genome was 5 to 10 cM from a marker. Choosing c = 0.25 (1987 design)
and c = 0.08 (1992 design), from Equation 18.41 the expected ratio of t statistics becomes

√
1776 (1− 2 · 0.25)√
187 (1− 2 · 0.08)

= 1.8

showing that (for these c values) the 1987 design had greater power.

ML interval mapping is expected to be somewhat more powerful than the simple single-
marker t test, so the above results can be considered as upper bounds for the required sample
size, although they are not greatly exaggerated. For example, the power of ML interval
mapping to detect QTLs has been examined by several authors (Lander and Botstein 1989;
van Ooijen 1992; Carbonell et al. 1993; Darvasi et al. 1993), who concluded that with a
reasonable density of markers (one every 20 cM), 250 F2 individuals are sufficient to detect
a QTL whose segregation accounts for at least 5% of the F2 variation. How does this compare
with the required sample size for a t test? Because markers spaced at 20 cM intervals imply
that a marker is within 10 cM from the QTL, using the result for r2 = 0.05 from Example
18.15 gives the required sample size for a t test as 206/(1− 2 · 0.1)2 = 263. Hence, the above
t test guidelines are also reasonable for ML interval mapping. More power calculations for
QTL mapping are presented in Appendix 6.

Power under Selective Genotyping

The idea behind selective genotyping is that, historically, scoring (phenotyping) characters
was much less expensive than scoring markers. Under selective genotyping, each choosen
individual is genotyped directly, rather than genotyping the bulk mixture of all selected
individuals (this latter approach is bulk segregant analysis, discussed in Chapter 17). Hence,
if n individuals are scored and genotyped in a normal design, there may be merit in scoring
a larger number of individuals nz > n for the trait value, and then choosing a subset ng ≤ n
of these for genotyping. Typically, the uppermost and lowermost fractions (p) of scored
individuals are genotyped, giving ng = 2p nz ≤ n. Darvasi and Soller (1992) noted that
there is typically more linkage information in the tails, rather than the middle, of the trait
distribution, so that observations from the tails have more of an impact that observations
near the center (Figure 18.7). In particular, they show that selective genotyping by scoring
nz individuals and genotyping ng = 2 p nz gives the same power as an analysis genotyping
all n individuals, when

nz =
n

2p + 2 z(1−p) ϕ(z(1−p))
(18.42)

Here, ϕ(z(1−p)) is the unit normal density function evaluated at z(1−p), where Pr(U >
z(1−p)) = p with U ∼ N(0, 1). Figure 18.7 plots the ratio nz/n as a function of p. For example,
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Figure 18.7 Under selective genotyping, nz individuals are scored for the trait value, with
the uppermost and lowermost fraction p of these being genotyped, giving ng = 2 p nz . Here
we plot, as a function of p, the number of individuals scored for the trait (nz) that yields the
same power as scoring and genotyping all individuals in a population of size n.

selective genotyping using the uppermost and lowermost 10% (p = 0.1) of the population
requires that nz = 1.54 n individuals be phenotyped but only ng = 2 · 0.1 · nz = 0.3 n
be genotyped. Because a decrease in p reduces the number of individuals that must be
genotyped but increases the number that must be scored for the trait, the optimal p value
depends on the relative costs of phenotyping and genotyping each individual (Darvasi and
Soller 1992). One of the ironies of the genomics revolution that phenotypes are now often
much more expensive to score than genotypes. In theory, one could think about selective
phenotyping, genotyping a sample of individuals, and then phenotyping those with more
extreme values (by some genotype criteria). In essence, this is what genomic selection
(Chapter 31) does.

This raises an extremely important issue that is often neglected in mapping studies.
There are a variety of metrics (quality control, QC, approaches) that allow one to judge the
quality of marker genotypes long past when the experiment was performed (Chapter 20).
Conversely, they are generally no robust QC metrics for phenotypes. Once the trait data has
been collected, there is often no way to examine its quality years later. Outliers, which are
very informative if true, might well be measurement or recording errors. Poor trait data
have the effect of reducing power. One real-world example is lumping different diseases as
the same, confounding linkage information (Chapter 20). There is currently a major push,
especially in plant breeding and some model systems (such as yeast and mice), to automate
high-throughput phenotyping, using robotic systems to measure a number of traits with
high accuracy and repeatability (Solberg et al. 2006; Liti et al. 2009, Dhondy et al. 2013;
Araus and Cairns 2014; Ohya et al. 2015; Shi 2016; Bazakos et al. 2017). It is reflection of
the power of modern genomics that phenotyping (phenomics) (Houle et al. 2010) is now
the bottleneck in many mapping experiments, and that high-quality phenotypes (or lack
thereof) can make, or break, a very expensive mapping experiment.

The Beavis Effect: Overestimation of Effects Declared to be Significant

The contributions of detected (i.e., those declared to be significant) QTLs can be substantially
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Figure 18.8 The connection between bias and power. Both panels represent the distribution
of realizations of a test statistic for a marker effect, with µ the true value. The consequence of
choosing only significant results is left-truncation of this distribution (Chapter 2). In the top
panel, the power is very high, as most of the mass of the distribution (i.e., realizations of tests
for a marker effect) is to the right of the significance threshold (dotted line). The resulting
mean of this left-truncated distribution, µ∗, is close to the true value, and there is little bias. In
the bottom panel, the power is low, as most of the distribution is to the left of the threshold,
and hence most tests are not declared significant. The resulting mean of the left-truncated
distribution (the tiny fraction of realizations declared significant) is substantially greater than
the true value, resulting in significant bias. It is immediately apparent that the bias increases
as power (area to the right of the threshold) decreases.

(often very substantially) overestimated (Lande and Thompson 1990; Beavis 1994; Utz and
Melchinger 1994; Melchinger et al. 1998; Göring et al. 2001; Xu 2003). In QTL mapping, this
upward bias in estimated effect size is called the Beavis effect, based on an important set
of simulations by Beavis (1994) that will be discussed shortly (Figures 18.9 and 18.10). This
phenomena is typically called the winner’s curse in the GWAS literature (e.g., Zöllner and
Pritchard 2007).

While the Beavis effect may at first seem a bit perplexing, it is simply a consequence of
sampling from a truncated distribution (Göring et al. 2001; Xu 2003). As illustrated in Figure
18.8, there is a distribution associated with the realized value of a marker effect, with the
true mean effect size, µ, influenced by sampling in any particular experiment. If that realized
value exceeds some threshold, it is declared to be significant. The power of the test is the
area of the distribution to the right of the significance threshold (Figure A5.1). Under a high
power setting (top panel of Figure 18.8), most of the realizations are declared to be significant
(most of the probability of the sampling distribution is to the right of the threshold). Given
that we condition on an effect being significant, the mean value of a significant result is the
mean, µ∗, of the left-truncated distribution. In the high power setting, this is very close
to µ. Conversely, in a lower power setting (bottom panel), only a small fraction of the
realizations exceed the threshold (are declared to be significant), so that the mean of the
truncated distribution is much greater than the true value, µ∗ À µ. Further note that this
bias is expected to increase as power decreases (the significance threshold moves further
to the right). Xu (2003) formalized this relationship between bias (µ∗ − µ) and the power
(1− β) of a test (β being the probability of a Type II error, a false negative) by using results
for the mean of a truncated normal distribution (Equation 2.14), which yields

µ∗ − µ = σ ·
(

ϕ(x[β])
1− β

)
(18.43)
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Figure 18.9 Relationship between the probability (power) of detecting a QTL and the amount
by which the estimated effect of a detected QTL overestimates it actual value. (Based on results
from a simulation study of Beavis 1994.)
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Figure 18.10 Distribution of the estimated effects of detected QTLs. Here 40 QTLs, each
accounting for 1.6% of the variance, were assumed. Using 100 F2 individuals, only 4% of such
loci were detected. The average estimated fraction of total variation fraction accounted for
by each detected QTLs was 16.3%, with the distribution of estimates skewed towards larger
values. (From Beavis 1994.)

Here σ is the sampling variance for the test, ϕ(z) is the value of a unit normal U at value z
(Equation 2.11), and x[p] satisfies Pr(U ≤ x[p]) = p. The weight on σ has values of 0.80, 1.27,
1.75, 2.07, and 2.67 when the power is 50%, 25%, 10%, 5%, and 1%, respectively. While this
might appear to be a small effect, note that σ can often beÀ µ, especially when the latter
is small. As an aside, the factor multiplying σ is just the selection intensity associated with
saving the upper β of a population (WL Chapter 14).

