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Association Mapping

Whereas the association signals detected can help to define regions of interest, they cannot
provide unambiguous identification of the causal genes. WTCCC (2007)

The initial focus of a GWAS should be on the study design, determining the specific trait for
investigation, the ascertainment of samples, and the choice of SNPs to be interrogated
for association. Without thoughtful consideration of these design issues ... the results

of any downstream association will be meaningless. Morris and Cardon (2019)
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The original idea behind an association analysis (Chapter 17) was to test a population
sample for correlations between different genotypes at a candidate gene and trait values
(or disease risk). While the scored genotypes in early studies were often presumed to be
causal sites (such as SNPs coding for different amino acids), this was not always the case.
More generally, the scored genotypes were simply markers in, or near, a candidate gene,
assumed to in high linkage disequilibrium (LD; Chapter 5) with causal sites (QTLs). With
the rise of genomic technologies that score hundreds of thousands of markers, this notion
of a hypothesis-driven test of the impact of a specific locus expanded to an exploratory scan
of the genome (with no specific candidates in mind), searching for associations over a dense
set of markers covering the genome. This strategy is commonly referred to as a genome
wide association study, or GWAS. In the era of electronic health records, human geneticists
often perform a series of GWAS over thousands of recorded traits, which Zhou et al. (2018)
referred to as a phenome-wide association study (PheWAS).

GWAS is now the dominant means of searching for QTLs. While the focus of GWAS
studies is typically on humans, equally impressive work has been done in other species,
such as with maize using the NAM lines (Chapter 18). As detailed below, a limiting fac-
tor to performing a GWAS is the ability to accurately, and cheaply, score vast numbers of
markers. Genomics has made this economically feasible in humans, model organisms (e.g.,
mice, rats, Drosophila, Arabidopsis), high-value agricultural species (e.g., maize, rice, dairy
cattle, chickens), and is becoming increasingly feasible for an ever-growing list of species.
While GWAS usually involves either a random sample of individuals from a defined pop-
ulation or a specialized sample of cases with a matching set of controls, plant breeders and
investigators using model organisms often use a collection of inbred lines as their GWAS
population. Such a mapping population is referred to as an association panel.

Much of the basics of a GWAS follow from the marker-trait approach used in linkage-
based mapping (Chapters 18 and 19). This chapter largely focuses on the design and analysis
aspects of a GWAS, while Chapter 21 examines the data generated by GWAS (as well as
by linkage-based studies) to provide an overview of our current picture of the genetic
architecture of traits and diseases.

MOTIVATION AND HISTORY

LD Assocation Between a Marker and a QTL

The marker signal from a nearby QTL in both linkage-based (Chapters 18 and 19) and
association mapping (Chapter 17) is a marker-trait association: the different genotypes at
the marker have different mean trait values (or differental risks for binary traits). Such
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signals arise when the structure of the mapping population generates correlations between
markers and nearby QTLs. This naturally occurs in families (due to the excess of parental
over recombinant gametes for linked loci; Example 5.6). Such associations also occur in a
population due to linkage disequilibrium (LD; Chapters 5 and 17), although spanning a
much smaller genomic scale than that generated by linkage following a cross.

To see how naturally occurring LD arises, suppose a QTL allele, q, undergoes a mutation
to an new functional allele, Q. If this happens close to a SNP, there is an initial association
with the SNP allele on the chromosome (or background haplotype) on which the mutation
arose. Suppose that an Mq chromosome mutates to MQ. Initially Q is only found with
marker allele M . At the time of the mutation, |D′| = 1 (Example 5.5), namely complete
disequilibrium (no recombination between the alleles is seen in the sample), as Q-bearing
chromosomes always contain M . However, it is r2, the correlation between alleles, that
measures how much of the signal at a causative site is imparted onto a nearby marker, with
r2 = 1 called perfect disequilibrium. As Example 5.5 showed, here r2 < 1, as M -bearing
chromosomes can be found without Q, so that the M – Q correspondence is not perfect.

Equation 5.13d showed that the intial value of r2 decays at a rate of (1− c)2 per gener-
ation. Thus, if c is very small, the bulk of this initial associations can persist for thousands
of generations. Assuming a one percent recombination rate per megabase, then for two loci
separated by 10 kilobases, c = 0.01 · (10/1000) = 0.0001. The expected time (t1/2) for 50%
of the initial r2 value to decay in this setting satisfies (1− 0.0001)2t1/2 = 0.5. Solving gives
t1/2 = ln(0.5)/[2 ln(0.999)] = 346 generations. Assuming a 25 year human generation span,
this is roughly 8,600 years. After 1000 generations, the r2 value is still 14% of its intial value.
If the markers are one kilobase apart, then 98% of the intial r2 value is present after 1000
generations (again assuming a c of 0.01 per megabase).

The extend of linkage disequilibrium within a population is strongly influenced by its
past evolutionary history. The time to the most recent common ancestor (TMRCA) largely
sets the size of the LD block, as the longer the TMRCA, the more generations a region
has to experience recombination. Because TMRCA scales with effective population size Ne
(WL Chapters 2, 3, and 8), populations with historically large effective population sizes
should show smaller average LD-block sizes than historically smaller populations, or than
populations that passed thorough a bottleneck (as is often the case with domesticated lines).

This point is well made by the data on crop LD reviewed by Buckler and Gore (2007). In
maize, LD spans less than a kilobase (kb) for wild populations and landraces, yet is greater
than 100 kb for elite inbreds. In barley, LD spans less than a kb in wild populations, between
80 and 100 kb in landraces, and greater than 200 kb in elite lines, while soybeans have LD
of around 40-80 kb in wild populations, but greater than 300 kb in elite lines. Similarly,
in humans, African populations show much shorter blocks of LD than do European or
Asian populations. Africa is the ancestral (and, hence, older) population, while the latter
two populations are the result of migrations from this base population that passed through
bottlenecks.

Because of population-specific variation in LD block size (which also varies widely
within the genome of a given population), before performing a GWAS, one should employ a
large set of randomly spaced SNPs to examine the extend of LD in the target population or
association panel. Such a pilot study informs the investigator of the average marker density
needed, and hence the limit of mapping resolution set by the sample LD.

Example 20.1 A common misconception in GWAS studies is the assumption that markers
closer to a causal site will have larger LD values, and hence larger marker effects (via larger
r2 values). Such need not be the case. Consider a new causal allele, Q, that arose on an NM
marker background (haplotype), where the QTL locus is much closer to M than N. Suppose that
recombination is sufficiently rare such that no Q alleles are found on any other haplotypes
in the GWAS sample. D′MQ = D′NQ = 1 in the case (as Q is only found on an N or an
M background), but their r2 values (which determine how much of the actual variance is
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accounted for by the marker variance) are a function of the marker allele frequencies.
Equation 5.15c gives the correlation between M and Q as

r2
MQ = αM (1− pM )/(1− pQ) ≤ αM

where pM is the frequency of the marker allele (M) and αM the frequency of M alleles asso-
ciated with Q (so that αMpM = pQ is the frequency of Q). Suppose that the frequency of Q
is 3% (making it a “common allele”), while the frequencies of M and N are, respectively, 60%
and 5%. Here pM = 0.6 and αM = 3/60 = 0.05, giving r2

MQ = 0.05·0.4/(1 − 0.03) = 0.0206, so
that the marker variance accounts for only 2.06% of the causal (actual) variance. Conversely,
for the more distant marker, N, pN = 0.05 and αN = 3/5 = 0.6, giving r2

NQ = 0.6·0.95/(1-0.03)
= 0.588. Thus, the marker variance for the more distant site captures almost 60% of the actual
(causal) variance, a thirty-fold increase over the marker variance for the closer site, M. This is
an illustration of the concept from Chapter 5 that r2 LD values are largest when the causal
and marker allele frequencies are similar, and fall off as their absolute frequency difference
increases. As we will see, this impacts the power of a GWAS to detect common versus rare
alleles.

Advantages of Association Over Linkage Mapping

The limitations of linkage-based QTL mapping (Chapters 18 and 19) revolve around their
need to be based entirely on sets of relatives (pairs, trios, families, or more extended pedigrees).
This restriction has two consequences. First, it severely constrains the obtainable sample size of
an experiment, as gathering large sets of relatives is nontrivial. Smaller samples constrain the
SNP effect sizes that can be detected, with sample sizes in the thousands needed to reliably
detect QTLs of modest effect (less than five percent; Table 19.2). A related issue with linkage-
based studies, especially for rare diseases, is that families often show singletons, with only
one family member being affected, providing no linkage-based information. Second, using
relatives restricts the average number of recombination events that separates two sampled
individuals. Any two random gametes from relatives in a linkage-based design likely have
experienced only a very small number of recombination events since their shared ancestor.
As a result, LD spans a significant fraction of a chromosome (at least tens of megabases),
restricting the level of resolution for fine mapping.

In contrast, it is straightforward (at least conceptually) to obtain a large or very large
population sample. Human GWAS studies now routinely use tens-of-thousands of individ-
uals, offering enormous power to detect small marker effects (differences in the mean values
of genotypes at a given marker). Meta-analysis (Appendix 6) can be used to combine multi-
ple GWAS, generating total sample sizes in the hundreds-of-thousands to millions. Further,
the association signal is generated by very fine-scale linkage disequilibrium, often on the
order of tens of kilobases (or less). Two individuals in a linkage study have experienced
only a few rounds of meioses, while two unrelated individuals from an association sample
may be separated by hundreds or thousands of meioses (Chapter 8). As a result of this
disparity in recombination history, linkage generates very long-range associations, while
LD associations decay very quickly and only persist over very small scales (Chapters 5, 8,
and 17). Linkage studies, however, can have an advantage when causal alleles are very rare,
as a population-level rare allele can be common within carefully selected pedigrees (such
as those showing an unusual number of cases, early-onset cases, or extreme phenotypes).

The History of GWAS

The idea of exploiting population-level LD with nearby markers to fine map a gene be-
yond what is possible with linkage-based approaches was suggested by Bodmer (1986),
and also by Lande and Thompson (1990), the latter with respect to finding molecular mark-
ers for the construction of marker-selection indices. Hästbacka et al. (1992) and Lehesjoki
et al. (1993) noted that LD mapping (Chapter 17) allows for fine mapping (resolution of
less than one cM; c ≤ 0.01), even for rare diseases where there are simply not a sufficient
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Figure 20.1 A Manhattan plot, where each pixel represents the position of a marker in the
genome (horizontal axis, here arranged from chromosomes 1 to 22) and its significance, the
value of − log10(p), on the vertical axis. Sufficiently high peaks represent highly significant
marker-trait associations, which are usually clustered, as nearby SNPs are typically in LD
with each other. For most of the genome, the markers are so dense, and with only modest p
values, that the pixels merge into a solid color. As one zooms in on a genomic location, these
separate into individual pixels (Figure 20.2). In many plots, clear regions (a horizontal span
with no vertical pixels) correspond to the centromeric regions of chromosomes, as these are
often marker-poor (have a very low SNP density).

number of families to provide the number of meioses required to separate closely linked sites
(Example 17.15). This approach starts with a known major gene that has been localized to a
relatively small interval via linkage, which is then fine mapped using LD. Lyman et al. (1999)
were among the first to exploit this idea in nonhuman populations, showing that certain
Drosophila polymorphisms in the scabrous locus had an impact on bristle number. The notion
that this same logic could apply in a genomic scan for QTLs was first emphasized in the very
influential paper by Risch and Merikangas (1996), who pointed out that association studies
have more power than sib-pair (allele-sharing; Chapter 19) approaches for detecting genes
of modest to small effects. In contrast to the candidate-gene approach, this is a hypothesis-free
approach (sites are simply chosen because they collectively span the genome).

Given the costs and logistical efforts involved, it is not surprising that the first large-
scale GWAS were for human diseases. One of the first was that of Ozaki et al. (2002), who
examined myocardial infraction risk in a Japanese population, using a sample of 1133 cases
and 1006 controls. Of these, an initial sample of 94 cases and 658 controls were typed for
66,000 SNPs, searching for SNP alleles that were over-represented in the cases. One strong
signal was a five SNP haplotype that spanned 50 kb, which included two SNPs in the
lymphotoxon-α, LTA, gene. A follow-up analysis within this region with a set of 1133
cases and 1006 controls showed that individuals homozygous for the two LTA SNPs had a
significant inflated risk (odds ratio of 1.78) of myocardial infraction.

This pioneering work was followed by two studies on the eye disease age-related
macular degeneration (AMD) by Klein et al. (2005) and Dewan et al. (2006). Klein et al.
examined 96 cases and 50 controls in Caucasians, scored for 166,000 SNPs. Individuals
homozygous for a detected risk marker had a 7-fold increase in AMD. This SNP was in
LD with an allele of complement factor H with a tyrosine to histidine change at residue
402. Dewan et al. examined 96 cases and 130 age-matched controls in a Chinese population,
scored for 98,000 SNPs, finding a strong signal for AMD risk in the promoter region of
HTRA1, a serine protease gene.
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Figure 20.2 A signal plot for a cluster of significant SNPs, displaying the fine-scale view of
a candidate region, often with functional genomic information. Here, the focus is the region
around the SPOCK1 gene on human chromosome 5, which Chen et al. (2017) found was
associated with mathematical ability. The top of the plot shows the location of tested SNPs
(tick marks), while the bottom of the plot shows the location on chromosome 5 (136.2 to 136.8
Mb), along with the SPOCK1 gene and its direction of transcription. The left vertical axis is
the− log10(p) value for a SNP (displayed as a filled circle), while the right vertical axis is the
value of localized recombination rate (displayed as a continuous curve; note the recombination
hot spot just below 136.4 Mb). Finally, r2 values for each SNP with respect to the lead SNP
(rs11743006) are indicated by the shade of their filled circle. (After Chen et al. 2017.)

While technologically impressive for their time, all three of these studies were woefully
underpowered, given the small number of genotyped cases. Hence, they could only detect
major genes, and runned the risk of seriously overestimating SNP effects (Beavis effects;
Chapter 18). The first truly modern GWAS was the Wellcome Trust Case Control Consor-
tium, WTCCC, (2007), which scored 14,000 cases of seven common diseases (roughly 2000
cases per disease) with 3000 shared controls, using 500K SNPs genotyped using a Affymet-
ric genechip array. The WTCCC study established many of the GWAS protocols currently
in use today, e.g., stringent quality control (QC) on SNP calling and marker choice, the
use of Manhattan and signal plots, adjusting for population structure, use of q-q plots to
examine model fit, dealing with multiple comparisons, and stressing that more QTLs of
smaller effect would likely be detected in a larger sample size.

Support for a QTL at a particular genomic location is usually displayed by a likelihood
profile plot under linkage mapping (e.g., Figures 18.1, 19.3, and 19.5) because the effects
of linkage typically span large regions of a chromosome. Conversely, under a GWAS, an
LD block typically covers only a very tiny fraction of a chromosome. As a result, each
tested marker is associated with a pixel that represents the p value for a test of marker-trait
association, such as a Cochran-Armitage trend test (Example 18.5), a chi-square test, or
a marker-dosage regression (Equation 18.4a). Note that these are the same single-marker
association tests used with linkage studies (Chapters 18 and 19). The resulting plot has
marker location on the horizontal axis and (usually) − log10(p) on the vertical axis, so
that higher values indicate greater significance. The result is a smear of pixels (usually
so dense that they appear solid), out of which occasionally trickles a few pixels arising



192 CHAPTER 20

above some threshold (Figure 20.1). Such displays are typically called Manhattan plots
(or, more whimsically, Dubai plots), for the skyline of Manhattan with its sky scrapers.
An unsuccessful GWAS often generates what some have called a Manhattan, Kansas plot,
which, like the afore-mentioned town, is noted for its flatness and lack of any significant
peaks. While a Manhattan plot gives a quick snapshot of the entire genome, signal plots
(also called regional association plots) around significant peaks provide a more focused
picture (WTCCC 2007). These depict the fine structure of the SNPs within a small region,
and often incorporate additional genomic information, such as known open reading frames
and localized recombination rates (e.g., Figure 20.2).

BASICS OF GWAS DESIGNS

The success, or failure, of a planned GWAS often hinges on the amount of care put into
the initial study design. The enormous power of a modern GWAS (generated by their
massive sample sizes) has a downside in that very small amounts of bias can propagate
into false positives with very significant p values. Issues such as careful quality control
(QC) when choosing SNPs, care in matching cases and controls, appropriate phenotyping,
and population sampling strategies all need meticulous consideration. Even though it was
the first truly large-scale GWAS, the WTCCC (2007) study remains the gold standard in
dealing with these issues, and anyone contemplating a GWAS should careful review their
paper before proceeding. Members of the WTCCC team have produced a series of protocols
and short reviews on basic GWAS design (Zondervan and Cardon 2007), marker selection
(Pettersson et al. 2009), quality control (Anderson et al. 2010), and basic analysis (Clarke et
al. 2011; Morris and Cardon 2019; Wang et al. 2019; Uffelmann et al. 2021).

Gathering the Data

Three basic sampling designs are used in epidemiological studies. A prospective cohort
study identifies a population (cohort) of individuals and follows then through some defined
interval. When done well, these are non-trivial to perform in humans, as they often involve
following individuals (and their descendants) over decades. The classic example is the
Framingham Heart study, started in 1948 in Framingham, Massachusetts with 5200 adults,
and is now on its third generations of participants. Another is the 1958 British birth cohort
(Power and Elliott 2006). A limiting factor with cohort designs for GWAS is they are often
relatively small, so that the number of actual cases of a specific disease they contain may be
modest, resulting in low power. A cross-sectional study gathers a single sample over some
narrow time window. These are common in natural populations and agricultural settings.
As with a cohort study, their limitation for disease mapping is that the resulting number
of sampled cases may be small. In contrast to these two population sampling schemes, a
case-control design specifically samples individuals with known cases and tries to match
them with appropriate controls (e.g., WTCCC 2007). This is the typical design used for
most diseases, and is an example of selective genotyping (Chapters 18 and 19), choosing
individuals on the basis of their extreme phenotypes (here, disease presence). This design
can be quite powerful, but it is also critically dependent on obtaining a control sample that
is well-matched with the cases. For example, the control (ideally) should be roughly the
same constitution as the case group in terms of (among other factors) sex, age, population
of origin, and known exposures to environmental risk factors.

When the mapping population consists of an association panel of inbred lines, good
experimental design can be used to improve the power of a GWAS (Myles et al. 2009).
In humans, observations are made on single individuals, each (outside of monozygotic
twins) representing a unique genotype, typically with their phenotype scored by a single
observation. Conversely, when a panel of inbred lines is used, replication of each line can
significantly reduce the residual variance of line values, significantly increasing power when
the individual heritability (h2) is low (Chapter 17). In these settings, even a modestly sized
panel may have power in a GWAS. For example, using only 95 accessions of Arabidopsis
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thaliana, Atwell et al. (2010) were able to locate a number of significant marker effects, in
part because they could replicate each line, and thus measure each line value with very high
precision and relatively little residual error. Replicative designs for estimating line means
are examined in Chapters 24, 27, and Appendix 9. One issue with these designs is whether
one should do a one-stage or a two-stage analysis. In a two-stage analysis, one first obtains
the adjusted entry means (the estimates of the line means following correction for the design,
e.g., block, plot, and environmental effects) and then uses these values for the GWAS. In a
one-stage design (Cullis et al. 1998), these two operations are done simultaneously. Stich et
al. (2008) showed that the two-stage design performed almost as well as the more exact (and
much more computationally demanding) one-stage design for a GWAS with replicate lines
from an association panel. Experimental design principles can also be used in a collection of
outbred individuals. When phenotypes have high measurement error, the use of repeated
measures (Chapter 31) can result in increased GWAS power (Kang et al. 2008).

Defining the Phenotype

As with linkage-based studies, poor phenotyping can doom a GWAS. At best, inconsis-
tent phenotyping reduces power. This is especially a concern with somewhat ambiguously
defined diseases, given that most human disease GWAS are now performed using a con-
sortium of multiple institutions. Hence, very precise criteria, globally reproducible across
clinical groups, are essential, such as the McDonald criteria, and its subsequent tweaks, for
diagnosing multiple sclerosis (McDonald et al. 2001; Polman et al. 2005, 2011; Thompson
et al. 2018). Similarly, careful definition and scoring of diseases in agricultural settings is
critical, especially if the study involves a collaboration of multiple groups.

Likewise, for quantitative traits, careful, consistent, and accurate measures that can
be applied across multiple investigative groups are essential. While there is considerable
focus on quality control (QC) for marker data, a proper GWAS should have at least the
same level of concern about the quality of phenotyping. An important class of quantitative
traits in disease studies are endophenotypes, intermediate traits presumably upstream of
a disease phenotype (Chapter 21). For example, transcript or protein levels at potential
candidate genes, amounts of specific metabolites, or other biomarkers that may indicate
disease risk or severity. Because of the impressive buffering of most biological systems, even
large perturbations in these upstream actors can map into only small changes in the final
phenotype. Hence, in some cases, a GWAS on well-chosen endophenotypes may be more
powerful, and potentially more informative, than a GWAS directly on the disease itself, as
these upstream elements may have larger (relative) effects. Again, the same concept holds in
agricultural settings, such as measuring some quantitative feature of a disease (e.g., number
of necrotic spots per leaf, parasite load) rather than simply scoring the disease as present
or absence. Balancing the potential increased effect of an upstream endophenotypes is that
such traits are often more challenging to measure than the target phenotype. This can result
in a much smaller sample size that a GWAS based on the target phenotype, and hence lower
power, even when an upstream effect size is larger.

SNP Selection and QC/QA

We assume here that a DNA chip, or related, technology is used to score a preselected set of
markers, with whole-genome sequencing examined later in the chapter (and in Chapter 21
as well). When a chip (or some other mass-scoring of a preset collection of markers) is used,
five issues can impact a GWAS: (i) coverage, (ii) quality of the marker data, (iii) systematic
genotyping bias (such as batch effects), (iv) the appropriateness of the marker set for the
population(s) of interest, and (v) the appropriateness of the marker set for the trait(s) of
interest. We examine these issues in order.

The coverage of a chip (or a set of markers) is the fraction of sites not directly genotyped
that are in high LD (and hence somewhat predictable) with genotyped markers. Coverage is
usually not an issue with modern chips for humans and high-value agricultural species, but
may be a concern in nonmodel species where resources have been more scarce. It is important
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to stress that coverage is a joint property of a chip and a target population. Because the average
length of an LD block changes with population history, a chip can have excellent coverage
in one population but modest to poor coverage in another. A final issue with coverage is a
point raised in the last two chapters: everything else being equal, power is usually increased
more by scoring more individuals, rather than more markers. Spencer et al. (2009), focusing on
human chips, reiterated this point, noting that lower coverage chips may result in more
power for a GWAS if their use allows more individuals to be scored.

Quality control (QC), and the related issue of quality assurance (QA), involve, respec-
tively, procedures to ensure quality as the genomic data is generated, and post-production
review of the genotype quality (Laurie et al. 2010). We offer only a few brief comments here,
as many of the QC/QA issues are platform specific. Standard measures of quality are the
rate of missing calls (markers that fail to be scored by the genotyping process), departures
from Hardy-Weinberg, and mismatches between the stated gender of a sample and the
sex chromosome signal. Additional, and more sophisticated, QC metrics are reviewed by
Anderson et al. (2010), Laurie et al. (2010), and Morris and Cardon (2019). A critical point,
especially with case-control data, is randomizing individuals across genotyping batches.
Systematic bias in a batch can impart false signals if the cases are run as one set of batches
and controls as another. A similar issue can arise if all controls were genotyped at one cen-
ter and all cases at another. Even when apparently extracted and scored under identicial
conditions, Clayton et al. (2005) noted scoring biases in some markers between cases and
controls, generating spurious associations.

The match of a set of markers to the study population is also critical. Historically, most
of the initial human chips were very European-centric and hence could miss important
polymorphisms in non-European populations. One might imagine that this issue is equally
problematic in many agricultural settings when outlier populations are of interest (such
exotic breeds or landraces). Likewise, as mentioned, a chip with good LD coverage in one
population may have poor coverage in another.

The final issue with SNP choice is a bit more technical, but its roots follow from Example
20.1. If the allele frequencies of markers do not roughly match the allele frequencies of
causal sites, the result is low r2 values, and hence poor power. The distribution of minor
allele frequencies (MAFs) over a large set of sites is called the allele frequency spectrum,
and for neutral markers is generally strongly L-shaped, with most markers having rare
alleles (the Watterson distribution; WL Equation 2.34). This distribution can be shifted by
population history (e.g., bottlenecks or expansions) and past selection (WL Chapters 2, 8,
and 9). Conversely, markers chosen for inclusion on a chip are generally biased towards more
polymorphic markers (minor allele frequencies above one to five percent), namely, a bias
toward common SNPs. To the extend that the marker frequency spectrum is discordant
with the causal frequency spectrum (usually because a shift towards higher frequency
values in markers), many causal sites will be missed. We return to the point in some detail
below, and examine how whole-genome sequencing impacts GWAS. Lastly, while our focus
here is on SNP-based GWAS, other classes of markers (Chapter 8) can also be used. One
example are copy number variants (CNVs), which include duplicated or deleted regions
(e.g., Ionita-Laza et al. 2009). Issues in detecting CNVs under different sequencing strategies
are reviewed by Teo et al (2012).

Imputation

Even a very dense SNP chip only directly scores a tiny fraction of the existing genetic varia-
tion. Fortunately, the presence of strong LD among scored markers allows one to predict (or
impute) the genotypes at unscored markers, provided that one has a scored reference set of
haplotypes for these markers. Hence, given a sufficient reference set (representative of the
population being sampled), only a modest fraction of these SNPs need actually be scored,
allowing one to greatly extend the number of tested SNPs. The idea is similar to the multi-
point mapping used for QTL mapping (Chapters 18 and 19), where known recombination
rates allowed us to test for a QTL at arbitrary positions between adjacent markers. Impu-
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tation (Li et al. 2009), and the closely related issue of haplotype phasing (Li and Stephens
2003; Scheet and Stephens 2006), is a fully mature field, with a highly technical literature,
dissecting the virtues of various algorithms to accomplish these goals. Despite this richness,
our discussion here will be brief. Applications of imputation in association mapping are
reviewed by Servin and Stephens (2007), de Bakker et al. (2008), Guan and Stephens (2008),
Marchini and Howie (2010), and Pei et al. (2010).

The basic idea is that one has a set of genotyped markers for individual i, a set of
reference markers (known haplotypes with very dense scored markers), and a set of target
markers that are present in the reference set, but were not scored in i. More formally,
suppose our reference set is N haplotypes consisting of L scored SNPs over a particular
genomic region. While the number of haplotypes could be as many of N = 2L, in reality,
SNPs are correlated because of LD, and the number of haplotypes is a much more modest
number (strong LD structure; WL Chapter 9). Let gTi = (gi,1, gi,2, · · · , gi,L) be the vector of
SNP genotypes for individual i, where gi,k is the number of reference alleles at marker k.
For scored markers, these values are 0, 1, or 2. However, some of these values are missing
(unscored) and the idea of imputation is to use the reference collection of haplotypes to infer
(impute) these missing values. Provided that the level of LD is high, the genotypes at target
markers can generally be imputed with fairly high accuracy (e.g., Li and Stephens 2003;
Marchini et al. 2007). The idea is that a haplotype with missing marker information is a mosaic
of the reference haplotypes. Imputation involves estimating the break points between mosaic
segments and inferring segment identity for intact regions. This is done using Hidden
Markov models, which start at the first marker and then progressively moves along a
chromosome through the Lmarkers. These models use the local recombination rates, along
with the observed marker data, to estimate the probability of a break after a marker (change
of reference haplotypes) as one moves along the haplotypes for i. If a break occurs, the
scored marker information and frequencies of reference haplotypes are used to compute the
probability that a specific reference haplotype contributes the next segment. The resulting
full set of markers (scored plus imputed) is often referred to as an in silico genotype. Note
that imputation can only make inferences about SNPs that are present in the reference
sample.

The accuracy of imputation can be checked by treating a scored marker as unknown
and examining how accurately its genotype was predicted. Performing this operation over
a large number of markers returns an estimate of the imputation error rate. Lin et al. (2010)
proposed an imputation quality score (IQS), which adjusts the observed match frequency
(P0) for a called SNP by the probability (Pc) that it matches by chance,

IQS =
P0 − Pc
1− Pc

A value of one indicates a perfect performance, while negative values indicate performance
worse than expected by chance. More granularity can be obtained by considering the error
over different local amounts of LD or over markers with different minor allele frequencies.
The imputation error increases as LD and/or MAF decrease. Indeed, rare alleles are difficult
to impute with accuracy. Part of this is due to the size of the reference sample, as imputation
error decreases as the reference population size increases (Marchini and Howie 2010). By
simulating very large reference sizes, Browning and Browning (2016) and Browning et al.
(2018) showed that even rare alleles can be imputed with accuracy if the reference size is
sufficiently large. They noted in a simulated reference panel of 200,000 Europeans, that
markers with at least nine copies of the minor allele (MAF ≥ 4.5× 10−5) could be imputed
with high accuracy (r2 ≥ 0.8). Huang et al. (2014) found that a variant with a MAF of 0.1%
could be imputed with an r2 = 0.5 using a sample of roughly 5,000 UK reference samples.

Most imputation methods return a posterior probability distribution of the number of
reference alleles at an imputed marker, e.g., ĝi,k = (ĝi,k,0, ĝi,k,1, ĝi,k,2), where ĝi,k,j is the
probability that the imputed copy number for marker k in individual i is j. One can extract
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a summary statistic from these, such as the best guess genotype,

ĝi,k,max = max
j

(ĝi,k,j)

namely, the genotype with the highest posterior probability, or the mean copy number
(posterior mean or allelic dosage), ĝi,k,ave = ĝi,k,1 + 2 ĝi,k,2, and then use these values in an
association analysis. Alternatively, one could use the full posterior distribution to compute
a weighted association statistic (e.g., Guan and Stephens 2008).