This inverse relationship between bias and power was seen in a classic set of simula-
tions by Beavis (1994), shown in Figures 18.9 and 18.10. For example, a QTL accounting for
0.75% of the total F2 variation had only a 3% chance of being detected with 100 F2 progeny
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with markers spaced at 20 cM. However, for cases in which such a QTL is detected, the av-
erage estimated total variance it accounts for is 15.8% (a 19-fold overestimate of the correct
value), highly suggestive of a major gene. With 1,000 F2 progeny, the probability of detect-
ing such a increases to 25%, and each detected QTL on average accounts for approximately
1.5% of the total variance (only a twofold overestimate), and a more correct interpretation
of the true genetic architecture. Further, these are the average values for the estimates. As
shown in Figure 18.10, the distribution of observed effects is skewed, with a few loci having
large estimated effects, and the rest small to modest effects. Such an observed distribution
of effects, commonplace in QTL mapping studies, have usually been taken as being repre-
sentative of the true distribution of effects. The simulation studies by Beavis showed that
they can be spuriously generated by a set of loci with equal effects.

It is important to stress that the Beavis effect can be much more than a statistical
bookkeeping error. In the extreme, it can result in a QTL experiment giving a very misleading
picture of the genetic architecture. Consider the case where all of the QTL effects are small,
so that a designs has low power (1 − β ' 0). If the number n of QTLs is large, it is likely
that at least a few will be detected, n(1 − β) ≥ 1). Such a scenario, wherein we detect a
small number of QTLs that appear to account for a significant fraction of the total character
variation, can lead to the false conclusion that character variation is largely determined by
a few QTLs of major effect (Beavis 1994; Utz and Melchinger 1994). As both Figure 18.8
and Equation 18.43 show, when the power is very small, the bias among significant effects
is very large.

Finally, a variety of approaches have been proposed to adjust for Beavis effects. The
most straightforward (subsampling, e.g., Example 21.1) is to partition the original sample
into detection and estimation subsamples. This is not an efficient use of an often limited
sample size. One clever approach to accomplish this partition while still preserving power
is based on a modification of bootstrap resampling (Sun and Bull 2005; Sun et al. 2011; Wu
et al. 2005, 2006; Poirier et al. 2013; Huang et. al 2018). Recall that a bootstrap sample of size
n is generated by drawing (with replacement) n individuals from the original sample. Some
individuals will be sampled more than once, while others will not appear in that particular
sample. The out-of-sample (or bootstrap resampling bias reduction, BR-squared) method
uses the bootstrap sample for detection and the set of individuals not drawn (for a given
sample) for estimation. This is a nonparametric approach, while number of authors have
suggested parametic methods build around truncated distributions (Figure 18.8), such as
truncated normals (Xu 2003; Palmer and Pe’er 2017; Panigraphi et al 2021), t random vari-
ables (Xiao and Boehnke 2011), or noncentral chi-squares (Xie et al. 2021).

Sample Size for a Desired Level of Mapping Resolution

Finally, there is a major difference between detection of a marker linked to one (or more)
QTLs (the above issues of power), and the precision of the QTL location, i.e., the width of the
confidence interval (CI) for its position. Darvasi et al. (1993) defined the resolving power of
a design as the expected width of 95% CI for QTL position assuming a fully saturated map.
The resolving power also places a lower limit on the effective marker density, as markers
closer than the resolving power limit provide no additional information.

Darvasi and Soller (1997) performed extensive computer simulations with a known
QTL whose position was estimated using ML mapping under either a BC or F2 design.
They assumed a QTL with effects of−a : d : a, where the variance about each genotype, σ2

e ,
was set to one. Hence, the genetic variance σ2

Q contributed by this QTL is (a + d)2/4 under
the BC design and (2a2 +d2)/4 under the F2 design, with the fraction r2 of the trait variance
accounted for by that QTL being

r2 =
σ2

Q

σ2
Q + σ2

e

=
σ2

Q

σ2
Q + 1

(18.44a)

Their simulations suggested a rather general approximation for the resolving power limit
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(in cM) of

CI =
3000

m n δ2
=

530
n r2

(18.44b)

Here the allelic substitution effect δ = a + d (BC design) and a (F2, assuming d = 0), n
is the sample size, and m is the number of informative meioses (those involving double
heterozygous parents; Chapter 19), which is 1 for the BC design (one F1 crossed to a homozy-
gous P) and 2 for the F2 design (two F1s crossed). While the results of Darvasi and Soller
are empirical observations extracted from simulations, Visscher and Goddard (2004) were
able to derived them analytically, finding that using values of 3073 and 499, respectively,
in Equation 18.44b are slightly more accurate. They also presented a general expression for
other designs based on the noncentrality parameter (Equation A5.14a) of the test statistic.

Example 18.18. Consider a QTL that accounts for 10 percent of the trait variance in the F2,
where 300 progeny are scored. What is the expected width of the 95% CI for its position?
Applying Equation 18.44b with the Visscher-Goddard correction,

CI ' 499
300 · 0.10

= 16.6

Hence, even for a major QTL (accounting for 10% of all variation) has a confidence interval
length of roughly 17 cM (17 megabases assuming 1 Mb per cM). What sample size is required
for a 95% CI of width 1 cM (∼ 1 Mb)? Rearranging Equation 18.44b yields

n ' 499
CI · r2

=
499

1 · 0.1
= 4990

Conversely, 300 F2 progeny is a very high-power design for detecting a QTL accounting for
r2 = 0.1. Applying Equation 18.38 shows that a sample of around 100 has 90% power to
detect such a QTL using a test with α = 0.05. Hence, if the goal of the QTL experiment is
mapping to a reasonably small interval, the typical QTL sample size is far too small. For QTLs
accounting for 5% and 2.5%, the expected CIs are, 33.3 and 66.5 cM, respectively, while the
corresponding sample size required for a 1 cM interval become 9980 and 19,960.

The Otto-Jones Estimator for the Number of QTLs

As was the case when estimating the number of factors in a line-cross analysis (the Castle-
Wright estimator; Chapter 11), a QTL experiment underestimates the actual number of
underlying loci generating a between-line divergence. Two factors cause this bias. The first
is power, in that sample sizes are usually not sufficiently large to detect QTLs of small effect.
In theory, this issue can be addressed by increasing the sample size or by using RILs and
sufficient replication. Typically the number of detected QTL increases with the number of
progeny in a cross (e.g., Schön et al. 2004; and examples below).

The second factor is the size of an average linkage block in the cross progeny. As was
the case for a traditional line-cross experiment, large fractions of any parental chromosome
remain intact in most of their progeny due to insufficient recombination. Hence, a single
QTL is often a linkage block containing multiple causative loci. Upon attempts to fine-map
this QTL it fractionates, turning into a series of smaller QTLs. This is a common observation
(reviewed by Flint and Mackay 2009; Mackay et al. 2009).

Otto and Jones (2000) attempted use the detected number (nd) and the average effect
size (a) of a detected QTL to obtain an estimate of the actual number of QTLs. Their estimate
uses some feature of the Castle-Wright estimator, and makes two key assumptions. First,
it assumes no antagonistic alleles, so that a high line has all + alleles relative to a low line.
Second, it assumes that the QTL effects (a) are drawn from a specified distribution. The
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logic for their estimator follows along similar lines to our above analysis of the Beavis effect.
Assuming an exponential distribution for a, one can take the estimated average value (a)
above the detection threshold (γ) and use these values to estimate the probability remaining
to the left of the threshold. There is a conservable body of theory on the distribution of effect
sizes fixed by selection during an adaptive walk (WL Chapter 27), which suggests than an
exponential distribution of such effects is not unreasonable assumption. As with the Castle-
Wright estimator, Otto and Jones start with the observed difference (∆) in trait mean between
the crossed lines. For an exponential distribution of effects they obtain the estimator

n̂OJ =
∆

a− γ
(18.45a)

The threshold value γ is a bit more delicate. It is certainly less than amin, the smallest effect
size for the nd detected QTLs. Otto and Jones suggest the approximate estimate

γ̂ ' aminnd − a

nd − 1
(18.45b)

provided that a is > 25% larger than amin and that nd > 3. Using simulations, they found
that Equation 18.45b performed well under these conditions. Finally, they estimated the
average effect of an undetected QTL as

E[aud] = a

(
1− ζ

1− exp[−ζ/(1− ζ)]

)
, with ζ =

γ

a
(18.45c)

Simulations suggested that Equation 18.45a is somewhat robust to the presence of
antagonistic alleles, provided that their fraction is modest (less than 15%). A deeper concern
would seem to be the Beavis effect, but Otto and Jones note that such effects would inflate
both the estimates of a and γ, while it is the difference between these that is used in their
estimator. Simulations suggest that unless the number of detected QTLs is small, this is not
an unreasonable assumption. Confidence intervals, as well as an extension assuming the
more general gamma distribution for effect sizes (of which the exponential is a special case;
Appendix 7) are developed in Otto and Jones.

Finally, one of the more interesting findings of Otto and Jones was that when the
detection threshold is small (γ ≤ 0.1 · ∆), then as the true number of QTLs increases, the
number of detected QTLs also initially increases, but this relationship is not monotonic.
Rather, the expected number of detected QTLs eventually reaches some maximum, and
then declines afterwards as the number of true QTLs increases.

ADVANCED DESIGNS

Biparental and Multiparental Mapping Populations

We have already introduced the use of a collection (or panel) of RILs and DH lines for
QTL mapping. One of their advantages is that the line genotypic value for any trait can be
measured with arbitrary precision through sufficient replication (Appendix 9). The issue
of the optimal number of individuals to score within a line was examined by Belknap
(1998) and Crusio (2004). Challenging characters, such as life span, which can have huge
variation when based on single individual measurements, become well behaved when one
considers the average value of a given line (e.g., Nuzhdin et al. 1997; Mackay et al. 2005).
Similarly, replicated performance of a RIL or DHL over defined environments allows for
very accurate estimates of QTL x environment interactions (e.g., Leips and Mackay 2000;
Chapter 27). Further, a set of RILs has increased mapping accuracy relative to an F2 panel
due to the additional rounds of recombination during their formation (note that this is not
true for most sets of DHLs). From Equation 18.5b, a panel of n RILs formed by selfing has
roughly the same mapping resolution as a set of 2n F2s, while RILs formed by brother-sister
mating are equivalent of roughly 4n F2s.
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Figure 18.11 An eight-parent (A through H) cross leading to a set of multiparent advanced
generation intercross (MAGIC) lines. Following generation 3 (the final wide-population cross),
a series of brother-sister crosses are made within sublines until a collection of fully inbred lines
are produced. Note the extra rounds for recombination relative to a standard biparental cross.
Although there are any number of variations of this basic crossing scheme (such as additional
rounds of recombination), the resulting lines are still called MAGICs.

A related strategy can be used in yeast, where meiosis generates haploid lines that can
be asexually propagated, each instantly forming a clonal lineage (Nogami et al. 2007; Liti
and Louis 2012; Cubilloe et al. 2013). One can also cross RILs, resulting in panels of recom-
binant inbred intercross (RIX) lines (Threadgill et al. 2002; Zou et al. 2005). In plants, an
RIX panel is called an immortalized F2 (IMF2) (Hua et al. 2002). Futher, one can use an ad-
vanced generation AIL as the starting population for RILs, resulting in recombinant inbred
advanced intercross lines (RIAILs), with the notation (Valdar et al. 2006) of RIAIL10 im-
plying RILs starting from an F10 AIL base population. RIAILs experience two stages of map
expansion, one from the AIL, and the second from the RIL formation. To a good approxima-
tion, RIL formation via selfing adds roughly two additional generations of recombination,
while brother-sister RILs adds around four. Hence, the final recombination value c̃ for a
RIAIL is given by Equation 18.4, using t + 2 and t + 4, for selfed and brother-sister RILs.
See Winkler et al. (2003) and Teuscher et al. (2005) for a more exact treatment.

Finally, an important mapping resource for examining wild germplasm in an elite
germplasm background are advanced backcross lines (Tanksley and Nelson 1996). While
wild cultivars (such as landraces or even wild species) almost certainty contain a rich pool of
exploitable genetic diversity, they also underperform current elite cultivars. The advanced
backcross design of Tanksley and Nelson uses as the mapping panel a series of inbred lines
(either RILs or DHs) constructed from the second or third backcross generation of a donor
wild cultivar repeatedly backcrossed to a common parent elite line. For example, (wild x
elite) progeny are crossed to elite (BC1), BC1 progeny are backcrossed to elite (BC2), and
BC2 progeny are again backcrossed to elite (BC3). The expected fraction of wild alleles in
these progeny are, respectively, 1/4, 1/8, and 1/16. Hence, the resulting lines (AB-RILs or
AB-DHs, depending on whether RILs or DHs were used to extract inbred lines) contain
small segments of wild material in an otherwise largely elite background. One of the first
successful examples of QTL mapping using such panels is the work of Yun et al. (2006)
for mapping fungal disease resistance traits in barley. Wang and Chee (2010) reviewed
additional of applications of this approach in tomatoes, rice, barley, wheat, maize, and
cotton.
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Table 18.3 Relative strengths and weaknesses of biparental (e.g., F2s, RILs, etc.), multiparental (e.g.,
MAGIC, NAM) and GWAS mapping approaches. (After Pascual et al. 2015.)

Biparental Multiparental GWAS

Pop. developmental time Intermedate Long Short
Mapping precision

Common alleles + ++ +++
Rare alleles ++ ++ +

Total Recombination events + ++ +++
Sample size + ++ +++
Detection effect size Large Modest Small
Population structure No No Yes
Strength Rare alleles Multiple alleles High precision
Libation Poor precision Large effort High LD Pops

The advantage of any inbred line panel is that, once genotyped, any trait can be QTL
mapped by simply measuring it across the lines and using the existing marker information.
At this stage, QTL mapping is solely an issue of accurate phenotyping. Thus, while such
panels are expensive and time consuming to produce, once generated they become an
important community resource. The major limitation of most panels is that they are usually
generated from a biparent (two-parent) cross, and thus have limited genetic diversity.
Further, such panels are often produced with a specific trait in mind, influencing the set
of parents crossed during line formation (e.g., crossing lines with extreme values of a focal
trait). While other traits can be analyzed using the resulting panel, phenotypic diversity
may be limited. As a result of these diversity limitations, a number of communities have
made the expenditure (often as collaborative projects) to develop multiple-parent crosses,
with the resulting progeny forming a multiparental population (MPP). A panel of RILs
extracted from an MPP show greater diversity, both genetically and phenotypically, than a
standard biparental panel. MPP panels are occasionally referred to as second generation
mapping resources (Rakshit et al. 2012), and there are two different strategies for creating
such panels: MAGIC and NAM lines.

As noted by Pascual et al. (2015), these various mapping strategies—biparental (BP;
i.e., classical crosses) and multiparental (MP) linkage mapping, and association mapping
(GWAS; Chapter 20)—can be regarded as complementary approaches. Table 18.3 summa-
rizes key strengths and weaknesses of these different approaches. Linkage mapping has
limited resolution due to a modest number of recombinations within the sample (with MP
greater than BP) and generally much smaller samples than GWAS (again, with MP po-
tentially having larger sample sizes than BP), and hence requiring larger effect sizes for
detection. Casual allele diversity is lowest in BP and highest in GWAS. Conversely, GWAS
(population-sample) approaches have lower power for rare-allele detection. When such
alleles are fortunately included under an BP or MP design, their frequency is either 1/2
(BP) or (1/k) for MP designs, resulting in larger power. By sampling multiple families, MP
designs have a larger chance (than BP) of capturing rare alleles.

MAGIC Lines

Multiparent advanced generation intercross (MAGIC) lines (Mackay and Powell 2006;
Cavanagh et al. 2008; Cockram and Mackay 2018)—also called recombinant inbred het-
erogeneous stocks, RIHS (Valdar et al. 2003, 2006)—typically result from four- or eight-
way crosses (Figure 18.11). In addition to greater diversity by using multiple founders, the
additional rounds of recombination during parental crossing further expands the genetic
map relative to a biparental population. Hence, one can think of these as multiple parent
AILs, from which RILs are extracted. A few examples of this approach include the mouse
Collaborative Cross (Threadgill et al. 2002; Churchill et al 2004; Aylor et al. 2011; Thread-
gill and Churchill 2012) involving eight diverse parental lines; the Drosophila Synthetic
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Figure 18.12 The maize NAM lines. Here 25 diverse donor parents were crossed to a common
parental line (B73), resulting in 25 F1 populations. For each cross, single seed descent (SSD)
was used to form 200 RILs. The entire collection of 5000 lines forms the maize NAM panel.
See Example 18.19 for more details. (From Yu et al. 2008.)