The use of imputation usually results in greater power for a GWAS, even when imputa-
tion accuracy is modest (Marchini et al. 2007; Guan and Stephens 2008; Marchini and Howie
2010; Pei et al. 2010). As might be expected from the behavior of the imputation error, power
improves with higher LD and with higher MAFs for causal SNPs. A caution, however, is
that high average imputation accuracy does not improve power in regions of low LD (Pei et
al. 2010). The other important use of imputation is in meta-analysis (Appendix 6), wherein
the results for a given trait from a number of studies are consolidated into a single analysis.
If these studies used different SNPs, imputation can convert them all to a common set (e.g.,
de Bakker et al. 2008), provided that an appropriate reference sample exists.

BASIC STATISTICAL ANALYSIS OF GWAS DATA

As with single-marker linkage analysis (Chapters 18 and 19), each SNP in a GWAS is tested
for a marker-trait association (significant differences in trait means over marker genotypes).
We start with metrics for continuous traits and then examine discrete traits. These basic
metrics are easily extended by adding cofactors, such as sex or age effects, and effects
associated with the design, such as batch and specific-lab effects. A more delicate, but no
less important, class of confounding effects are shared ancestry and population structure,
and we treat these concerns in the next section.

Continuous Traits

Initially, one usually screens each SNP using the additive (or gene-dosage) model (Equation
18.14a; also called a trend test). Consider individual i and its genotype at a biallelic SNP
marker locus k. We designate one of the SNP alleles as the reference (often chosen to be
the minor allele) and let Ni,k(= 0, 1, 2) be the number of reference alleles at marker k in
individual i. These correspond to the nonreference homozygote, the heterozygote, and the
reference homozygote, respectively (this could equivalently be coded as −1, 0, 1). From
Equation 18.14a, the linear model for marker locus k becomes

zi = µ+ bkNi,k + ei (20.1a)

where zi denotes the trait value for individual i. For each reference allele added at marker k,
the trait mean is changed by bk. The test statistic for bk can be written as T 2 = (b̂k)2/σ2(b̂k)
which follows an F distribution with 1 and n− 2 degrees of freedom, which approaches a
χ2

1 distribution for large n.
If the SNP is declared significant, further insight might be gleamed by fitting the general

genotype model, with (from Equation 18.29c)

zi = µ+ bkNi,k + dkHi,k + ei (20.1b)

where Hi,k is an indicator variable for being a heterozygote, so that Hi,k = 1 if i is a
heterozygote at marker k, otherwise it has value zero. This is a two degrees of freedom
test, and the significance of dominance (dk 6= 0) can also be tested (one degree of freedom).
While the trend test (with its fewer degrees of freedom) is usually more powerful than the
general genotype test, the former has poor power for detecting fully recessive alleles, unless
that allele is relatively frequent (Lettre et al. 2007).
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Equations 20.1a and 20.1b form the basic framework upon which more complex models
are built, usually by adding additional cofactors and random effects. For example, one could
incorporate both a general sex effect (a sex-specific mean for the trait), and a sex-specific
effect for an allele, using the model

zi = µ+ siµs + bkNi,k + cksiNi,k (20.1c)

where si is an indicator variable for sex (0 for male, 1 for female). Under this model, µ and
µ+ µs are the male and female means for our focal trait. Likewise the impact of each copy
of the reference allele on the mean is bk in males and bk + ck in females. Using standard
linear model machinery (Chapter 10), the effects of sex on the overall mean (µs 6= 0) and/or
sex-specific allelic effects (ck 6= 0) can be tested. The general genotype model (Equation
20.1b) can be extended in the same fashion. The interaction with other cofactors is similarly
modeled (Morris and Cardon 2019), such as epistasis (e.g., Equation 18.14d).

There are two rather different, but not necessarily exclusive, reasons for including
additional factors in a linear model: reducing the residual variance and protecting against
false-positives. Including factors that influence the variability of a trait (such as age or
sex differences) reduces the residual variance, potentially resulting in increased power
to detect SNP effects. We say potentially because while their inclusion reduces the residual
variance, it does so at the cost of degrees of freedom. Second, as detailed below, variables that
introduce trait-SNP correlations in the absence of LD (such as shared relationships and/or
population structure) can generate false-positives. The inclusion of factors accounting for
such confounding variables can reduce the false-positive rate (see below).

An important caveat for the choice of covariates was noted by Aschard et al. (2015).
Some covariates (e.g., height, body mass) are themselves heritable traits, and their inclusion
can bias estimates of SNP effects when there are correlations between the covariate and the
focal trait. Aschard et al. recommended either to avoid the inclusion of such covariates, or
if one wishes to model then, to do so in a more formal multiple-trait GWAS framework (see
below).

Adding SNPs as Cofactors

Segura et al. (2012) suggested that the power of a GWAS can be improved by incorporating
SNPs with significant effects as cofactors. This is an extension of the composite interval
mapping (CIM) method used in Chapter 18 for linkage mapping in inbred-line crosses.
Recall that one feature of CIM was to include markers with significant effects that reside
outside of the focal chromosome being testing. Their inclusion reduces the residual variance,
increasing power. Segura et al suggested that the same is true for a GWAS, and proposed
a stepwise approach for SNP inclusion. Suppose that SNP ` is the included cofactor, then
when testing SNP k, the model becomes

zi = µi + b`Ni,` + bkNi,k + ei (20.1d)

If the SNP cofactor shows dominance, then a d`Hi,` term can be added to the model. Once
the most significant SNP is included in the model as a cofactor, a stepwise approach is used
to scan for the next most significant SNP, with this process continuing until some stopping
criteria is satisfied. Segura et al. applied their approach to both human and Arabidopsis data
sets, and were able to identity new associations missed by previous analyses. This method
is expected to be most powerful when there are causal sites with (at least) modest effects
underlying the trait (as opposed to sites having nearly identical infinitesimal effects).

Discrete Traits: Contingency Table Analysis

Much of the motivation for human GWAS studies is the search for disease susceptibility
(DS) genes. In this setting, the case-control design is typically used, where a series of cases
are chosen by some criteria, and then matching controls are selected (e.g., WTCCC 2007). The
resulting data for a given SNP are in the form of a contingency table, which can be expressed



198 CHAPTER 20

either in terms of genotypes or alleles. For a diallelic SNP, the genotypic contingency table
is given by

Marker Genotype
mm Mm MM Totals

Present nP0 nP1 nP2 nP
Absent nA0 nA1 nA2 nA
Totals n0 n1 n2 n

In the contingency table setting, a marker-trait association is indicated by a lack of indepen-
dence between genotype and trait states (genotype frequencies differ between cases and
controls). Thus, one could use a standard chi-square test for independence. This is a two
degree of freedom tests and is the analog of the general genotype model for continuous
traits. If one or more of the cell numbers in the table are small, the more precise Fisher’s
exact test can be used (Chapter 2). Alternatively, one could apply the Cochran-Armitage
Trend Test (Equation 18.15), which uses one degree of freedom, and corresponds to the
additive model (on the scale of measurement).

Instead of focusing on genotypes, one could simply count the number of reference
alleles in each class (two for a homozygote, one for a heterozygote), yielding an allelic
contingency table

Marker Allele
m M Totals

Present 2nP0 + nP1 2nP2 + nP1 2nP
Absent 2nA0 + nA1 2nA2 + nA1 2nA
Totals nm nM 2n

Sasieni (1997) noted that the chi-square test is only appropriate for allelic data when Hardy-
Weinberg holds. Under these conditions, the allele test asymptotically approaches the trend
test on the genotypic data. There are a number of variants on these basic tests (such as
combining results from different tests), which are reviewed by Kuo and Feingold (2010),
who concluded that the trend test tends to be the most robust.

Example 20.2 The effects of genotypes on binary traits is usually expressed in terms of odds
ratios (Example 19.10). Consider the data (from Example 18.5) of Zhang et al. (2005) on the
association between genotypes at the DNA repair gene ADPRT and lung cancer:

Genotype
mm Mm MM

Present 307 509 184
Absent 359 504 137
Odds 0.855 1.010 1.343
OR 1.000 1.181 1.571

To see these calcuations, consider the odds for genotype mm. From Equation 19.52a,

Pr(Disease Present | mm )
Pr(Disease Absent | mm )

=
307/(307 + 359)
359/(307 + 359)

=
307
359

= 0.855

Setting mm as the standard, the odds ratio (OR) with respect to the other two genotypes are
given in the table. Hence, relative to mm, the odds of the disease in Mm are increased by 18%,
and by 57% for MM. Parameterizations for the effects of loci underlying threshold (discrete)
traits are examined more detail in Chapter 30.

Example 20.3 The allelic contingency table for the data of Zhang et al. (2005) on the association
between ADPRT genotypes and lung cancer becomes
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Marker Allele
m M Totals

Present 2·307 + 509 = 1123 2·184 + 509 = 877 2000
Absent 2·359 + 504 = 1222 2·137 + 504 = 778 2000
Totals 2345 1655 4000

The resulting χ2
1 test statistic for independence is 9.8985, with an associated p value of 0.0017,

whereas Example 18.5 computed the Cochran-Armitage statistic as 10.5733 (p = 0.0011).

Discrete Traits: Logistic Regression

An alternative strategy for discrete traits, which allows for cofactors and other confounders
such as relatedness and population structure, is logistic regression (Truett et al. 1967; Chap-
ter 14). The idea is that a linear model is constructed on some underlying (or liability) scale
y (Chapter 30), which can potentially take on negative values and/or values greater than
one. This liability value is then mapped via the logistic function (Equation 14.14a) into a
range of (0,1), corresponding to the expected chance, p(yi), that an individual with a liabil-
ity score of yi displays the disease. Hence, we have an observed value (the disease state zi
that is either 0 or 1), an underlying scale (or latent value) yi, and finally a mapping from
the underlying scale y into an expected value on the z scale. The actual observed value of zi
follows a Bernoulli distribution (a binomial with a single draw; n = 1 in Equation 2.19a)
with success parameter given p(yi). From Equation 14.15b, the logistic function mapping
from yi into the expected value of zi is

E[zi | yi] = p(yi) =
1

1 + exp [− (yi)]
(20.2a)

Recalling Equation 14.14b, y is the predicted value of the logit score,

logit(p|yi) = ln
(

p|yi
1− p|yi

)
= yi (20.2b)

Namely, the liability value yi corresponds to the log of the odds (Examples 19.10 and 20.3),
so that ey corresponds to the expected disease odds for an individual with liability y. Note
that Equation 20.2a maps y into p, while Equation 20.2b maps p into y.

Suppose on this underlying y scale, we assume an additive model for the effect of the
kth SNP (Equation 20.1a) plus m added cofactors,

yi = µ+ bkNi,k +
m∑
j=1

βjxi,j (20.3a)

then

E[zi | yi] = p(yi) =
1

1 + exp
[
−
(
µ+ bkNi,k +

∑
j βjxi,j

)] (20.3b)

and

logit(p|yi) = ln
(

p|yi
1− p|yi

)
= µ+ bkNi,k +

m∑
j=1

βjxi,j (20.3c)

where Equation 20.3c is the predicted value for the log of the odds of the trait being present
in individual i.

On the liability scale, the interpretation of the bk value for a SNP is clear. Under the
additive model, each copy of the reference allele changes the log of the odds by bk, so
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that ebk is the change in the odds. Further note that the effects on the frequency scale are
multiplicative, as the odds (OD) for yi can be expressed as

OD(yi) =
p|yi

1− p|yi
= exp(yi) = exp

µ+ bkNi,k +
m∑
j=1

βjxi,j

 (20.3d)

= exp (µ) · exp (bkNi,k) · exp

 m∑
j=1

βjxi,j

 (20.3e)

= OD(average)*OD(marker effect)*OD(Cofactor effects) (20.3f)

This decomposition shows that the odds for the trait being present in a given individual
can be written as the product of the odds for a random individual, the odds for their marker
genotype, and the odds associated with any of their additional (known) risk cofactors
incorporated into the model.

Logistic regression is often used under a case-control design, and this can have subtle
implications for the inclusion of cofactors into the model. In a linear regression setting, or in
a logistic regression setting under a random population sample, the inclusion of covariates
(such as age or sex) usually results in an increase in power. Such not need be the case in under
a case-control design. Under logistic regression, inclusion of a covariate increases both the
estimated marker effect size and its sample variance (Robinson and Jewell 1991; Kuo and
Feingold 2010; Clayton 2012; Pirinen et al. 2012). This implies that power can actually be
reduced in some settings by inclusion of a covariate if the decrease in precision is larger than
the increase in effect size. Pirinen et al. (2012) examined a simple logistic with and without
a single covariate for three low-frequency human diseases, and found that the incursion of
the covariate resulted in decreased power. For the case of Ankylosing spondylitis, a disease
with a prevalence of 0.0025, the inclusion of a specific HLA risk factor resulted in a logistic
regression that needed more than double the case sample size to have the same power as
a logistic regression where this factor was excluded. Pirinen et al. found that when the
disease is common (prevalence over 20%), covariate inclusion typically increased power,
but decreases power when the disease is rare.

What might generate such an effect? Consider a case-control design, with a rare disease
impacted by both genetic factors and, independently, by the covariant (e.g., smoking status).
In the case population, both the rare genetic factor and the disease covariate are oversampled
relative to their frequencies in the general population, which can create an association
between the two in the overall GWAS, impacting power (Mefford and Witte 2012). Zaitlen
et al. (2012a, 2012b) developed strategies for the appropriate conditioning on covariates in
ascertained case samples that result in improved power.

Finally, one issue that can arise with a logistic regression is the problem of separation,
in which the likelihood converges, but one of the estimates is infinite. This situation arises
when, by chance, one of the covariates perfectly predicts the outcome, and can occur for
rare cofactors (such as a rare allele) and/or in small samples or with sparse data. Firth
(1993) propose a penalized likelihood correction for removing ML bias in certain settings,
and Heinze and Schemper (2002) noted that the Firth biased-corrected test deals with
separation (or near separation, where estimates are very unstable). Related approaches are
reviewed by Mansournia et al. (2018).

Joint Testing of Multiple Markers: Gene-based GWAS

While above methods test markers (SNPs) one at a time, there are setting where it is ad-
vantageous to simultaneously test a set of markers. For example, there might be a set of weak
signals over a region, that, when combined, result in a much stronger signal. When all of the
tested markers reside within a given gene, this is called a gene-based test for association
(Neale and Sham 2004), and is our focus here. In Chapter 21, we examine more general
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gene set analysis (GSA) approaches, where the signals from all of the known genes in a
given set or pathway are combined (e.g., Yu et al. 2009; Biernacka et al. 2012; Chen et al.
2019). Changing the unit of analysis to the gene or to a set of genes (or a pathway) can
be considered a secondary analysis of the original GWAS, and can be accomplished either
using the original data, or summary statistics (such as p values for each SNP).

There are several potential benefits of a gene-based, over a single-SNP based, analysis,
but the relative advantage depends on the underlying trait architecture. If a causal gene
typically has only a single causal site, then single-SNP analysis is favored. Conversely,
if a gene has multiple causal sites, potentially of more modest effect, then a gene-based
approach can be more powerful. A gene-based approach can also be more robust to genetic
heterogeneity. If there are multiple potential causal sites in the gene whose frequencies vary
dramatically over samples, a single-SNP approach can miss these (even in a meta-analysis
framework; see below), but a gene-based approach can capture them. This was seen by
Peng et al. (2010), who examined type II diabetes in two different GWAS. They found no
replication of SNPs (using genome-wide significance), but found seven genes that were
successfully replicated over the two studies. Finally, the multiple comparisons burden can
be somewhat alleviated with a gene-based analysis, as one is testing thousands of genes
versus millions of SNPs.

We defer the important, and subtle, discussion of what group of SNPs constitutes a gene
until Chapter 21. Gene-based GWAS approaches can be broken into two major categories.
The first are approaches combining thepvalues for the scored SNPs in a gene. One advantage
of these combining methods is that they only need summary-level statistics (and informa-
tion on the correlation among SNPs for their extensions that do not assume independence).
The second approach is more model-based, built around multiple regressions and their
extensions (such as using PC scores as the predictor variables, penalized approaches such
as ridge regression or the LASSO, or variance-components). These approaches typically
require genotype data, not simply summary statistics, which can limit their applicability.
Finally, there is considerable overlap between the multiple-SNP approaches considered here
and rare-allele methods discussed later in the chapter.

As reviewed in Appendix 6, there are a number of methods for combining the in-
dividual p values for each tested marker into a single global p value for their gene. The
foundational approach for such tests is that the distribution of p values under the null fol-
lows a uniform distribution. Suppose that one observes ten p values and the lowest 6 are
all 0.10 (and hence not individually significant). This is a huge enrichment of small p values
(under a unifrom, we expect only one in ten to have value ≤ 0.1), suggesting a signal for
the collection of tests, but one that is too weak to be detected by any single test. More compli-
cated distributions—such as using the first k of n ordered p values, or the distribution of p
values below some threshold—can be easily computed by simulating draws of a vector of n
independent uniform variables (or n correlated uniform variables in more general settings).

One of the most common p-value combining approaches is Fisher’s method (Equation
A6.1a): for k independent tests, where pi denotes the p value for test i, the sum

X2 = −2
k∑
i=1

ln(pi) (20.4a)

approximately follows a χ2
2k distribution. Loughin (2004) showed that while Fisher’s

method works well when the signal against the alternative is strong and concentrated in a
small fraction of the tests, when a modest signal is spread over a number of tests, Stouffer’s
Z score (Equation A6.2) is more powerful. This method first translates the individual pi
values into unit normal scores, Zi, and then computes an overall Z score,

Zs =
k∑
i=1

Zi/
√
k (20.4b)
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Further, as shown by Whitlock (2005), a weighted Z method (Equation A6.2.c) outperforms
both Fisher and the unweightedZ when sample size varies (as would occur when allele fre-
quencies vary over the tested markers). Bhattacharjee et al. (2012) discussed SNP weighting
for a Z-based gene GWAS. The limitation with these approaches is the strong assumption
of independence of tests, which fails for SNPs within a gene. Fisher’s method has been
extended to correlated tests by Brown (1975) and Makamb (2003), which requires estimates
of the correlation among SNPs (e.g., Moskvina et al. 2011). More generally, one of the above
statistics is computed, and its significance assessed via permutation (see below), but this
usually requires access to the original data.

A number of modifications of Fisher’s approach have been proposed that may improve
its power and performance. Their starting point is to express Fisher’s statistic as a product

X2 = −2 ln

(
k∏
i=1

pi

)
(20.4c)

Instead of considering the full product, various truncated approaches have been proposed
that consider only a subset of the p values, namely those that are sufficiently small. The
truncated product method (TPM) of Zaykin et al. (2002) considers only those p values
below some threshold level (τ ),

X2
trun = −2 ln

(
k∏
i=1

pi I[ pi ≤ τ ]

)
(20.4d)

where the indicator function I[ pi ≤ τ ] has value one if pi ≤ τ , otherwise is zero. The logic
is that by discarding modest to large p values, power may be improved, as most of the
signal for region-wide significance resides in the smaller p values. A modification is the
rank truncated product method (rank-TPM) of Dudbridge and Koeleman (2003). Here,
one ranks the pi values from smallest p[1] to largest p[k] and the product is taken over the
K < k smallest of these. We can extend truncated products to correlated tests, once again
using permutation to obtain critical values. Further, these methods can be extended into
adaptive versions (e.g., Yu et al. 2009; Chen et al. 2013; Yan et al. 2014; Pan et al. 2015),
by varying the thresholds (τ or K), and then choosing the threshold yielding the smallest
value (with significance again assessed via permutation). Even more generally, Fisher’s
method is a special case of the Gamma method (Zaykin et al. 2007; Biernacka et al. 2012),
where the inverses of gamma functions (Table A7.1) are used to place differential weights
on p values below some threshold. Zaykin et al. (2007) provides a nice overview these, and
other, combining p-methods.

As mentioned, the significant of these approaches, even when markers are highly cor-
related, can be assessed using permutations, where the genotypes of an individual are kept
intact (preserving their SNP correlation structure), but the phenotypes are randomized
(shuffling the phenotypic labels over the genotype vectors). However, this can compu-
tationally intense, and requires access to the original data. Seaman and Müller-Myhsok
(2005) developed direct simulation approaches (DSAs) to sample values from the distri-
bution of truncated products under the null (the pi follow a uniform distribution, but may
be correlated), which is computationally much more efficient, and less restrictive, than a
permutation approach.

A related approach to combination methods follows from corrections for multiple com-
parisons (Appendix 6). Recall that if we wish to have a FWER of γ, the Bonferroni correction
over n independent tests uses a significance level for each test of α = γ/n. One can essen-
tially invert this as follows. Letting p[i] be the ith smallest p value, then the significance
of the collection (the probability that none of the SNPs are significant) is approximately
p = np[1] (p and p[1] taking the roles of γ and α, respectively). One could replace n with
some measure of the effective number, ne, of tests (Appendix 6), which can be estimated
from the eigenvalues of the correlation matrix of the SNPs (Cheverud 2001; Nyholt 2004;
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Li and Ji 2005; Patterson et al. 2006; Li et al. 2011). More powerful version of Bonferroni
exists that discount for each significant test (Appendix 6). One such is Simes-Hochberg
correction (Simes 1986; Hochberg 1988), which (following the logic above) leads to

pSimes = minj

(
n p[j]

j

)
(20.4e)

which assumes uncorrelated tests. Li et al. (2011) proposed using an extended version of the
Simes test, based on the effective number, ne, of tests over the entire gene and the effective
number, ne[j], based on the first j smallest p values. Their GATES (gene-based association
test using extended Simes procedure) test uses

pGATES = minj

(
ne p[j]

ne[j]

)
(20.4f)

The second category of gene-based GWAS approaches are based on regressions and
their extensions, which generally requires access to the raw genotype data (as opposed to
summary statistics). One approach would be to use Hotelling’s (1931) T2 statistic to jointly
test the impact of nmarkers (Xiong et al. 2002; Chapman et al. 2003; Fan and Knapp 2003). If
one considers a multiple regression using all markers in a defined set, zi = µ+

∑
βjNi,j+ei

(where Ni,j is the number of copies of the reference allele at SNP j in individual i), then T 2

is a test that all of the βk are zero. Recall that T 2 is the generalization of the Student’s t test
to multiple variables (for a single variable, T 2 reduces to t2, the square of the t statistic).
Again, the idea is that by jointly considering a well-chosen marker set, cumulative small
signals might result in a larger significance for the collection as a whole. The tradeoff with
a Hotelling-based approach is that inclusion of noncausal markers increases the degrees
of freedom, without increasing the noncentrality parameter (the model signal from causal
variants), lowering power (Appendix 5). An alternative approach is to use penalized re-
gressions (Example 20.4) that downweight (or remove) model parameters with very low
impact.

While Hotelling’s test is generally performed using continuous trait data, it can also
be modified for binary data. Xiong’s T 2-based test for case-control samples is formatulated
as follows: Let g0,i,k denote the genotype for the kth control individual at marker i (using
the coding −1, 0, 1). For n markers of interest, let g0,k = (g0,1,k, g0,2,k, · · · , g0,n,k)T be the
vector of marker scores for control individual k, and g1,j = (g1,1,j , g1,2,j , · · · , g1,n,j)T be
the corresponding genotype vector for case indvidual j. For n0 controls and n1 cases, the
Hotelling’s T 2 test statistic becomes

T 2 =
n0 n1

n0 + n1

[
(g0 − g1)TS−1(g0 − g1)

]
(20.5a)

where gi = n−1
i

∑ni
j=1 gi,k (for i = 0, 1) are the mean vectors for cases and controls and

S =
1

n0 + n1 − 2

 n0∑
k=1

(g0,k − g0)(g0,k − g0)T +
n1∑
j=1

(g1,j − g1)(g1,j − g1)T

 (20.5b)

is the pooled sampling covariance matrix. One can think of T 2 as a generalized distance
measure between the mean vectors, g0 and g1, of marker frequencies in cases versus controls.
Asymptotically, (

n0 + n1 − n− 1
n(n0 + n1 − 2)

)
T 2 ∼ Fn,n0+n1−n−1 → χ2

n (20.5c)

The last step follows because as the denominator degrees of freedom for an F distribution
becomes large, it approaches a χ2 with the numerator degrees of freedom (Appendix 5).
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This notion of contrasting the differences in multilocus genotype similarity between
some defined set of markers in cases and control has been extended by other authors (e.g.,
Schaid et al. 2005; Wessel and Schork 2006; Kwee et al. 2008). This approach is often framed
using kernel methods (Schaid 2010; Larson et al. 2018)—which can be loosely thought of as
generalized distance measures—such as the kernel-based adaptive cluster, KBAC, method
of Liu and Leal (2010) and the kernel-based association test, KBAT, of Mukhopadhyay et
al. (2010). Many of these approaches can also be framed as random-effects models, where
the test for a gene effect can be based in terms of variance components (Chapter 32).

Treating SNPs as single markers and then accounting for their correlation structure
is one approach for modeling under high levels of LD. The other is to base the unit of
analysis on haplotypes, the specific configuration of SNP alleles over a small section of a
chromosome. Coding the minor allele as one and the major as zero, the haplotype can be
encoded as a string of zeros and ones, so that h1 = (00001) would be a haplotype with major
alleles at the first four SNPs and the minor allele at the fifth. By focusing on haplotypes,
the unit of analysis moves from a set of diallelic SNPs to a single marker with h alleles
(one for each of h defined haplotypes). While conceptually straightforward, this approach
raises several issues. The first two are operational: how to define an optimal haplotype
length (a sliding window coupled with a cross-validation approach might offer a solution)
and how to obtain their phase (extracting the two haplotypes given a diploid multilocus
genotype; Chapter 5). The final issue is statistical: haplotype models quickly soak up degrees
of freedom. With h haplotypes, the degrees of freedom range from h − 1 on the low end
(analyzing haplotypes as additive alleles: extending Equation 20.1a and allelic contingency
tables to h alleles) to h(h − 1)/2 on the high end (the full genotype model: extending
Equation 20.1b and the genotype contingency tables to all diploid genotypes hihj). Further,
one would expect a small number of common haplotypes and a larger number of rarer ones.
As a result, a haplotype-based analysis often focuses on the relatively common haplotypes,
and might lump the rest into a single group (similar to rare alleles approaches considered
below). As noted above, one approach to deal with such high-dimensional models is to use
penalized regressions (Example 20.4)

The basic structure of a haplotype-based analysis treats each haplotype as an allele in
an otherwise standard marker analysis, e.g., using the regression zi = µ +

∑
j βjHi,j + ei.

Here Hi,j is either the number of copies of haplotype j in individual i (when they can be
scored directly), or can be replaced an expected value, Hi,j = Pr(haplotype j |gi), where
gi is the vector of SNP values for individual i over the region of interest (e.g., Schaid 2002;
Schaid et al. 2002).

An intermediate approach that nicely accommodations the challenging issues of defin-
ing haplotypes and controlling their dimensionality is to use principal components (PCs;
Chapter 9) of the covariance matrix C for the markers of interest. Let ei be the eigenvector
associated with eigenvalue λi (ranked from largest to smallest). Recall that the sum of the
first k eigenvalues divided by the total sum of eigenvalues gives the amount of variation
explained by the first k PCs (Chapter 9). Gauderman et al. (2007) and Wang and Abbott
(2008) suggested that PCs can be used as the predictor variables in a regression, with

zi = µ+
k∑
j=1

βjγi,j + ei, where γi,j = eTj gi

Thus, γi,j is the projection of the SNP data from the focal gene (gi) from individual i onto the
jth PC. Gauderman et al. suggested that k should correspond the the number of eigenvalues
that accounts for between 80 to 90 percent of the total scored SNPs variation in the target
gene. Gauderman et al. and Ballard et al. (2010) found that PC-based approaches usually
out perform haplotype or multiple SNP regressions. One standard concern with any PC
method is how to interpret the PC axes (Chapter 9). However, when a causal SNP is found
on several different haplotypes (diffusing its haplotype-specific signal), the SNP weighting
on the first few PCs could pick out such a signal.
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As with the various p-value combining methods discussed above, given the strong de-
pendency (LD) between SNPs within a genic region, the gold standard for regression-based
significance testing is permutation. A general summary statistic is obtained for the observed
SNP set, and then trait values are shuffled over individuals, while keeping their marker
genotypes intact, generating a test statistic under the null (e.g., the set-based test in PLINK;
Purcell et al. 2007). When a large number of genes are tested, permutation becomes compu-
tationally intense due the small critical values required to correct for multiple comparisons.
To obtain a reasonably stable estimate of the test value corresponding to probabilityα under
the null requires roughly (at least) 10/α permutation samples, which can be the order of 107

or greater when a large number of genes are tested. One interesting solution to this problem
was suggested by Knijnenburg, et al. (2009), drawing on results from extreme value theory
(WL Example 27.2). Under rather general assumptions, the extreme tails of a probability
distribution converge to a generalized Pareto distribution (WL Equation 27.7), whose pa-
rameters can be estimated using ML. This allows a modest number of simulations (say 5000
to 10000) to be used to estimate its shape and then extreme values (say the threshold value
corresponding to p = 10−8) are computed analytically from the resulting distribution.

As a result, a number of authors have proposed simulation-based approaches (drawing
test statistic values from the expected null distribution), with the notion that the computa-
tional burden for a single simulation draw is much less than for a single permutation value.
Lin (2005) proposed a general scheme for many score-based tests using draws of indepen-
dent normal random variables which are then adjusted by the correlation structure of the
data. A similar approach (VEGAS, for versatile gene-based association study) was pro-
posed by Liu et al. (2010). Even for these simulation approaches, the computation burden
of obtaining 10/α values can be daunting. One potential solution is fastBAT approach of
Bakshi et al. (2016). They noted that, under the null, the test statistics for many of the above
tests can be written as the quadratic products of a MVN (Chapter 9, Appendix 3), and one
can use standard large-sample MVN quadratic product approximations (e.g., Davies 1973;
Kuonen 1999) to obtain critical values, as opposed to using simulations.