Population Resource (DSPR), a panel of over 1600 RILs formed from 16 diverse parents
(King et al. 2012); the Arabidopsis MAGIC lines of Kover et al. (2009) of around 530 RILs
from 19 founding parents; the Arabidopsis multiparent RIL population (AMPRIL), a
set of over 500 RILs from four founder parents (Huang et al. 2011); a set of 1091 RILs
with 8 founding parents in Winter-sown Wheat (Mackay et al. 2014), and a panel of
haploid lines from a four-parent cross in yeast (Cubillos et al. 2013). Numerous other
examples are given in Scott et al. (2020). One indication of the power of the MAGIC
design is the result of Valder et al. (2006). They noted that 1000 MAGIC lines (starting the
8 founders) are sufficient to map a QTL accounting for 5% of the phenotypic variance to
a region slightly less than one cM, a nearly ten-fold reduction relative to an F2 mapping
population (Example 18.18).

The construction of MAGIC lines involves three phases (Valdar et al. 2006), resulting
in a large number of variations from the basic crossing structure shown in Figure 18.11.

1. Mixing. The first step is the choice of parental lines (by some criteria) followed by
a subsequent crossing pattern to generate a synthetic base population. The crossing
used is often called a funnel, distilling the variation from a number of input lines
down into a final synthetic product. In addition to the crossing scheme shown in Fig-
ure 18.11, other schemes, such as a diallel (Chapter 25), namely all pairwise crosses are
made and then subsequently intercrossed, have been used (e.g., the AMPRIL lines of
Huang et al. 2011). Typically, the crossing pattern during the mixing phase is such that
the all parental genomes are roughly equally represented in the synthetic base popula-
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tion. However, if differential contributions are desirable, this can be accomplished by
modifying the number of times a parent is crossed in this initial phase. Recombination
during the mixing phase results in map expansion relative to a biparental cross. Huang
et al. (2015) and Scott et al. (2020) discuss founder selection in more detail.

2. Maintenance. Once a synthetic base populations has been constructed, one has
the option of randomly mating this population for several generations to further ex-
pand the genetic map. Simulation studies by Yamamoto et al. (2014) found little addi-
tional gain by using less than two cycles of random mating following the formation
of the base population, but using more than six generations significantly improved
power under most settings. While random mating should not substantially alter the
frequencies of genomic contribution from the founding parents, natural selection can
(i.e., selection against deleterious genotypes formed during the mixing phase).

3. Inbreeding. Once a sufficient amount of mixing and subsequent recombination
has occurred, then either selfing or recurrent brother-sister mating is used to create the
panel of RILs. Note that one could also use doubled haploids constructed from the final
stage of the maintenance phase. Selection can be extremely important here, as lines are
often lost during inbreeding, especially in species that are largely outbred in nature
(Chapter 12). For example, 95% of all attempted RILs in the mouse Collaborative Cross
became extinct during inbreeding (Shorter et al. 2017), and only 22% of F2 plants in the
maize NAM panel (Example 18.19) successfully produced lines that survived through
five generations of selfing (McMullen et al. 2009).

While QTL detection and mapping in MAGIC lines follows the same basic logic as
interval mapping, one complication is that there are more than two potential genotypes at
a given site in a RIL. In particular, if k (typically 4 or 8) inbred lines are crossed to make
a MAGIC line, then up to k distinct homozygotes can occur in any locus. At the core of
most methods is some marker-based assignment of a given region in a MAGIC line to a
founder line. Such assignments are typically probabilistic, e.g., for the marker haploid in a
given region there is (say) a 57% chance that it came from parent 1, 20% from parent 2, etc.
Following these assignments, then (as above) one uses regression or ANOVA of line value
on the identity of the founder segment (e.g., Xu 1996; Mott et al. 2000; Valdar et al 2006;
Verbyla et al. 2014; Wei and Xu 2016). See Huang et al. (2015) and Scott et al. (2020) for a
more general review of such methods. Permutation testing and model selection issues are
examined by Peirce et al. (2008) and Valdar et al. (2009). General reviews of MAGIC lines are
given by Rakshit et al. (2012), Gatti et al. (2014); Huang et al. (2015), and Scott et al. (2020).
Additional, and more technical, discussions are offered by Broman (2005; 2012a, 2012b).

NAM Lines

A second strategy for constructing an advanced mapping panel is a more structured ap-
proach, wherein a series of inbred donor founder parents (lines) are all crossed to a single
common founder parent, resulting in a panel of nested association mapping (NAM) lines
(Figure 18.12). This is loosely analogous to an NC II design wherein full sibs are nested
within half sibs (Chapters 23 and 25). A NAM panel consists of series of RILs from each
cross (the full sib analog), with a common parent over all of the crosses (the half sib analog).
Originally developed in maize (Yu et al. 2008; McMullen et al. 2009; Giraud et al. 2014) and
barley (Maurer et al. 2015), a number of crop species now have NAM panels (Gage et al.
2020; Gireesch et al. 2021). Design issues such as optimal family structure, replication, and
crossing schemes have been examined by Yu et al. (2008), Stich (2009), Stich et al. (2010),
and Liu et al. (2013).

As stressed by Yu et al. (2008), the power of the NAM design arises because it exploits
two time scales for recombination. Within any given cross, we are using standard QTL linkage
mapping on the associated collection of RILs, and hence relatively crude resolution due
to just a few generations of recombination. As a result, the genome of any RIL from that
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cross is a mosaic of chromosomal segments from the donor and common parent. However,
associations between very tightly linked markers within a shared segment across donors
reflect the impact of recombination over a much deeper time scale. Any such signal is due
to population level LD among the donors, which is expected to persist only between markers
that are sufficiently close that any LD between then has yet to fully decay. We examine how
this signal can be exploited by association mapping in Chapter 20. The second powerful
feature of NAMs is that any given QTL allele might be rare (i.e., confined to a single donor
line). As such, there is not much of a signal over the donor lines. Conversely there is a
very strong signal within the collection of RILs from its cross to the common parent, as
its frequency is expected to be 50 percent. The NAM approach represents an attempt to
maximize the advantages of linkage and LD mapping while minimizing their limitations.
Yu et al. (2008) proposed using a simple regression analysis on marker allele copy number,
with a cross-specific mean, for QTL detection, while Buckler et al. (2009) and Li et al. (2011)
proposed an extension of CIM to the NAM design.

As with MAGIC populations, there are variations on this basic crossing structure, albeit
still within the framework of a single common parent and a diverse collection of donor par-
ents. The notation of RIL-NAMs and DH-NAMs is occasionally used (e.g., Li et al. 2016) to
denote that the final lines were constructed from RILs (typically, using single seed descent
in selfers, where a single seed from each plant is used to form the next selfed generation) or
from DHs. Recall that RILs typically have effectively two rounds of recombination relative
to DH lines, creating a tradeoff between a slightly more expanded map (RILs) versus po-
tentially much faster (but often more laborious) formation of the final inbred lines (DHs).
There are also modifications of NAMs using the advanced backcross approach mentioned
above. Here instead of RILs being formed using the F1s in a series of diverse lines crossed
to a common parent, they are constructed using a series of BC2 or BC3 backcrosses to this
common (elite) parent, yielding advanced backcross NAMs, AB-NAM (backcross NAMs,
BC-NAM is also used). For example, in Figure 18.12, instead of the 25 starting crosses for
RIL formation being F1s, they would be (say) BC2s to the common parent. As example of
this approach is Nice et al. (2016), where 25 wild barley accessions were twice backcrossed
to an elite parent (Rasmusson) before RIL formation proceeds.

Example 18.19. As shown in Figure 18.12, the maize NAM panel consists of 25 very diverse
lines crossed to a single parent, B73 (Yu et al. 2008; McMullen et al. 2009). The common parent
was chosen based on is widespread use, public physical map, and its available genome se-
quence. The donor lines consisted on nine temperate lines, more than half tropical lines, two
sweet corns, and one popcorn line, capturing a good sample of global maize diversity. While
the goal was for 5000 RILs, the eventual number was 4700, due (in part) to only modest success
in using SSD to create inbred lines (a roughly 80% failure rate). A total of almost 140,000 recom-
bination events occurred over the entire collection, corresponding to around three crossovers
per gene (McMullen et al. 2009). Within each nested set of RILs, common-parent-specific (CPS)
markers (alleles fixed in B73 that were otherwise rare in the donor parents) could quickly assign
regions into having a B73 or a donor parent origin.