Example 20.4 A common situation that arises in modern quantitative genetics are regressions
whose number of parameters p exceeds, often greatly, the sample size n. In a standard least-
square regression framework, estimation proceeds using generalized inverses (Appendix 3),
resulting in a set of solutions. A more powerful approach is to use penalized (or regularized)
regressions (Chapter 31). Consider the regression model

yi = µ+
p∑
j=1

βjXi,j + ei

In the standard OLS framework, one solves for the βj that minimizes the sum of squared
residuals,

RSS =
n∑
i=1

e2
i =

n∑
i=1

yi − µ− p∑
j=1

βjXi,j

2

Penalized regressions start with this framework, and then place constraints on the βj . Under
ridge regression (RR), one instead minimizes RSS +λ

∑
β2
j (Hoerl and Kennard 1970), for

some shinkage parameter λ > 0 (Hoerl et al. 1975; Lawless and Wang 1976, and Cule at al.
2011 discuss the choice of λ). An alternative approach is the least absolute shrinkage and
selection operator, or LASSO, which minimizes RSS +λ

∑
|βj | (Tibshirani 1996). Note that

for values ofβ near zero, β2 is a much less harsh constraint than |β| (as |β| À β2 for |β| ¿ 1 ),
so that the LASSO shrinks most of the βj to exactly zero (yielding a sparse estimate), and
hence is often used in model selection (choosing the parameters in the final model as those
with nonzero βs). Finally, the two approaches are combined in the elastic net (Zou and Hastie
2005), which seeks to minimize RSS +λ1

∑
|βj | + λ2

∑
β2
j . These approaches can also be
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extended to generalized linear models, e.g., Le Cressie and van Houwelingen (1992) proposed
a logistic ridge regression method.

The use of penalized regressions for marker selection, treating epistatic interactions, and
dealing with a set of very highly correlated markers in a GWAS setting has been examined by
a number of authors (e.g., Li et al. 2007; Malo et al. 2008; Wu et al. 2009, 2011; Chen et al. 2010;
Han and Pan 2010; Zhou et al. 2010; Li et al. 2011; Xu et al. 2012; Gao et al. 2013; Yi et al. 2015;
Schaid et al. 2020).

Detecting Gene-gene (Epistatic) Interactions

As was the case of linkage-based mapping (Chapter 18), it is trivial to extend GWAS to
search for epistasis by looking for interactions between marker genotypes. For example, the
presence of epistatic interactions between the genotypes at two different SNP markers can
be tested as follows. Let zij be the mean value of individuals with two-locus genotype ij,
with i indexing the SNP genotypes at locus i (values of 0, 1, 2), and let zi be the mean trait
value for single-locus genotype i. A simple test for epistasis given by

T =
3∑
i=1

3∑
j=1

(zij − zi − zj + µ)2

Under the null (additive interaction) E[T ] = 0 and T follows an F distribution with n −
9 degrees of freedom (n being the sample size), while E[T ] > 0 under the alternative
(epistasis). In a GWAS setting, this, and other, simple tests can be greatly complicated by
three factors: multiple comparisons, power, and the effects of imperfect tagging of causal
sites by markers. We consider these in turn. Complications induced by imperfect tagging
turn out to have especially subtle effects and can generate false positives in non-obvious
settings. There is a growing, and increasingly technical, literature on the search for GWAS
epistasis, see Cordell (2009) and Wei et al (2014) for more detailed reviews.

The major complication in the search for epistasis under linkage mapping was the
massive explosion in the number of comparison as the number of markers increased, ba-
sically scaling as m2 (more exactly, m[m− 1]/2), a concern that is greatly magnified under
a GWAS. As discussed in Chapter 18, this increase in model space can be handled by ei-
ther using a hypothesis-free approach (an exhaustive search over all such combinations)
or by a hypothesis-driven approach (such as testing specific loci, or, more generally, loci
first detected by having marginal effects). The latter approach, called a two-step scan, can
either be based on one, or both, of the markers showing a significant marginal effect (Chap-
ter 18). Marchini et al. (2005) and Evans et al. (2006) examined these different strategies,
and found that there were situations where an exhaustive search (despite its far greater
multiple-testing burden) had higher power than a two-step approach. This required that
the interaction variance is greater, often far greater, than either of the marginal additive
variances for the two candidate loci, which in turn, requires that both loci have minor allele
frequencies near 50% (Chapter 5). In a GWAS setting, satisfying this condition is generally
unlikely, even when the pair of loci show strong functional epistasis, as this still generally
results in weak statistical epistasis, the signal detected by a GWAS.

Generally speaking, the GWAS signatures for (statistical) epistasis (significant epistatic
variances) are weak. As noted by Wei et al. (2014), “searching for epistasis has contributed
rather little to the understanding of complex traits, except for the important observation that large
interaction terms are very unlikely to exist between pairwise SNPs”. However, just as the finding
of generally small additive variances does not imply the absence of major-effect alleles (they
are just at low frequencies), the observation of (at best) weak epistatic variances does not
imply that functional epistasis is generally absent, but rather that even if it occurs, the two-
locus genotype frequencies are such that most effects are loaded onto the additive variance
(Chapter 5; Purcell and Sham 2004; Hill et al. 2008; Mäki-Tanila and Hill 2014).

Even under a very dense GWAS, causal QTLs can be imperfectly tagged by marker
SNPs. For a single causal locus, only r2 of its additive variance is captured by a marker
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in LD, while only r4 of its dominance variance is captured by the marker (dominance)
variance. With epistasis, even less is captured. If σ2(AkD`) denotes the true causal epistatic
variance, the resulting marker epistatic variance (assuming each causal site is correlated by
r to a SNP) becomes r2kr4`σ2(AkD`), so that only fractions r4, r6, and r8, respectively, of the
σ2(AA), σ2(AD), and σ2(DD) causal variances are capture by the marker pair (Wei et al.
2014). The impact of imperfect LD on estimating epistatic variances is thus far greater than
its impact on detecting single-marker effects (additive variances). Coupled with the least-
squares decomposition tending to place most of the variance into additive terms (Chapter
5), it is thus not surprising that estimates of marker epistatic variances, when even detected,
tend to be very small. This, coupled with the much greater multiple comparison burden,
means that there is generally very low power to detect most epistatic interactions.

A final complication is that even when an epistatic signature is detected, the subtle
effects of imperfect tagging of a causal SNP by a marker can result in false positives, resulting
in phantom epistasis. This can occur over two scales, between linked loci, and, surprisingly,
between unlinked loci. As noted by Wood et al. (2014), Hemani et al. (2014), and de Los
Campos et al. (2019), haplotype effects can occur when two marker loci are both in imperfect
LD with a causal SNP, say M1 − Q −M2. When the LD is imperfect, the causal additive
variance is not fully accounted for by either marker alone, resulting in their interaction term,
capturing part of this residual, being significant. Hence, under a purely additive model,
imperfect LD can generate non-additive signals between markers in LD. Finally, even when
marker loci are unlinked and in linkage equilibrium with each other, imperfect tagging of
causal sites can still generate phantom epistasis. This arises by skewing the distribution of
T away from a normal (the effects of a genotypic class now follow a mixture, instead of
a normal, distribution; Chapter 16). This can inflate the F statistic over its expected value
under the null, generating false positives (see Hemani et al. 2021 for details).

Corrections for Multiple Testing

Given the massive numbers of tested markers (either directly or via imputation) in a
GWAS—orders of magnitude higher than in a linkage analysis—adjustment for multiple
testing is a serious concern. Recall that linkage-based mapping considered two multiple
comparison scenarios: the sparse-map approximation with roughly independent markers
(in which case Bonferroni corrections can provide reasonable control), and the dense-map
approximation with correlated markers (essentially testing every position along a chromo-
some) wherein more elaborate modeling is required (Chapters 18 and 19). The situation
under a GWAS falls somewhat in between these two settings. Under linkage mapping, the
signal from a QTL can propagate over most of a chromosome (albeit with its impact di-
minishing over distance). In contrast, the LD structure for many populations is such that
a chromosome can be considered as a series of very small LD blocks, within which LD is
very high, but with near independence between blocks. This difference of long-range cor-
relations under linkage mapping versus only very sort-range correlations in a GWAS is a
function of the former experiencing only a few meioses per chromosome, whereas the later
may involve thousands (or more) of recombinations since the common ancestor.

Because of LD block structure, the effective number of independent tests (ne) is less
than the actual number, with the Bonferroni correction testing each marker at p = γ/ne to
provide a genome-wide Type I error control of γ (Equations 18.13a and 18.13b). A number
of approaches using the eigenstructure of the correlation matrix of tests have been proposed
to estimate ne (e.g., Cheverud 2001; Nyholt 2004, 2005; Ji and Li 2005; Patterson et al. 2006;
Appendix 6), most of which are very conservation under strong LD structure (Salyakina et
al. 2006; Moskvina and Schmidt 2008). However, the simpleM method of Gao et al. (2008)
seems to perform fairly well in such settings (Gao et al. 2010; Gao 2011; Hendricks et al
2014; Davis et al. 2016). Ranking the eigenvalues of the test correlation matrix from largest
(λ1) to smallest (λm), the Gao estimator of ne (for n tests) is the value that satisfies

ne∑
i=1

λi/
n∑
i=1

λi = C
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namely the smallest number of eigenvalues that account for a fraction C (typically taken as
0.995) of the total variation (sum of all eigenvalues). One can also use Bayesian approaches
to estimate the effective number of tests (Q. Wang et al. 2015; S.-B. Wang et al. 2016).

An alternative approach is to estimate the number of LD blocks and take this as the
value of ne. In their landmark paper promoting association over linkage analysis. Risch
and Merikangas (1996) suggested that a modern GWAS might involve testing up to 500,000
sites, for a p = 1×10−7 (choosing a γ of 5%). More recent suggestions in humans are around
106 LD blocks for European populations yielding p = 0.05/106 = 5× 10−8 (Altshuler et al.
2008; Fadista et al. 2016), and double that number for African populations (Pe’er et al. 2008)
with their deeper ancestry, and hence more generations of recombination in a population
sample. Estimates of the rough number of independent LD blocks in other species can be
much higher (as in outbred maize populations) or much lower (as in a panel of elite inbred
lines). In theory, a large set of SNPs with good genomic coverage could be used to estimate
the number of blocks (e.g., Example 20.5), or at a minimum, suggest the average spacing of
SNPs for adequate power. With a value ofne in hand, one can further improve on Bonferroni
methods using sequential corrections (Manly et al. 2004; Appendix 6). In the simplest setting
(Holm’s method), the p values are ordered (p[1], · · · , p[n]), and if the smallest is rejected (e.g.,
p[1] ≤ γ/ne), then the next smallest is tested at p[2] ≤ γ/(ne − 1), and so on until failure
to reject. More powerful sequential approaches (e.g., Simes-Hochberg and Hommel) are
reviewed in Appendix 6.

A second approach to control for multiple comparisons are permutation tests (reviewed
in Chapter 18). Where feasible, these are generally regarded as the gold standard for multiple
comparison corrections. The idea is simple: one keeps the marker data intact for each
individual, but randomly shuffles their trait values. This generates a sample from the null
(no marker-trait association), so that a GWAS performed on this data has all markers under
the null. Repeating this procedure a few thousand of times generates a distribution of the
smallest genome-wide p value, the smallest for any particular chromosome, etc., under the
null. However, given the size and scale of a modern GWAS, resampling incurs a very heavy
computational burden. A further complication is that a permutation requires that one has
identified exchangeable units, which is not trivial in the presence of population structure.

A computationally more efficient approach is to approximate a permutation test by
using large-sample theory. Under the null, a vector of test statistics is asymptotically multi-
variate normal (MVN) with a correlation structure than can be estimated from marker data.
One can then either sample from this distribution or use numerical interaction to estimate
critical values (Lin 2005; Conneely and Boehnke 2007; Han et al. 2009). Hendricks et al.
(2014) noted that such applications of extreme tail theory, and well as the Gao ne estimator,
were efficient alternatives to permutation.

Besides the obvious issue of adjusting for multiple, correlated tests, a much more sub-
tle issues arises in a modern GWAS. Subsequent to the original analysis, imputation and
the combination of results from multiple studies are often done, resulting in the number of
GWAS tests initially performed being rather different from the number of tests that ulti-
mately derive from this data (Thomas and Clayton 2004). Consider the setting where one
million SNPs are directly scored and tested. Using this group of markers, one could esti-
mate ne for a Bonferroni-style correction or use a permutation approach based on this set of
markers. Now suppose that a reference set of sequences becomes available that allows for
the imputation of an addition two million SNPs on the same dataset. This would involve
no change in the number of scored individuals, but results in the original data now being
used for three million tests. The genome-wide threshold p value obtained via the original
permutation is no longer appropriate as additional tests are involved. The very real pos-
sibility exists that highly significant markers detected in the initial study would no longer
achieve genome-wide significance as additional markers (and therefore tests) are added.
Likewise, estimates of ne based on correlations among the original tests are also no longer
appropriate.

Such concerns led to the extension of the infinitely dense marker approximation for
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linkage studies from Chapters 18 and 19 (where all tests on a chromosome are correlated
because of insufficient recombination) to an analog of the infinitely dense setting in an LD
framework. Here there are a large number of nearly independent islands of SNPs, within
which marker correlations are extremely high. Example 20.5 discusses one approach for
obtaining a limiting threshold value in such fully saturated marker settings, effectively
adjusting for all current, and possible future, single-marker association tests based on the
original data.

Example 20.5 Dudbridge and Gusnanto (2008) proposed an interesting approach for ob-
taining the fully-saturated threshold value via permutation testing using increasing marker
density. Their idea was that the threshold value increases with the number of tests, but ulti-
mately approaches some asymptotic value. They took a set of SNPs (from the target population
of interest) and randomly assigned them into cases and controls, and then performed a per-
mutation test to obtain the critical p value required for a FWER of γ. They then examined
ever-smaller subsets of the SNPs, with f(x) denoting the critical p value for x scored SNPs,
which is expected to decrease as x increases. The resulting number of effective tests for a
given value of x to obtain a global γ FWER is ne(x) = γ/f(x). The authors suggested fitting
a least-squares regression on such data using the Monod function

ne(x) =
µx

h+ x
+ e (20.6a)

The estimate of h (the half-saturation parameter) is the number of SNPs to achieve half of the
threshold value, f(h) = µ/2, and µ̂ is the limiting value, so that using

p = γ/µ̂ (20.6b)

provides the fully-saturated Type I error control of γ. An alternative estimator forne, obtained
by fitting a beta distribution (Equation A7.37) for the observed minimum p values over the
permutation samples, was developed by Dudbridge and Koeleman (2004), Dudbridge and
Gusnanto (2008), and Saffari et al. (2016). See their papers for details.

Dudbridge and Gusnanto applied Equation 20.6a using a set of roughly 360,000 SNPs
from a UK Caucasian population. The limiting threshold was around µ̂ ' 693,000, with
Equation 20.6b giving the fully-saturated threshold (for γ = 0.05) as p = 7.2× 10−8 for this
population. They also noted that an eigenvalue-based estimate of ne (Patterson et al. 2006)
based on the 360,000 SNPs returned a value of around 33,000, an order of magnitude too small,
while the permutation test for the full set of SNPs returned a value of roughly 228,000 SNPs,
also below the fully-saturated value.