Other Multiple-cross Designs

As highlighted with both MAGIC and NAM lines, one can take any standard line-cross
design (Chapters 11 and 25) and augment it with markers for QTL mapping. Various line-
cross designs are usually employed for more than simply a matter of convenience, such as
obtaining sufficient variation (e.g., dallelic crosses; Chapter 25), obtaining sufficient control
over particular factors (such as maternal effects, e.g., reciprocal diallels; Chapter 25), and
(most importantly), to generate desired informative contrasts, such as direct estimates of
dominance or epistatic variances (e.g., NC III, triple test cross; Chapters 13 and 25). Many
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of these same concerns arise in QTL mapping (e.g., Cockerham and Zeng 1996; Verhoeven
et al. 2006). For example, some MAGIC lines are constructed using diallels to generate
maximal diversity in the base population. Similarly, test cross designs are often used when
heterotic groups are present (Chapter 13), wherein a mapping population (such as a set of
F2, RILs, etc.) are crossed to a common parent from a different heterotic group (e.g., Schön
et al. 2004).

Methods for combinings QTL mapping information across multiple crosses have been
developed by Rebai and Goffinet (1993; 2000), Xu (1998c), Liu and Zeng (2000), Zou et al.
(2001), Yi and Xu (2001, 2002b), Li et al. (2005), and Xiao et al. (2016). These build on the
fundamental idea of this chapter, conditional QTL probabilities given marker information
(Equation 18.1), but involve more than a fair bit of bookkeeping and then more subtle
questions such as whether to use a fixed or random analysis, and the appropriate framework
(regression, likelihood, or Bayesian). See the aforementioned references for more details.

Segregation Distortion

Finally, many parental populations are chosen because of their wide difference in traits
of interest, and marker loci in these inbred-line crosses often show strong depatures from
Mendelian segregation, segregation distortion (e.g., Vallejos and Tanksley 1983; Edwards
et al. 1987; Paterson et al. 1988; Bonierbale et al. 1988; Doebley and Stec 1991; Schön et al.
1993). As discussed in Chapter 17, this is a common feature when there is significant genetic
divergence between parental lines. The impact of such distortion on QTL mapping, and
designs to exploit some of its features, have been examined by Xu (2008), Xu and Hu (2009),
Zhang et al. (2010b), and Cui et al. (2015).

SELECTED APPLICATIONS

The Nature of Transgressive Segregation

QTL mapping experiments provide insight into the nature of transgressive segregation
(or transgression), wherein some F2 individuals show more extreme trait values than are
seen in either parental line. Note that this phenomena is distinct from heterosis (Chapter
13)—the overperformance of the mean in the F1 (which typically declines in the F2)—rather,
it refers to the presence of outlier individuals in the F2. One explanation for such outliers is
nonadditive gene action, i.e., epistasis and/or overdominance. Alternatively, transgressive
segregation could be caused by the parental lines being fixed for sets of additive alleles
having opposite effects (antagonistic alleles), e.g., one line is fixed for +− / +−, the other
−+/−+, which would generate more extreme genotypes in the F2 than observed in either
parent (e.g., + + / + + and −− /−−). Such lines are said to contain complementary QTL
alleles. This latter explanation is the one supported by most QTL studies (Rieseberg et al.
1999, 2003).

For example, Li et al. (1995) observed transgressive segregation for heading date in
the cross of Lemont and Teqing strains of rice (Oryza sativa). Using 113 markers (with an
average spacing 19 cM) and 2,418 F4 lines, three regions that together accounted for 77%
of the phenotypic variance in heading date were mapped. While the difference in average
heading date between parental strains was just 6 days, one region from Lemont decreased
heading date by 8 days (relative to its counterpart in Teqing), while another from Teqing
decreased it by 7 days. Hence, these lines were fixed for alternative alleles at major loci,
resulting in effects that largely canceled.

Transgressive segregation was also observed in 8 of 11 traits measured in a large F2

population from a cross of Lycopersicon esculentum (cultivated tomato) and L. pennellii, its
wild Peruvian relative (deVicente and Tanksley 1993). Of the 74 QTLs detected for these 11
traits, 36% showed alleles having effects on the character that were antagonistic to parental-
line differences (alleles reducing a trait being found in parents from the large line, and vice
versa). Pairwise epistasis was ruled out as a major cause for the observed transgressive seg-
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regation, as the number of significant epistatic associations did not exceed that expected by
chance. However, overdominance (or associative overdominance; Chapter 13) contributed
in a few cases, with marker heterozygote means being more extreme than those for marker
homozygotes. Likewise, Weller (1987) and Weller et al. (1988) observed that around 25% of
the significant marker-QTL relationships in their tomato crosses were opposite in sign from
the parental differences. A similar study based on a cross of two phenotypically similar
cultivars of soybeans also noted that transgressive segregation due to complementary QTL
alleles was quite common (Mansur et al. 1993).

Transgressive segregation has also been found when lines resistant for certain insect
pests or plant pathogens have been crossed to sensitive lines. For example, of seven detected
maize QTLs conferring increased resistance to the European corn borer in a resistant ×
sensitive cross, five came from the resistant parent, while two came from the sensitive
parent (Schön et al. 1993). Dirlewanger et al. (1994) similarly found that a sensitive pea line
carried a resistance allele for Ascochyta fungal blight that was not present in a resistant line.

A more general picture of the ubiquity of transgression was offered in two surveys by
Rieseberg and colleagues. Rieseberg et al. (1999) examined 171 studies from a wide range
of plant and animal crosses (both natural and domesticated), finding that 91% (155) of
these had at least one transgressive trait in the study, and that 44% of the 1229 total traits
showed transgression. Hence, transgression is more the rule than the exception. They noted that
transgression tended to be more common in plants than in animals, and was more common
in intraspecific, rather than in interspecific, crosses. They also made a series of predictions
for when transgression is expected. One seems counterintuitive: transgression should be
more common in crosses between phenotypically similar, rather than phenotypically dissimilar, lines
(e.g., Cubillos et al. 2011). The logic is that more similar lines are likely be a mixture of
different plus and minus alleles, while directional selection might drive down the fraction
of antagonistic alleles in more diverged populations. WL Chapter 12 reviewed a number
of QTL-based tests for detecting past selection on a trait that exploit this logic, such as an
excess of plus alleles (Orr 1998). While Rieseberg et al. (1999) largely focused on the behavior
of traits, Rieseberg et al. (2003) examined 3253 QTLs from 749 traits over 96 studies. Almost
two thirds of the traits had at least one antagonistic allele, meaning that the potential for
transgression is rather common, as suggested from the trait-only data. Consistent with the
trait data, they also found that plants had a significantly higher fraction of antagonistic QTLs
than did animals, and that such QTLs were more common in intraspecific, as opposed to
interspecific, crosses.

Beyond obvious ramifications for breeding programs, transgressive segregation also
has important evolutionary implications. Lewontin and Birch (1966) suggested that inter-
species and wide-population hybrids can result in rapid adaptation to new environments
(but also recall outbreeding depression; Chapter 13). If transgressive segregation in popu-
lation crosses is the rule rather than the exception (as seems to be the case), then the (F2)
hybrids from such crosses possess the genetic variability to extend, perhaps considerably,
the phenotypic range of a trait relative to either parental population. The results of Rieseberg
et al. (1999, 2003) suggested mild caution with this idea in that intraspecific crosses inflate
the importance of transgression over what might be expected in interspecific crosses. At a
minimum, it is clear that mean phenotypic differences between lines are often very poor
predictors of the architecture of their underlying genetic differences.

QTLs Involved in Protein Regulation

Any trait that can be quantified (assigned a numerical trait value, even simply as 0 or 1) can
be subjected to a quantitative-genetic (QG) analysis. Historically, the traits considered were
usually morphological or production phenotypes, such as body weight, height, measures
of shapes, or yield. This view then evolved into considerations of aspects of physiology and
behavior. As modern functional genomics blossomed, it was realized that the machinery
of QG applies equally to quantifiable molecular traits, such as levels of mRNA transcripts,
proteins, and metabolites. QTL that control the level of expression of a molecular target
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Figure 18.13 An example of epistasis for QTLs influencing protein volume in maize. Height
indicates the amount of protein volume for each of the genotypes. Here the M1M1M2M2

marker genotype had the greatest effect on protein volume, while M1M1m2m2 had the
smallest. (After Damerval et al. 1994.)

are denoted as eQTLs, for expression QTLs, and are a vibrant field of study (examined
in more detail in Chapter 21). These have also been called mQTLs, for metabolite QTLs,
where referring to control of concentration of metabolites (Breunig et al. 2014).

Here we focus on the seemly modest maize study of Damerval et al. (1994) that started
the hunt for eQTLs. They analyzed the spot volumes of 72 anonymous (i.e., unknown)
proteins (from a specific seed tissue) separated by high-resolution 2-D polyacrylamide gel
electrophoresis. Genes controlling protein volume are, by definition, regulatory genes influ-
encing the amount of that protein. Sixty F2 individuals were scored with 76 RFLP markers,
and both ML-interval mapping and single-marker ANOVA detected a total of 70 QTLs af-
fecting 46 of the 72 proteins. Of these 46 proteins, 25 were influenced by two or more QTLs
(up to a maximum of five). Of the 70 detected QTLs, 33 showed strict additivity, while the
remaining 37 showed at least some dominance. The amount of variation in protein volume
accounted for by a single QTL ranged from 16% (the lower detection limit for this sample
size) to 67%, and the cumulative variation accounted for by all detected QTLs for each
protein ranged from 37% to 90%. Perhaps the most striking observation was the presence of
significant epistasis. Four proteins had QTLs that were only detected through epistasis (their
single-locus effects were not significant). In all, 14% of the 72 proteins showed detectable
epistasis (Figure 18.13).

QTLs Involved in Reproductive Isolation in Mimulus

Bradshaw et al. (1995, 1998) examined the genetic basis of floral differences between sibling
species of monkey flower, Mimulus lewisii and M. cardinalis. Although the ranges of these
species overlap and laboratory F1 hybrids are completely interfertile, hybrid plants are not
found in nature. Presumably, this is due to nonoverlap of pollinators. Mimulus lewisii shows
characters typical of bumblebee pollinatiuon: pink flowers with yellow nectar guides, a
wide corolla, small volume of highly concentrated nectar, and short anthers and stigma.
Mimulus cardinalis, on the other hand, shows a typical suite of hummingbird-pollinated
characters: red petals lacking nectar guides, a narrow tubular corolla, high nectar volumes,
and long anthers and stigma.

Their intial study (denoted as experiment one; Bradshaw et al. 1995) used 93 F2 plants
and 159 markers in a cross between these species, and detected (using ML interval mapping)
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Figure 18.14 Relationship between the effects of detected QTLs for Mimulus pollination traits,
expressed as percent of F2 phenotypic variation (r2), over two crosses with different sample
sizes (Bradshaw et al. 1995, 1998). Experiment one measured 96 F2 plants while experiment
two measured 465. Note that all detected QTLs had larger estimated values in the smaller
experiment, a clear example of the Beavis effect. The two values of zero from experiment two
correspond to the petal anthocyanin QTLs that were not replicated.

Table 18.4 Number of detected QTLs influencing pollination characters involved in reproductive
isolation between Mimulus cardinalis and Mimulus lewisii and their estimated individual effects (mea-
sured by % of variance explained). Due to sampling error, the sum of individual r2 values exceeds
100% in a few cases. (After Bradshaw et al. 1995.)

Number of % Phenotypic Variance
QTLs (r2 × 100)

Pollinator attraction characters
Petal anthocyanins 2 33.5, 21.5
Petal carotenoids 1 88.3
Corolla width 3 68.7, 33.0, 25.7
Petal width 3 42.4, 41.2, 25.2

Pollinator reward
Nectar volume 2 53.1, 48.9
Nectar concentration 2 28.5, 23.9

Pollination efficiency
Stamen length 4 27.7, 27.5, 21.3, 18.7
Pistil length 2 51.9, 43.9

a number of QTLs for these pollination traits. As shown in Table 18.4, four of the characters
appear to each have a QTL accounting for over 50% of the total F2 variance, while all other
characters had a QTL accounting for at least 25% of the total variance. Hence, it appeared
that the bulk of the differences in pollination characters (and hence reproductive isolation)
could be accounted for by one or two loci for each character. However, with these small
sample sizes, some caution is in order, given our previous comments about overestimation
of QTL effects when power is low (Beavis effects).

To address this concern, a follow up study (experiment two; Bradshaw et al. 1998)
increased the sample size five-fold to 465 F2 plants. The two major QTLs for petal antho-
cyanins from experiment one were not reproduced. However, all of the other QTLs were,
albeit (in most cases) with a substantial reduction in the fraction of variation explained (Fig-
ure 18.14). Clearly, the Beavis effect inflated the initial importance of regions in experiment
one due to its small sample size. Ignoring anthocyanin, of the initial major QTLs (r2 ≥ 0.25),
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Table 18.5 Character differences between maize and teosinte (primitive maize race Reventado×Zea
mays parviglumis). Listed are mean character values (Means), the number of detected QTLs (N ), the r2

value for the largest (Max) and smallest (Min) detected QTLs, and the total r2 for a model containing
all detected QTLs. Locations for the QTLs detected in this cross are plotted as the upper bars in Figure
18.15. (After Doebley and Stec 1993.)

Means QTLs

Maize Teos. N Max Min r2

Plant Architectural Characters
Lateral branch internode length (LBIL) 0.7 21.9 5 0.45 0.05 0.63
Number of branches (LIBN) 0.0 5.8 4 0.24 0.04 0.42
% male primary lateral inflorescences (STAM) 0.0 97 5 0.23 0.05 0.52
No. secondary ears/lateral branch (PROL) 1.0 8.4 7 0.25 0.04 0.63

Ear Characters
Cupules along a single rank (CUPR) 37.4 5.3 6 0.25 0.04 0.61
Disarticulation: 1 = none, 10 = full (DISA) 1.0 10.0 6 0.42 0.04 0.60
Glume score: 1 = soft, 10 = hard (GLUM) 1.0 10.0 2 0.41 0.08 0.75
% cupules with only one spikelet (PEDS) 0.0 100 5 0.25 0.08 0.69
Number of rows of cupules (RANK) 5.6 2.0 6 0.36 0.05 0.87

less than half retained an r2 ≥ 0.25 in experiment two. However, most of the original traits
still had large-effect QTLs (r2 ≥ 0.15). As might be expected, the larger sample size of
experiment two detected 16 additional QTLs not seen in the original cross. In experiment
one, the smallest r2 for a detected QTL was 0.187, while it was 0.033 in experiment two.
Further, 7 of the 16 additional QTLs had effects less than the smallest detected value from
experiment one.

Following detection of these QTLs, the authors took F2 hybrids into the field and esti-
mated which traits were most predictive of bee versus hummingbird attraction (Schemske
and Bradshaw 1999; Bradshaw and Schemske 2003). The most predictive traits still had sig-
nificant single QTLs (r2 ≥ 0.15) in the more powerful (and less biased) experiment two. In
an especially informative experiment, Bradshaw and Schemske (2003) introgressed alterna-
tive alleles at the QTL for yellow carotenoid pigment (which had an r2 = 0.83 in experiment
two) into otherwise pure background of the other species. When the yellow allele from M.
lewisii (bee pollinated) was introduced into an otherwise cardinalis background (humming-
bird pollinated), the resulting NIL received a 68-fold increase in bee visits relative to the
wildtype, while a NIL with a cardinalis allele in an otherwise lewisii background showed a
74-fold increase in hummingbirds visits.

QTLs Involved in the Differences Between Maize and Teosinte

Maize and teosinte are dramatically different (see Figure 5.2), to the point that they were
originally placed in separate genera. Hybrids, however, are fully interfertile and maize is
believed to have resulted from domestication of teosinte (Beadle 1980; Doebley 1992, 2004).
In an elegant series of papers, Doebley and colleagues (Doebley et al. 1990, 1994, 1995a,
1995b, 1997; Doebley and Stec 1991, 1993; Dorweiler et al. 1993; Hubbard et al 2002; Wang
et al. 2005b; Studer and Doebley 2011; Whipple et al. 2011; Wills et al. 2013; Wang et al. 2015)
characterized many of the genes involved in these dramatic differences.