Bonferroni, sequential Bonferroni, and resampling are all examples of family wide er-
ror rate (FWER) approaches (Manly et al. 2004; Rice et al. 2008), where the goal is controlling
the experiment-wide (here genome-wide) error rate. An alternative approach is the false
discovery rate (FDR) framework (Appendix 6). The motivation for Bonferroni is the belief
that all of the tests are likely under the null, while FDR assumes that some small fraction
are likely not from the null. In the FDR setting, control is not over all tests (as is done with
FWER procedures), but rather over all tests declared to be significant. An FDR value of 5%
implies that, of the declared significant tests, at most 5% are false discoveries (i.e., the true
marker effect is zero). As detailed in Appendix 6, the basic underpinning of FDR amounts
to adjusting the p-value threshold, πδ , for declaring a test to be significant until the desired
FDR is achieved. Under the assumption that very, very few of the n tests are true positives,
the expected number of false discoveries is nπδ , while nS(δ) is the observed number of tests
with p ≤ πδ , and hence are declared to be significant. The FDR thus becomes nπδ/nS(δ).
Decreasing the value of πδ decreases bothnπδ andnS(δ), and one adjusts the threshold value
until this ratio achieves the desired FDR value (e.g., 0.05); see Appendix 6 for details.
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FDR represents an attempt to strike a balance between sensitivity (Type II error, the
power to detect a difference, e.g., avoiding false negatives) and specificity (Type I error,
avoiding false positives). The Bonferroni framework, with its extremely conservative p
values, has high specificity but poor sensitivity as many markers with small effects do
not generate enough of a signal to exceed the extreme p threshold required to be declared
significant. The FDR approach lowers this threshold (improving sensitivity), while still
providing good specificity (Manly et al. 2004). The goal of an initial GWAS is usually to distill
out a small set of candidate regions for future study. In such a setting, an FDR framework
is usually better than an FWER approach, as the latter may exclude important regions from
future study. While false positives occur in the FDR candidate set, their number is controlled,
and the cost of including such false candidates is often offset by much greater sensitivity,
and hence the inclusion of true candidates that might otherwise be excluded. Brzyski et al.
(2017) noted that an FDR analysis applied to GWAS is not truly on a SNP-by-SNP basis, as
blocks of SNPs in LD will share the same signal from a single causal site. Rather, the FDR
unit of analysis is a cluster of SNPs in LD. This is the same issue noted by Chen and Storey
(2006) for linkage mapping (Chapter 18 and Appendix 6).

Finally, a rather different approach was suggested by Wacholder et al. (2004), WTCCC
(2007), and subsequent authors (Thomas and Clayton 2004; Wakefield 2007, 2008, 2012),
namely using a Bayesian framework. An excellent discussion of Bayesian approaches for
multiple GWAS comparisons is given by Stephens and Balding (2009). As suggested by
Thomas and Clayton (2004), the basic tenet of this framework is that

“it is not the number of tests performed but rather the prior credibility of the hypotheses
that is important in interpreting a set of observed associations. That is, when a hypoth-
esis is unlikely to be true a priori, we should require strong evidence to be convinced of
its truth”

In this framework, the strength of evidence can be expressed as the posterior odds ratio
in favor of a true association. Letting T denote the value of the test statistic and τ the
significance threshold, then the odds ratio in favor of a true association when the test is
deemed significant can be written as

Pr(H1 | T > τ)
Pr(H0 | T > τ)

=
Pr(T > τ |H1) Pr(H1)/Pr(T > τ)
Pr(T > τ |H0) Pr(H0)/Pr(T > τ)

=
[

Pr(T > τ |H1)
Pr(T > τ |H0)

] [
Pr(H1)
Pr(H0)

]
=

1− β
α

Pr(H1)
Pr(H0)

(20.7a)

where the first step follows from Bayes theorem (Equation 3.3b). Here α is the Type-I error
rate, β the Type-II error rate (for a power of 1 − β), and Pr(H1) and Pr(H0) are the prior
probabilities for, and against, an association. To apply Equation 20.7a, one must have some
loose idea about the fraction of independent regions that generate associations with the
trait, and some details about the effect size (and frequency) in order to specify β. WTCCC
(2007) suggested values for Pr(H1) in the range of 10−4 to 10−6.

Equation 20.7a is very closely related to Morton’s (1955b) posterior error rate (PER)—
which Wacholder et al. (2004) refer to as the false positive report probability (FPRP)—see
Appendix 6. Denoting the posterior odds ratio (Equation 20.7a) asPO, an alternative metric
is the posterior probability of association, PPA (Stephens and Balding 2009), where

PPA =
PO

1 + PO
(20.7b)

Finally, a more general approach is to replace

Pr(T > τ |H1)
Pr(T > τ |H0)

with
Pr(T |H1)
Pr(T |H0)

(20.7c)

Namely, replacing a threshold being exceeded with the actual value, T , of the test statistic
for that marker. This ratio of support for the data (T ) under the alternative versus the null
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hypothesis is called a Bayes factor, BF (Appendix 7). Computing the BF requires assump-
tions about the prior distribution of allele effects (and their associated allele frequencies),
see Wakefield (2007, 2008, 2012) and Stephens and Balding (2009) for details. Stephens and
Balding make the important point that as GWAS analysis moves beyond one-marker-at-a-
time considerations to more complex units of interactions, Bayesian approaches can offer
much more flexibility than frequentist methods.

Example 20.6 As an application of Equation 20.7a, consider the scenario where ten regions,
out of one million LD blocks, influence the trait of interest, and suppose that there is 50%
power to detect each effect. To obtain an odds-ratio of ten to one in favor of a true effect,
rearranging Equation 20.7a gives a required α value of

α =
(

Pr(H0 | T > τ)
Pr(H1 | T > τ)

)(
[1− β]

Pr(H1)
Pr(H0)

)
=

1
10
· 0.5 · 10/106

1− 10/106
= 5× 10−7

Under these parameters, we expect an average of 0.5 · 10 = 5 true discoveries and 5× 10−7 ·
(106 − 10) = 0.5 false discoveries, for an expected FDR of 0.5/5.5, or around 9%. The PPA
for an odds ratio of 10 (PO = 10) becomes PPA = 10/11 = 0.909. Similarly, for a posterior odds
ratio of 20 (with a resulting PPA of 20/21 = 0.952), α = 2.5× 10−7, which yields an expected
0.25 false discoveries and an expected FDR of 0.25/5.25, or slightly under 5%.

Now suppose a highly polygenic trait, such as height, which may have a large number of
regions (say 1000), but, given their smaller effect sizes, lower power of detection (say β = 0.8,
or a power of 20%). The critical value for a odds ratio of ten becomes

α =
1
10
· 0.2 · 1000/106

1− 1000/106
= 2× 10−5

In this setting we expected an average of 0.2· 1000 = 200 true discoveries and 2 × 10−5 ·
(106 − 1000) ' 20 false discoveries, for an expected FDR of 20/220, or again around 9%.
For a posterior odds ratio of 20:1, α = 1× 10−5, yielding an expected FDR of 10/210, again
slightly under 5%.

Power, Replication, and the Winner’s Curse

While it would seem that a modern GWAS, with its very large sample size, has ample power,
this ignores two realities. First, most detected GWAS effects are small. This is perhaps not
surprising, as the impact of a marker on a GWAS usually appears through the variance
attributable to the linked causal site. For an additive QTL, this is 2a2p(1− p), where a is the
allelic effect, with this signal further attenuated by r2 due to scoring the effect using a marker
in LD with the causal site. In nature, large effect alleles tend to be at low, to very low, fre-
quencies, most likely as a result of past selection against them (Chapter 21; WL Chapter 28).
Further, because common SNPs are typically the markers of choice, the mismatch in frequen-
cies between a marker allele and a rare causal allele results in a small r2 value (Example 20.1),
even under complete disequilibrium (|D′| = 1), further reducing the signal from the causal
site. Hence, a small GWAS effect does not imply a small effect allele, but rather that the causal
site only accounts for a small fraction of the total trait variance. Second, the blessing (and
curse) of a modern GWAS is the vast number of markers that are considered, resulting in very
small α values being used to test each marker in order to account for multiple comparisons
(as just discussed). The cost of such increased specificity is a substantial loss of sensitivity
(power).
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Table 20.1 Critical values for χ2 tests with one or two degrees of freedom (df) for a given α, and the
associated NCP values (λ) required for a desired level of power. See Example 20.7.

Required λ for a power of

α df Critical 50% 80% 90%

10−6 1 23.93 23.93 32.87 38.11
2 27.63 26.62 36.11 41.62

5 · 10−7 1 25.26 25.26 34.43 39.79
2 29.02 28.01 37.71 43.35

10−7 1 28.37 28.37 38.05 43.67
2 32.24 31.23 41.43 47.32

One consequence of low power, lack of repeatability, led to considerable initial skepti-
cism about the validity of GWAS detected sites (often referred to as GWAS hits). As noted
by Colhoun et al. (2003), poor replication could result from false positives, lack of power, or
differences between initial and confirmatory studies (such as using populations segregating
different causal alleles; or differences in how a trait, such as a complex disease, is defined).
Much of this initial angst, which was especially common in the psychiatrical genetics com-
munity (Levinson et al. 2016), has faded as the sample sizes of GWAS increased, and more
care was given to ensure that initial and confirmatory studies use consistent methodologies,
resulting in a dramatic improvement in repeatability (Visscher et al. 2012, 2017; Marigorta
et al. 2018).

Finally, as developed in Chapter 18, one consequence of low power is that the effects of
markers declared to be significant are overestimated, with the degree of bias increasing as
power decreases (Figure 18.8; Equation 18.43). This is called the Beavis effect in QTL linkage
mapping, but in GWAS it is commonly referred to as the winner’s curse (a term from the
epidemiological literature, but whose roots trace back to the analysis of competitive bids of
oil leases; Capen et al. 1971). The GWAS implications of the winner’s curse, and potential
corrections, have been extensively discussed in the literature (e.g., Siegmund 2002; Sun and
Bull 2005; Wu et al. 2005; Garner 2007; Yu et al 2007; Zöllner and Pritchard 2007; Ghosh et
al. 2008; Zhong and Prentice 2008, 2010; Bowden and Dudbridge 2009; Xiao and Boehnke
2009; Faye et al. 2011; Xu et al. 2011; Ferguson et al. 2013; Poirier et al. 2015; Wang et al. 2016;
Palmer and Pe’er 2017; Dudbridge and Newcombe 2019; Wang et al. 2020; Xie et al. 2021).

Example 20.7 As we have seen, a number of classic association metrics in a GWAS are either
chi-square tests, or can be reformulated as such. In these cases, the test statistic follows a
(central) chi-square when there is no association, and a noncentral chi-square (Appendix 5)
when there is a marker effect. The key quality for the later distribution is its noncentrality
parameter (or NCP) which can be thought of as the inflation of the test statistic over its value
under the null. Specifically, if a test follows a χ2

k under the null, then its expected value is its
degrees of freedom, k, while if the test is from the alternative, its expected value is k + λ,
where λ is the NCP (Equation A5.14b), a function of the sample design and marker effects.

To see how power calculations are performed with noncentral chi-squares, consider the
threshold for significance under a chi-square test (with one degree of freedom) when we
take α = 5 × 10−7. We can quickly compute the value of this threshold using the R com-
mand qchisq(1-5*10^(-7),1) , which returns a value of 25.26. Hence, any marker whose
associated chi-square statistic is less than this value is declared to be nonsignificant. The cor-
responding critical values for α = 10−6 and 10−7, are, respectively, 23.93 and 28.37. What
NCP value is needed to give a high probability that a test of a true effect is declared signifi-
cant (i.e., high power)? For a test to have power 1 − β (under α = 5 × 10−7), we need to
solve for the value of the NCP λ that satisfies Pr(χ2

1,λ ≥ 25.26) = 1 − β. Recall that (in R)
Pr(χ2

k,λ ≤ X) is obtained as pchisq(X,k, λ) . Suppose that the NCP for a marker under
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the GWAS design is λ = 15. What is the power? This is Pr(χ2
1,15 ≥ 25.26), computed as

1- pchisq(25.26,1,15) , which returns a value of 0.12. Hence, the power of this test is
only 12%, meaning it would not be declared significant 88% of the time. What value of λ is
required for 80% power? A grid search yields λ = 34.43. This can also be obtained by using R
to plot Pr(χ2

1,15 ≥ 25.26) for different values of λ, e.g., curve(1- pchisq(25.26,1,x),
10,35) plots the power for λ over (10, 30). Similarly, for this critical value, the corresponding
λ values for 50% and 90% power become 25.26 and 39.79. Table 20.1 gives the required NCP
values for other parameter combinations.

A number of authors have developed expression for power, usually by obtaining ex-
pressions for the noncentrality parameter (λ) generated by a specific design (sample size)
and marker effects (Schork 2002; Xiong et al. 2002; Chapman et al. 2003; Purcell et al. 2003;
Edwards et al. 2005; Visccher and Duffy 2006; Altshuler and Daly 2007; Klein 2007; Yu et
al. 2008; Spencer et al. 2009; Yang et al. 2010a; Sham and Purcell 2014; Wang and Xu 2019).
As developed by these authors, the basic structure of the NCP is of the form λ = nr2g(p, a)
where n is the sample size, r2 is the correlation between marker and causal alleles, and
g(p, a) is the causal gene effect (a function of, at least, the allelic effect a and frequency p).
We first consider power calculations for a continuous trait under a random sample, and
then for a binary trait under a case-control design.

For a continuous trait,

λ = n

(
r2
MQσ

2
Q

1− r2
MQσ

2
Q

)
= n

(
σ2
M

1− σ2
M

)
(20.8a)

where σ2
Q is the causal variance and σ2

M = r2
MQσ

2
Q is the corresponding trait variance

explained by the marker. We can write the causal variance as σ2
Q = 2p(1 − p)β2, where β

(the slope of a regression of trait value on SNP allele count; Equation 20.1a) is the effect size
in phenotypic standard deviations. More generally, if additional cofactors are added to the
model, then the standard deviation refers to the residual variance, e.g., Wang and Xu (2019).
Because we typically expect r2

MQσ
2
Q ¿ 1,

λ ' nr2
MQσ

2
Q (20.8b)

The power for an imputed site follows by replacing r2
MQ by r2

impQ. The required sample
size to achieve a desired amount of power follows directly using the critical values in Table
20.1. For example, to have 80% power using a significance level of α = 5× 10−7 requires a
NCP value of 34.43. Solving for n

n ≥ 34.43
r2
MQσ

2
Q

Suppose the causal site accounts for 0.1% of the total variance and r2 = 0.4, then

n =
34.43

0.4 · 0.001
= 86, 075

The fraction of this sample size required for 50% power is 25.26/34.43 (the ratio of the NCPs
from Table 20.1), or 75% (63,150).