Maize and teosinte have major differences in plant architecture (Figure 5.2; Table 18.5).
Teosinte has multiple long lateral branches, topped with male inflorescences (tassels). In
maize, these branches are very short and topped with ears (female inflorescences). These
differences in plant architecture can be quantified by considering four characters: internode
length on lateral branches (small in maize, long in teosinte), the number of branches (none
to few in maize, many in teosinte), percentage of lateral branches topped with tassels as
opposed to ears (mostly tassels in teosinte, ears in maize), and the number of secondary ears



MAPPING QTLS USING INBRED-LINE CROSSES 133

1L

20 30
50
40
30
20
10
0

10
20
30
40

20
10
0

10
20
30

10

0

10

20

30
10

20

10

0

10

20

0

10

30 20

10

0

10

20

30

20
10
0

10
20
30
40

20
10
0

10
20
30

20

10

0

10

20

1S 3L 4S 7 6 9 10 5

1L 5 3L 1S 6 4S 6

1S 5 3L 7 10 9 8 4 6 2S 5 3L 9 7 1S 8 4S 9 10 IL 3S 3L 5 8 6 2

3L 8 9 1L 6 5 1S 3S 3L 1S 1L 10 2 4 2 6 7 5

3L 1L 5 4 2S 6 2 1S 8 4S 3L 2S 1L 5 7 10

CUPR DISA GLUM

LBIL LIBN PEDS

PROL RANK STAM

Figure 18.15 QTLs accounting for differences between maize and teosinte in the nine char-
acters listed in Table 18.5. Each bar represents a detected QTL, with bar height indicating its
r2 value. Acronyms for characters are listed in Table 18.5. Chromosome position (chromo-
some number and short vs. long arm) is indicated under each bar. The upper bars refer to
QTLs detected in a cross between a primitive maize strain and one subspecies of teosinte
(Z. m. parviglumis), while the lower bars are for a cross involving a different primitive maize
strain and another teosinte subspecies (Z. m. mexicana). Aligned bars denote QTLs mapping to
very similar positions in both crosses. White bars indicate QTL effects in the opposite direction
from parental phenotype (antagonistic effects), while the cross-hatched bar indicates apparent
overdominance. (From Doebley and Stec 1993.)

on each lateral branch (few in maize, many in teosinte). Table 18.5 gives the mean values
for these characters in maize and teosinte.

Differences in the structure of the female inflorescence (the ear) are even more dramatic
(Figure 5.2; Table 18.5). The teosinte ear has 5–10 cupulate fruitcases arranged in pairs. Each
of these has a single spikelet that gives rise to a kernel, resulting in 10–20 kernels per teosinte
ear. Each mature fruitcase is covered by a hardened outer glume that seals in the kernel,
making harvesting very difficult. In contrast, the maize ear is composed of 100 or more
cupules (arranged in multiple rows rather than pairs of rows), each cupule containing two
spikelets, leading to two kernels per spikelet. These changes result in the maize ear having
an order of magnitude more kernels than the teosinte ear. The maize outer glume is soft,
so the kernels remain exposed for easy harvesting. Finally, while the teosinte ear easily
disarticulates (shattering to scatter seeds), kernels on the maize ear stay intact, further
facilitating the harvesting of kernels.

In their initial studies, QTLs were mapped in two different crosses, each involving a
different primitive maize race and a different subspecies of teosinte (Doebley et al. 1990;
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Table 18.6 QTLs influencing age-specific weight and age-specific growth rates in mice, measured at
weekly intervals. Early, Middle, and Late correspond to growth from 1 to 3 weeks, growth from 3 to 6
weeks, and growth from 6 to 10 weeks, respectively, while 6-week refers to growth from 1 to 6 weeks.
(After Cheverud et al. 1996.)

Age-specific weight (weeks)

1 2 3 4 5 6 7 8 9 10
No. of QTLs 7 10 16 13 15 15 14 14 16 17

Total r2 0.29 0.30 0.56 0.52 0.59 0.63 0.64 0.56 0.67 0.76

Age-specific growth

Early Middle 6-week Late

No. of QTLs 11 12 14 12

Total r2 0.39 0.51 0.54 0.38

Doebley and Stec 1991, 1993). As shown in Table 18.5, a few QTLs of major effect account for
most of the differences between characters. These QTLs are mostly in very similar positions
in the two crosses (Figure 18.15), with both sets of crosses showing five regions of the maize
genome that account for most of the differences. Such results are consistent with Beadle’s
hypothesis of five major genes accounting for the bulk of the obvious phenotypic differences
between maize and teosinte (Beadle 1939). Beadle arrived at this figure by examining 50,000
F2 maize× teosinte offspring, finding the frequency of all-maize or all-teosinte phenotypes
to be' 1/500. If n genes are involved, the expected F2 frequency of either parental genotype
is (1/4)n + (1/4)n. Setting this equal to 1/500 and solving gives n = 5.

Focusing on the five major regions, marker-selected NILs (Chapter 17) were constructed
to further characterize the QTLs. Doebley’s first target was a QTL on chromosome 4, which
accounted for 50% of the variance in glume score. A small maize segment containing this
region was introgressed into a teosinte background by three generations of backcrossing
and selection for flanking markers (Dorweiler et al. 1993). When NILs with the introgressed
teosinte region were backcrossed to the maize recurrent parent, the resulting F2 progeny
showed two discrete classes for glume score, as would be expected with a single major
gene. The putative gene was named tga1, for teosinte glume architecture 1 (and later shown
to result from a single amino acid substitution; Wang et al 2015). A similar analysis of two
other regions, QTL-3L and QTL-1L, showed strong epistasis for a number of key traits
separating maize and teosinte (Doebley et al. 1995a; see Example 5.1). By using marker-
selected introgressed lines, QTL-1L was shown by complementation tests to be the locus
teosinte branched 1 (tb1). In maize, mutants at this locus result in teosinte-like features for
inflorescence sex (tassels, not ears), and number (many instead of one) and length of lateral
branches (long, not short). Doebley found that the joint effects of tb1 and QTL-3L, by them-
selves, were sufficient to account for essentially all of the differences in plant architecture
between teosinte and maize. Further, these two QTL result in substantial differences in ear
architecture. Hence, there is direct evidence that just a few genes can account for a very
significant amount of the dramatic differences between teosinte and maize.

Subsequent studies on the tb1 locus noted an extended region of reduced variation just
upstream of this gene in maize, but not teosinte. This is the classical hallmark of a selective
sweep (WL Chapter 8), indicating selection on this region in maize. Remarkably, the target
site was not the tb1 coding region, but rather an upstream regulatory region. Using results
from sweep theory (WL Chapters 8 and 9), it was estimated that this allele had around a 5%
advantage during the domestication phase (Wang et al. 1999; Clark et al. 2004, 2006). This
leveraging of QTL information to narrow a search for selection to a small genomic region
is routinely done in the search for domestication genes (WL Chapter 9).
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Figure 18.16 Locations for early, E, and late, L, growth QTLs, and early, (E), and late (L)
weight QTLs on the 19 mouse autosomes. The marker locations are indicated by hatch marks
and QTL confidence intervals by bars (From Vaughn et al. 1999.)

A final interesting study using tb1 addressed the issue of whether this QTL fractionated
upon fine mapping (showing that the initial QTL was, in reality, a group of linked loci).
Through the use of NILs, Studer and Doebley (2011) found that tb1 did not fractionate for
plant architectural traits (the detected QTL appeared to be a single gene for these traits).
However, the effects of tb1 on ear morphology did appear to fractionate, with tb1 still having
an impact, but its isolated effect was diminished relative to its initial value.

QTLs for Age-specific Growth in Mice

Cheverud et al. (1996) and Vaughn et al. (1999) performed two replicated crosses of the SM/J
and LG/J inbred lines (the small and large lines from the Jackson Laboratories). Interval
mapping was used to examine age-specific weight (at ages 1 through 10 weeks) and age-
specific growth rate. Intercross I (Cheverud et al. 1996) consisted of 535 F2 mice scored for
75 microsatellite markers, generating 55 intervals that averaged around 28 cM in length.
Intercross II (Vaughn et al. 1999) consisted of 510 F2 mice scored for 96 markers, resulting in
72 intervals averaging around 23cM (Figure 18.16). As Table 18.6 (Intercross I results) shows,
considerable numbers of QTLs were found for all characters. All detected QTLs had small
effects, with the largest accounting for around 10% of the F2 phenotypic variance, while
the average (detected) effect was around 4% of the F2 variance. Note also from Table 18.6
that as age increases, so does the number of QTLs for weight and the total r2 value of these
detected loci. Early vs. late weight and growth showed different genetic architectures. First,
largely distinct sets of QTLs are involved (Figure 18.16). Second, dominance was found to
be much more important in early weight and growth than in late weight and growth. The
results from Intercross II yielded very similar conclusions, but only 70% of detected QTLs
were seen in both studies. As expected, QTLs with larger LOD values in Intercross I were
more likely to be replicated in Intercross II. This pair of papers highlights a key feature
of many large-sample replicated QTL experiments: coarse characterization of the genetic
architecture typically remains unchanged, but replication of specific QTLs is often modest.
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QTLs in the Illinois Long-term Selection Lines of Maize

In 1896, C. Hopkins initiated a set of maize lines selected for high and low oil and high and
low protein content (Hopkins 1899; Smith 1908). Selection on these lines continues today,
and results from this remarkable study after 76, 90, 100, and 106 generations of selection
were summarized by Dudley (1977), Dudley and Lambert (1992, 2004), Moose et al. (2004),
and Dudley (2007). The smooth and continuous long-term response in these lines suggested
that a large number of genes of relatively small effect underlie the impressive gains that were
observed. Crosses of the divergently selected lines have been used in several QTL mapping
studies, starting with basic F2 analysis (Goldman et al. 1993, 1994; Berke and Rocheford
1995) and eventually using RIAILs for finer mapping (Dudley et al. 2004; Laurie et al. 2004;
Clark et al. 2006; Willmot et al. 2006; Dudley et al. 2007), as well as backcrosses to one of the
founding lines (Wassom et al. 2008a, 2008b).

The first studies were by Goldman et al. (1993, 1994), who crossed the selected (76-
generation) high- and low-protein lines and then examined 100 F3 families (formed by
selfing F2s) using 100 markers spanning the maize genome at an average spacing of about
20 cM. Using single-marker ANOVA, 22 markers on 10 chromosome arms were significantly
associated with protein concentration, 19 markers on nine arms were associated with starch
concentration, 26 on 13 arms with oil concentration, and 18 on 10 arms with kernel weight.
Many of the marker-trait associations extended across clusters of linked markers. In these
cases, single-marker ANOVA cannot distinguish between several linked markers all detect-
ing the same linked QTL or multiple QTL.

A multiple regression involving only six (unlinked) markers accounted for 65% of the
variation in protein concentration, and this increased to 84% when five significant pairwise
epistatic interactions between these markers were incorporated into the regression (using
Equation 18.14d). Seven markers accounted for 66% of the variation in starch, increasing
to 78% when one significant pairwise epistatic interaction was included. Four marker loci
accounted for 43% of the variation in oil concentration, while six markers accounted for 47%
of the variation in kernel weight. It seemed very surprising that so few loci could account
for such a significant fraction of the differences, especially given the long-term continuous
and gradual change in the lines. As we detail shortly, this was almost certainly a Beavis
effect, as more recent, and much higher-powered, studies found a large number of small
effect QTLs. Berke and Rocheford (1995) examined a cross of two other variant lines from
this experiment (High Oil with Low Oil), and found similar results, with six loci accounting
for 58% of the genetic variation in oil concentration and seven markers accounting for 56%
of the variation in starch concentration.

A biased view of the genetic architecture of a trait from a QTL analysis can arise from
two sources: insufficient recombinant (lumping the composite effects of several causal
loci into single factor) and low power (resulting in both an undercounting of the actual
number of QTL and overestimation of the effects of detected QTL). Dudley et al. (2004) and
Willmot et al. (2006) attempted to address linkage concerns by examining the impact of
additional generations of random mating before selfing. Both the first (Generation 70 high x
low protein) and second (Generation 70 high x low oil) study compared the results of inbred
lines formed from F2s with those from (random-mating) F5s. An important limitation is that
these studies were limited to 64 and 125 markers, respectively. Not surprisingly, both studies
detected significantly fewer QTLs using F5-derived inbreds relative to using F2 inbreds. This
is expected from a reduction in power due to the expanded map distance generated by
additional generations of random mating. Recalling that power declines as (1 − 2c̃)2, the
low marker density was simply not sufficient to adequately cover the expanded map.

Much more powerful designs were used by Laurie et al (2004), Clark et al. (2006), and
Dudley et al. (2007). These authors took generation 70 high versus low crosses, followed by
7–10 generations of random mating before 500 lines were generated by selfing. The resulting
lines were then replicated (multiple locations at two years each), and scored for around 500
markers. This improved design attempted to address both the linkage and power limitations
of earlier studies. Laurie et al. and Clark et al. used oil crosses (10 generations), while Dudley
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et al. used protein crosses (7 generations of random mating). Laurie et al. detected around 50
QTL for oil, which accounted for around 50% of the generic variance. Effects were small and
largely additive. Surprisingly, around 20% had antagonistic effects (up alleles in the down
line, and vise versa). Similar results for other traits were seen in the other experiments.

Limitations of Line-cross QTL Mapping

Despite the impressive statistical machinery developed above for linkage-based QTL map-
ping using inbred-line crosses, we close on a slightly somber note. Researchers typically
perform a QTL mapping experiment to address two, not necessarily independent, ques-
tions: (i) what is genetic architecture underpinning the differences between two lines, and
(ii) what are the locations of the actual genes underlying these differences. As highlighted
in the previous examples, linkage-based QTL mapping is a substantial improvement over
classic line-cross analysis (Chapter 11) for probing the genetic architecture of a trait, and
can often provide important insight. However, it tends to underestimate the number of
QTLs and overestimate the effects of detected QTLs, especially when sample size is modest
(< 500, which is the norm). Hence, it is biased towards presenting a more major-gene view
of the architecture (fewer genes of large effect).

Even more problematic is the very poor level of resolution of linkage-based mapping,
which tends to be on the tens of megabase scale under the typical sample sizes used.
This is an improvement over mapping to specific chromosome arms (Chapter 17), but
only moderately helpful for fine mapping. Finally, there is the issue of repeatability, as
replicated experiments (using identical line crosses) often fail to find some of QTLs detected
in previous studies. Again, this is most pronounced when sample sizes are small to modest.
A compounding issue is that an apparently large QTL detected in an initial study (whose
actual value was significantly overestimated by the Beavis effect) might lead the investigator
to use a comparably sized population in an attempt to replicate this finding, when in reality
a much large sample size is needed.

A final issue is that an inbred-line cross is probing the nature of fixed differences between
two lines, typically chosen because they are rather divergent in a focal trait. Hence, many
of these genes may have been fixed by directional selection, which can result in large-effect
alleles being disproportionately fixed (WL Chapters 25–27). The segregating genetic loci in
the progeny of an inbred line cross are thus a rather unnatural population, with segregating
alleles (or fixed alleles over a final RIL or DHL panel) having frequency one half, and likely
enriched for large-effect alleles. In natural populations, segregating large-effect alleles tend
to at very low frequencies (WL Chapters 24 and 28).

Despite these concerns, there still remain settings, especially in inbred crops, where
line-cross mapping may have greater mapping resolution than a GWAS (especially when
using second-generation mapping designs, such as MAGIC or NAM panels). The reason is
that many elite inbred crops show LD over (at least) hundreds of kilobases. This places a
limit on the resolution possible by LD (GWAS) mapping (Myles et al. 2009). Again, however,
for linkage-based mapping to have greater resolution, the sample sizes need to be large,
allowing more recombination events to be captured. In the words of Cockram and Mackay
(2018), “we believe that days of mapping QTL in small populations must come to an end · · ·
we started with a target of developing 1,000 lines per population: that number now looks to
be on the low side.”. Many of the current users of QTL mapping suffer from what Tversky
and Kahneman (1971) called a “belief in the law of small numbers,” gambling their research
hypotheses on small samples without realizing that the odds against them are unreasonably
high.

Our next three chapters attempt to use segregating natural variation to map QTLs.
As such, they are very likely probing different genetic architectures than are inbred-line
crosses. Chapter 19 examines linkage mapping using family-based crosses, or more gen-
erally, pedigrees. These designs have much less power than inbred-line crosses, and have
(at best) similar levels of mapping resolution. Chapter 20 examines association-based map-
ping, which can use very large population samples coupled with very dense marker maps
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to exploit naturally occurring linkage disequilibrium. Such LD often extends over no more
than a few tens of kilobase scale (and often much less), as opposed to linkage information
(which tends to be on a tens of megabase scale unless the sample size is largess), offering
substantially improved mapping resolution. Finally, Chapter 21 summarizes the impact
of GWAS studies on our current understanding of the genetic architecture of segregating
genetic variation.