Now consider a case-control design, which is a form of selective genotyping (Chapter
18). The power of this design is a function of the difference in marker allele frequencies
between cases and controls (Klein 2007; Yang et al. 2010a; Evans and Purcell 2012). To
translate the effect of an underlying locus into the expected case-control allele frequency
difference, suppose the three genotypes have (multiplicative) risks of f : fγ : fγ2, and
let p be the frequency of the risk-increasing allele (γ > 1), and let K denote the disease
incidence (prevalence) in the population. For a design of ηn cases and (1− η)n controls,

λ = nr2
MQ

(
2p(1− p)(γ − 1)2η(1− η)

(1−K)2[1 + p(γ − 1)]

)
(20.9a)
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In order to compare the case-control power with that of a continuous trait, Yang et
al. (2010a) considered the threshold-liability model (Chapter 30). Under this model, there
is an underlying liability value y (assumed to be normally distributed with variance one),
with the disease expressed when the liability value exceeds some threshold (T ), so that
Pr(y ≥ T ) = K. On this scale, the fraction of the liability variance explained by the causal
locus is σ2

Q ' 2p(1 − p)(γ − 1)2/ι2, where ι is the mean value for the liability above the
truncation value, and is given byϕ(T )/K, whereϕ(x) is the unit normal function evaluated
at x (Chapter 30). The resulting NCP becomes

λ ' nr2
MQσ

2
Q

(
ι2η(1− η)
(1−K)2

)
(20.9b)

Suppose that a causal locus for a continuous trait (CT) and a causal locus under a case-
control (CC) design both have the same variance (σ2

Q on the observed, and liability, scales,
respectively). From Equations 20.8b and 20.9b, the ratio of the two resulting NCP values
becomes

λCC
λQT

=
(
nCC
nQT

)(
ι2η(1− η)
(1−K)2

)
(20.9c)

' ι2

4(1−K)2
(20.9d)

with Equation 20.9d applying for a design with equal number of cases and controls (η = 1/2)
and the same total design size (nCC = nQT ). Consider the relative power for a continuous
trait (say height) with that of schizophrenia. For this disease, K = 0.01, so that T = 2.33 (as
for a unit normal U , Pr[U ≥ 2.33] = 0.01) and ι = ϕ(2.33)/0.01 = 2.64, giving λCC/λQT =
2.642/[4 · 0.992] = 1.78. Hence, the same power for the case-control design occurs at 1/1.78
= 56% of the sample size of the continuous trait. For example, the power for a design with
120,000 individuals for the continuous traits is that same as for a design with around 33,000
cases and 33,000 controls. When the disease is rare, the power gain from in the case-control
design more than compensates for the reduction of signal when translating from the liability
to the observed (binary) scale.

Multitrait GWAS

As was the case for linkage mapping, marker-trait association machinery can be extended
from a single trait to a vector of traits. Multivariate traits arise naturally in many settings,
such as eQTL mapping (Chapter 21), analyzing correlated traits (Chapter 26), and exploring
genotype-by-environment (G x E) interactions (Chapter 27). As such, much of our discussion
on multiple trait GWAS is spread over these chapters, with just a few overview remarks
here.

As might be expected given the complexity of the task, a variety of different strategies
have been suggested for implementing a multitrait GWAS. These include fully multivariate
direct approaches, such as estimating the vectorβof regression coefficients of a focal SNP on
each of the traits (e.g., Wisser et al. 2011; Korte et al. 2012; Zhou and Stephens 2014; Turley et
al. 2018; Carlson et al. 2019) or multivariate path analysis (e.g., Grotzinger et al. 2019; Igolk-
ina et al. 2020; Pritikin et al. 2021). For estimation reasons (Chapter 26), direct approaches
are generally restricted to just a few traits (five or fewer). With a very large number of traits,
indirect approaches are often used. These extract some lower-dimensional feature(s) from
the trait vector, such as using the first PC of the phenotypic covariance matrix, and then
map this composite trait in a univariate GWAS (e.g., Aschard et al. 2014; Zhang et al. 2018;
Carlson et al. 2019). Approaches have also been suggested for combining information from
univariate analyses, such as incorporating the correlation structure between univariate esti-
mates (e.g., Hunag et al. 2011; van der Sluis et al. 2013). Finally, while often framed in terms
of testing each variant (SNP) separately, one can also use a gene-based (or more generally,
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set-based) approach as the predictor variables (e.g., Kim et al. 2016). For example, estimat-
ing the vector of trait regression coefficient not for a SNP but rather for some composite
SNP score over a region/set of interest.

Galesloot et al. (2014), Porter and O’Reilly (2017), and Chung et al. (2019) reviewed a
number of multitrait GWAS approaches and found that there is no one method which does
best under all settings. However, with correlated traits, all were generally more powerful
that performing a series of univariate analyses. A multiple trait GWAS borrows information
from correlated traits to improve the estimate of a focal trait, information that is not exploited
by a univariate analysis. Even when traits are genetically uncorrelated, they can still be
environmentally correlated (Chapter 27)—such as having correlated measurement errors—
and incorporating this residual covariance structure improves estimates.

Many of the same general issues about testing and combining information from multi-
ple sources that arose in gene-based GWAS also apply to a multitrait GWAS. For example,
in a gene-based setting, one might first test for the significance of the overall gene and then
perhaps attempt to detect signals associated with particular variants within such selected
genes. At a multitrait level, one might first test whether the β vector associated with a SNP
(or a more general set, such as a gene or pathway) is significantly different from zero. If so,
then one might test particular traits within this vector. Peterson et al. (2016a) proposed a
two-step FDR approach in such testing, first controlling the FDR on which variants have
a significant nonzero β vector and the controlling the FDR for the nonzero elements of β
within those selected SNPs.

CORRECTING FOR CRYPTIC RELATEDNESS AND POPULATION STRUCTURE

A marker-trait association is just that, a correlation between the value of a genotype and the
value of a trait. While our above discussion has assumed that this correlation arises because
a marker locus is in LD with a causal locus (QTL), it can also arise from other factors, such
as the presence of undetected relatives in the sample and/or undetected population struc-
ture. Given the enormous sensitivity of a modern GWAS to very small influences, these
spurious associations are potentially very problematic. Chapter 17 discussed the Trans-
mission Disequilibrium Test (TDT), wherein one examines whether a parent heterozygous
at a marker passes (transmits), or fails to pass, a specific allele to its offspring. For a ran-
dom allele, the probability of a transmitted or a nontransmitted event should be equal.
However, if we partition individuals by trait value (such as disease presence/absence), this
ratio can be skewed for alleles that are linked to causal loci (Example 17.20). By focusing on
within-family transmission, population structure is fully controlled when using the TDT,
and, given that it specifically uses known relatives, undetected relatives are not a concern.
Under a linkage analysis, relatedness is known, recent, and useful, while under an association
analysis, relatedness is typically unknown, distant, and a nuisance (Astle and Balding 2009).
Hence, during the early 2000s, the TDT was taken as the gold standard for replication of
a proposed candidate gene or association signal. However, this strategy is in conflict with
the motivation for transitioning to population-level association analysis, which was to avoid
the difficulty and resources required to collect a sufficiently large collection of families to
have reasonable power. Furthermore, the TDT can be challenging with late-onset diseases,
where it may be difficult to sample relatives (parents or sibs) of a case.

As detailed below, in an attempt to move away from family-based studies, a number
of approaches have been proposed using marker data to detect relatives and population
structure, and to correct for their effects. Examples 9.13 and 9.14 foreshadowed the nature
of these corrections, which are typically performed using mixed models (Chapter 10). We
will first examine corrections for the presence of relatives before turning to adjustments for
population structure. Essentially just one approach has been proposed to adjust for relatives,
while multiple approaches have been suggested for population structure. Reviews on a
number of the issues discussed below are given by Pritchard et al. (2000b), Pritchard and
Donnelly (2001), Hoggart et al. (2003), Voight and Pritchard (2005), Patterson et al. (2006),
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Tiwari et al. (2008), Astle and Balding (2009), Choi et al. (2009), Price et al. (2010a), Zhang
and Deng (2010), Sillanpää (2011), Sul et al. (2018), and Toosi et al. (2018).

Correcting for Relatives in the Sample

Early GWAS studies typically went out of their way to exclude known relatives (e.g.,
WTCCC 2007). The reason was simple: relatives share alleles (IBD) and have correlated
values for heritable traits (Chapter 7). This induces a correlation between shared alleles
and trait values, generating marker-trait associations even at markers unlinked to QTLs. In
humans, identification of close relatives upon sampling is often (but not always!) straight-
forward, while detecting more distant relatives can be more problematic. The situation is
much more challenging in natural populations, where pedigree relationships are typically
not observed, and hence must be inferred from marker data (Chapter 8). The same concern
arises when constructing association panels for mapping QTLs using collections of distinct
lines (e.g., Atwell et al. 2010). Some of these lines may have recent ancestors, and hence are
relatives, which may be unknown to the investigator. The presence of undetected relatives
in a sample is referred to as cryptic relatedness.

The remedy for these concerns was introduced in Chapter 19 in the form of mixed mod-
els (Chapter 10), with a random effect included for relatedness (Equation 19.29; Example
19.5). For example, the additive model for SNP k (Equation 20.1a) now becomes

zi = µ+ bkNi,k +Ai + ei (20.10a)

where bk is a fixed effect for the SNP, whileAi is a random effect for the background (additive)
polygenic value (the effect of QTLs not in LD with the focal SNP). From Equations 7.11a
and 19.30a, these polygenic values are correlated among relatives,

σ(Ai, Aj) = 2Θij σ
2
A (20.10b)

where σ2
A is the background additive variance for the trait, and the Θij can be estimated

from a known pedigree (Chapter 7) or from marker data (Chapter 8). Note that Equation
7.12 generalizes this approach to higher-order (nonadditive) shared polygenic effects.

The mixed model given by Equation 20.10a requires specification of the covariance
matrix of the Ai random effects. This is given by the n× n matrix for all of the pairwise Θij

values among the n individuals in the population sample. The resulting matrix in GWAS
studies is often called the K (for kinship) matrix by plant breeders or the numerator rela-
tionship matrix (A = 2K) by animal breeders, with the human literature using both. When
estimated solely from marker information, this is often called the genomic relationship
matrix (GRM; also the realized relationship matrix, RRM). Example 9.14 gives several
different marker-based estimates of the GRM. To avoid double-dipping of SNP informa-
tion (proximal contamination and a loss of power; Lippert et al. 2011; Sawcer et al. 2011;
Listgarten et al. 2012; Yang et al. 2014), usually the LOCO (leave one chromosome out)
approach is used (Yang et al. 2014). Here, the GRM is computed using marker information
for all chromosomes except the one on which the tested SNP resides. Hence, the GRM varies
slightly over chromosomes. Further, often a subset of the markers is used, trimming out
those that are in high LD with each other. Zaitlen et al. (2013) and Jiang et al. (2019) showed
that using a sparse GRM, truncating small values (e.g., 2Θ̂ij < 0.05 or 0.01) to zero captures
essentially as much variation as the full GRM.

Example 20.8 The resulting GWAS mixed model (testing markerk) that accounts for relatives
in the sample can be written as

z = Xβk + Zu + e,
(

u
e

)
∼
(

0
0

)
,

(
σ2
AK 0
0 σ2

e I

)
(20.10c)
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where the elements of GRM K are marker-based estimates of 2Θij (Example 9.14). The co-
variance matrix for the residuals (e) assumes an OLS structure (σ2

e I), but can be replaced by
σ2
e R to allow for more general GLS error structures (Chapter 10). Here u is the random vector

of background polygenic effects (theAi), the incidence matrix Z = I when all observations are
singletons, and (assuming the only fixed effect beyond an additive SNP effect is the mean, µ)
the structure of the vector Xβk is

Xβk =


1 2
1 0
1 1
...

...
1 Nk,n


(
µ
bk

)
=


µ+ 2 bk
µ+ 0
µ+ bk

...
µ+Nk,n bk

 (20.10d)

In this example, individual one (first row of X) is a reference homozygote (N = 2) at the
focal SNP (marker k), two is a nonreference homozygote (N = 0), three is a heterozygote,
and so on. Note that under fixed-effect modeling of SNP effects, this model is rerun for each
tested SNP. Because σ2

A is the polygenic variance accounted for by QTLs not in LD with the
tested marker, it potentially changes over markers, and hence needs to be reestimated for each
marker. The reader might note that the expected change in σ2

A over markers should be small,
but recall that a large modern GWAS can be influenced by very small effects. For all SNPs on
the same chromosome, the GRM is unchanged, but the elements in the second column of X
(corresponding to the genotypes at the focal SNP) vary with over markers.

If additional fixed effects (cofactors) are included, these add extra columns to X with the
corresponding fixed effect added to βk (Chapter 10). For example, if the general genotype
model (Equation 20.1b) is fit, then

Xβk =


1 2 0
1 0 0
1 1 1
...

...
...

1 Nk,n Hk,n


 µ
bk
dk

 =


µ+ 2 bk
µ+ 0

µ+ bk + dk
...

µ+Nk,n bk +Hk,n dk

 (20.10e)

Correcting for Population Structure: Genomic Control

Another confounding factor is population structure (or population stratification), wherein
one has unknowingly sampled from several different subpopulations (or strata). More gen-
erally, there can also be individuals in the sample with different amounts of admixture
(carrying genes from two, or more, of the subpopulations). Such individuals may not fall
into discrete strata, but rather could form a potential continuum of admixture (continuous
admixture populations). The concern is that if disease risks (or trait means) differ over
these strata (or over amounts of admixture), and similarly some SNP frequencies also vary
over strata, marker-trait associations can be created (Knowler et al. 1988; Spielman et al.
1993; Lander and Schork 1994; Risch 2000; Cardon and Palmer 2003; Freedman et al. 2004;
Marchini et al. 2004; Clayton et al. 2005). For example, suppose allele M (at a particular SNP,
unlinked to any QTL) is common in subpopulation 1, but rare in subpopulation 2. Simul-
taneously, subpopulation 1 has a higher disease risk (or trait mean) than subpopulation 2.
The presence of M predicts membership in group 1, which, in turn, predicts a higher dis-
ease risk (or larger trait value), generating a marker-trait association. Note that population
subdivision may not be obvious to even a careful investigator, leading to the concern of
undetected cryptic stratification introducing false positives. The original large-scale GWAS
(WTCCC 2007) did a careful analysis to ensure that there was little stratification, in both
the cases and controls, as well as between them. The latter point is of special concern, in
that cases and controls are assumed to be drawn from the same population. Failure to do so
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creates stratification and the potential for numerous false positives. One potential generator
of stratification at the case versus control level is ascertainment bias: for example, cases
could easily be oversampled from one strata if its members are overrepresented in clinics
(Astle and Balding 2009).

Example 17.19 showed a classic example of stratification with diabetes in members of
the Pima nation in southern Arizona. Here the focal marker predicted whether an individual
had some amount of admixture with Caucasians, a lower risk population. A more recent
example is the work of Campbell et al. (2005), examining height in a collection of European
Americans. No stratification signal was seen in a panel of roughly 200 SNPs, but a SNP
in the LCT gene (associated with the persistence of lactase) showed a strong association
with height (p < 10−6). This allele showed a cline of increasing frequency from southern
to northern Europe, roughly matching a similar trend seen in height. When individuals
were corrected for ancestry, the signal was greatly reduced overall, and absent in some
comparisons.

Increasingly sophisticated population genetics models have examined the impact of
stratification and admixture on generating spurious associations (Devlin and Roeder 1999;
Pritchard and Rosenberg 1999; Wacholder et al. 2000; Gorroochurn et al. 2004; Rosenberg
and Nordborg 2006). A few generalizations emerge from this work. First, spurious associ-
ations usually tend to be less severe in admixed populations relative to the corresponding
mixture of discrete subpopulations. Second, the largest impact occurs when lower-risk
subpopulations make up a larger fraction of the sample. Finally, the severity of spurious
associations usually decreases as the number of underlying subpopulations increases.

The first general approach to adjust for population structure was the method of genomic
control, GC (Devlin and Roeder 1999; Bacanu et al. 2000, 2002; Devlin et al. 2001a, 2001b,
2004), using a single correction over all tests (a closely related method was independently
proposed by Reich and Goldstein 2001). Suppose a disease GWAS is conducted using a
trend test (Equation 18.15). Under the null (no linkage to a QTL), the resulting test statistic
at each marker follows a chi-square with one degree of freedom (χ2

1). Devlin and Roeder
(1999) noted that when population structure is present, all of the marker test statistics should
be enhanced by a common genomic inflation factor, λ. If Sk denotes the test statistic value
for marker k, then under the null in the presence of population structure, Sk ∼ λχ2

1, so that
Sk/λ ∼ χ2

1, suggesting a correction for structure applicable to all tests. Devlin and Roeder
showed that the inflation factor (with case-control data) is given by

λ = 1 + n

[
FST

∑
j(Dj − Cj)2 − 2FST

1 + FST

]
(20.11a)

where each subpopulation has n sampled cases and n sampled controls, Dj and Cj are the
fraction of cases (diseased) and controls, respectively, in the jth population, and FST is a
measure of population structure (the fraction of marker variation due to among-population
differences; WL Chapter 2). Observe that λ increases with the sample size (n), so that larger
samples should show more bias. For large n and small FST ,

λ ' 1 + n

FST∑
j

(Dj − Cj)2

 (20.11b)

As first noted by Devlin and Roeder (1999), cryptic relatedness also inflates λ (e.g., Sawcer
et al. 2011), and Voight and Pritchard (2005) developed expressions for λ under a variety of
relationship scenarios. The latter’s conclusion was that deep relationships have a minimum
impact of λ, so that a random sample from a large single outbred population should not
be impacted. However, sampling bias that favors choosing relatives (such as cases being
weakly related) can have a profound impact.

How does one go about estimating λ? Because the expected value of a χ2
1 is 1 (Equation

A5.14b), one might initially consider using the mean value (S) of test statistics over all
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markers as an estimate of λ, e.g., the mean estimator

λ̂mean = S (20.12a)

The limitation with this approach is that we expect some small fraction of the markers are
indeed linked to QTLs, and would generate largeS values. Including these when computing
the mean value under the null inflates the estimate of λ. Statisticians often deal with such
outliers by using the ranks of the data in place of their actual values (e.g., Conover 1999;
Sprent and Smeeton 2007), and Devlin and Roeder (1999) used this idea to propose a median
estimator for λ. Note that Pr(χ2

1 ≥ 0.4549) = 0.50, so that the expected median value of
test statistics under the null is 0.4549 (half of the tests are expected to be above, and half
below, this value). By considering ranks, rather than values, extreme outliers do not unduly
influence rank-based statistics. Ordering the values of the test statistics over the mmarkers
from smallest (S[1]) to largest (S[m]), the Devlin-Roeder estimator is given by

λ̂med =
median(S[1], · · · , S[m])

0.4549
(20.12b)

where median(·) denotes the value separating the upper half of test scores from the lower
half. Other robust estimators forλwere discussed by Wang (2009). Finally, Devlin et al. (2004)
noted that both Equations 20.12a and 20.12b ignore variation in the Sk, and suggested their
GCF estimator, where

Sk

S
∼ F1,m (20.12c)

so that the GCF-adjusted test statistic follows a scaledF , rather than a scaledχ2, distribution
(for very large m, F1,m approaches a χ2

1). Equation 20.12c follows because

S =
1
m

m∑
k=1

Sk ∼
1
m

m∑
χ2

1 ∼
χ2
m

m
(20.12d)

with the last step following because the sum of m χ2
1 is a χ2

m random variable (Equation
A5.14c). Hence, from the definition of the F distribution (Appendix 5),

Sk

S
∼ χ2

1/1
χ2
m/m

∼ F1,m

Dadd et al. (2009) found GCF outperformed GC based on either λmean (GCmean) or λmed
(GCmed). We have framed the above discussion of GC in terms of testing the additive (or
trend) model. Zheng et al. (2005) examined the power of using a trend-test based GC when
dominance is present, while Zheng et al. (2006) extended GC to the general genotype model.

While conceptually elegant and simple, one immediate flaw with GC is that all markers
are treated equally. As a result, the relative rankings of the markers do not change under genomic
control. All marker tests are adjusted by the same amount, when in fact, a more marker-
specific approach is required. In Equation 20.11, FST is the mean value over all markers
(FST ), while markers with excessive divergence relative to the average (FST À FST ) should
receive greater adjustments (Price et al. 2006; Kang et al. 2010). Thus we would expect that
a proper correction for structure is likely to change the rankings of some of the markers.
As a result, GC is usually no longer used to correct for population structure. However, as
with many ideas in science, GC has been recycled, and is now often regarded as a useful
metric of model fit. The values of λ before and after a model-based correction are compared
to assess how well the model reduced the impact from confounding effects. The rough rule
of thumb historically used is that a value of λ ≤ 1.05 implies that the model has largely
corrected for any structure (e.g., Price et al. 2010a). However, as we now show, one can
observe significant inflation in the absence of any confounders if a large number of small effect
QTL underlie a trait.
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Adjusting for Inflation from Polygenicity: LD Score Regression

GC estimates of λ assumes that only a very, very small fraction of tested markers are in LD
with QTLs. This assumption fails if a large number of small effect QTLs underpin a trait (the
polygenic model). Yang et al. (2011a) showed that in this setting, significant inflation can
be generated even in the absence of any population structure. In particular, they showed
that the impact of polygenes on the genomic inflation factor is

λ ' 1 + n

(
h2 r2 s

m

)
(20.13a)

Here n is the sample size, h2 the trait heritability,m the number of tested SNPs, s is average
number of SNPs in LD with causal variants, and r2 is the average r2 LD between a causal
variant and a marker. Notice that, as with inflation from population structure, λ increases
with the number of individuals genotyped (n), reflecting the increased power to detect
small effects.

Yang et al. (2011a) examined two GWAS studies for human height: the QIMR study
of just under 4000 individuals (Yang et al. 2010b) and the GIANT composite GWAS with
a combined sample size of around 184,000 (Lango Allen et al. 2010). Substituting GWAS
estimates from the QIMR study into Equation 20.13a suggested a λ median estimate of
around 1.03, consistent with the observed value. For the much larger GIANT data set, the
observed λ value (based on the median estimator) was 1.55, again consistent with the value
predicted by Equation 20.13a. Hence, for a highly polygenic trait, a significant fraction of
the markers will show elevated values, resulting in a genomic inflation factor much larger
than one, even in the absence of population structure. Figure 20.3 underscores this point.
Further, this effect is expected to be more pronounced as the GWAS size increases.

Bulik-Sullivan et al. (2015) proposed the method of LD score regression to adjust for the
inflation due to polygenicity. Their logic was that the impact of population structure should
(generally) not scale with the LD reach of a variant, while the impact from polygenicity
should (as the marker is impacted by a greater number of causal sites). For a given marker
j, they defined its LD score as

`j =
∑
i

r2
ji (20.13b)

where the sum is over scored variants in LD with the focal variant, and r2
ji the correlation

between markers j and i. Under a model where average effect size increases as the minor
allele frequency decreases (large-effect alleles tend to be rarer; Chapter 21), they showed
that the expected test statistic for a non-causal marker j is

E
[
χ2 | `j

]
=
[
nh2

m

]
`j + nα+ 1 (20.13c)

where m is the number of SNPs, h2 is the trait heritablity, and α denotes the inflation factor
from confounders (such as the bracketed term in Equation 20.11b). One then regresses
the observed test statistic for marker j on its LD score, `j . Bulik-Sullivan et al. noted that
this is most optimally done as a weighted regression (Example 10.8), and discuss various
weighting schemes (see their paper for details). Note that the intercept from the fitted
regression (which removes the impact of polygenicity) has expected value 1 + nα, so that
the intercept minus one estimates nα, the inflation from confounders. Figure 20.3 shows
that most of the inflation seen in a number of large GWAS experiments appears to be due
to polygenicity.
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Figure 20.3 Plot of the LD score regression estimates of λ (the intercept of Equation 20.13c
minus one) on the vertical axis versus the λ value estimated from GC on the horizontal axis.
The data are from 20 different traits examined in large GWAS studies. Note that many of the
GC values are rather large (the two largest, ' 1.5, are for height and schizophrenia), which
might suggest major effects from confounders such as relatedness or population structure.
However, the LD-score estimates are all much smaller, suggesting that the vast bulk of the
inflation over all these traits is from polygenicity. (Data from Bulik-Sullivan et al. 2015).

Correcting for Population Structure: Structured Association Mapping

While GC attempts to correct for any population structure, next-generation methods further
try to quantify the nature of this structure (i.e., how many strata, prediction of strata mem-
bership, etc.). These methods are based on the idea that marker data provide information
about subpopulation membership. One such signal is that differences in allele frequencies
between subpopulations generates LD between unlinked markers in the combined popula-
tion sample. To see this, suppose all population 1 individuals are AABB, while all population
2 are aabb. When the populations are combined into a single sample, assuming equal con-
tributions from both populations, pA = pB = 0.5, while the LD is

DAB = freq(AB)− freq(A)freq(B) = 0.5− 0.52 = 0.25

We present this extreme case (differential fixation) to show the basis for this phenomena. In
most settings, very small amounts of LD are generated between pairs of unlinked loci that
differ in frequency over subpopulations. Such subtle signals require a reasonable number
of markers to detect.

This phenomena was exploited by Pritchard and Rosenberg (1999), Pritchard et al.
(2000a, 2000b), and Falush et al. (2003, 2007), who assumed that a population sample of
interest consisted of k subpopulations, each in Hardy-Weinberg proportions. They then
used an MCMC sampler to develop a Bayesian classifier to assign individuals into clusters.
Assignment was done in such a way as to minimize the LD between unlinked loci within each
cluster. Their program, STRUCTURE, returns a vector of posterior probabilities of group
membership for each sample member. For example, with k = 3, this vector might be (0.3,
0.1, 0.6), so that this individual is most likely from group three and least likely from group
two. More generally, this could also be interpreted that this individual shows admixture,
with 30% of its genes from population 1, 20% from 2, and 60% from three, although Zhu et
al. (2002) and Zhang et al. (2003) suggest some caution with this interpretation. Approaches
for estimating the number of subpopulations (S) were offered by Pritchard and Rosenberg
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(1999), Zhu et al. (2002), Evanno et al. (2005), Price et al. (2006), Camus-Kulandaivelu et al.
(2007), and Lawson and Falush (2012). The last authors noticed that the presence of highly
related individuals in the sample can lead to unreliable group assignment. While SNPs are
often the marker of choice, Thornsberry et al. (2001) showed that 141 highly polymorphic
SSR markers (Chapter 8) were sufficient to allow STRUCTURE to account for population
structure in a set of 92 maize lines.

Pritchard et al. (2000b) proposed using these probabilities of group membership to
perform structured association mapping (SAM), essentially testing for association within
each subpopulation. Using such latent (underlying, but unmeasured) variables to control
for population structure was also suggested by Ripatti et al. (2001), Satten et al. (2001), and
Sillanpää et al. (2001). Consider a quantitative (as opposed to a binary) trait. Let the vector
qTi = (qi,1, qi,1, · · · , qi,S−1) denote membership probabilities for individual i (because the
qij sum to one, qiS = 1−

∑S−1
j qij), and let µ+ vi denote the mean value of the trait from

group i. In this setting, the adjusted group-weighted mean for individual i becomes

µi = µ+
S−1∑
j=1

qi,j vi (20.14a)

Note under this coding the µ is the mean for group S. One could equivalently code this so
that the vj are deviations from the overall population mean (µ). The population-structure
corrected additive model (Equation 20.1a) becomes

zi = µi + bkNi,k + ei

=

µ+
S−1∑
j=1

qi,j vi

+ bkNi,k + ei (20.14b)

The term in parentheses adjusts for mean trait values varying over groups, removing the
effects of structure (to the extend thatqi captures this). In linear model form, forn individuals
and S groups, we can add the vector of population structure corrections as

Qv =


qT1
qT2
...

qTn




v1

v2
...

vS−1

 =


q1,1 q1,2 q1,3 · · · q1,S−1

q2,1 q2,2 q2,3 · · · q2,S−1

...
...

... · · ·
...

qn,1 qn,2 qn,3 · · · qn,S−1




v1

v2
...

vS−1

 (20.14c)

where Q is a known matrix, and the vector v is estimated (as a fixed effect) from the data.
The resulting linear model becomes

z = Xβ+ Qv + e (20.14d)

Example 20.8 gives the structure of Xβ under both the additive and general genotype
models.

Correcting for Population Structure: Principal Components

While the STRUCTURE approach is very elegant, it is computationally demanding and its
performance in continuous admixture settings is somewhat unclear. An alternative strat-
egy was proposed by Zhu et al. (2002), Zhang et al. (2003), and Price et al. (2006), using the
principal components (PCs) of the covariance matrix C of marker information (a PCA, or
principal component analysis, also called an eigenanalysis). PCs and eigenvectors were
discussed in Chapter 9, and the reader might find it useful to review that material before
proceeding. Recall that the first principal component (PC1) is the (unit-length) vector cor-
responding to the direction of the most variation in the distribution space described by C.
This is also the leading eigenvector (e1), namely that associated with the largest eigenvalue
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of C. The idea is that instead of running a computationally demanding Bayesian classifier,
one could take a small number of PCs and use these to capture structure in the marker data,
presumably corresponding to distinct subpopulations and/or axes of admixture within
the sample. Price et al. (2006) called this approach EIGENSTRAT (based on their program
name).

The use of principal components to assign individuals into subpopulations traces back
to Menozzi et al. (1978). There is sufficient theoretical work to justify this assumption. For
example, Patterson et al. (2006) noted that “natural models of population structure predict that
most of the eigenvalues ... will be ‘small,’ nearly equal, and arise from sampling noise, while just a
few eigenvalues will be ‘large,’ reflecting past demographic events.” Bryc et al. (2013) showed (for
a sufficient number of individuals and markers) that there is a high probability of S large
eigenvalues for a population consisting of S well-differentiated subpopulations. Novembre
and Stephens (2008) showed that PCs can also pick up signals of spatial differentiation in an
otherwise continuous population. One note of caution: while PCA of population structure
is generally powerful, is not fool proof. Kimmel et al. (2007) and Zhao et al. (2007) noted
that there are situations where PCs do not appropriately correct for population stratification.
For example, if cases and controls come from different populations, then a PCA will detect
this stratification, but the resulting correction will also remove the QTL association signals.
A second complication is that common alleles can show different stratification signature
relative to rare alleles in the same sample (Mathieson and McVean 2012; Zaidi and Mathieson
2020), and PC approaches typically use common alleles. We will return shortly to this point.

Patterson et al. (2006) developed a rather remarkable result, based in theoretical work
on the eigenstructure of covariance matrices (Baik, Ben Arous, and Péché 2005). A covariance
matrix with just a few expected large eigenvalues shows a phase-change transition, where
if the amount of population signal is slightly above a threshold value there is a strong
eigenvalue signal, while if the amount of signal is slightly below this threshold, no clear
eigenvalue signal is present. Patterson called this value the BBP threshold (after the authors
of the motivating theoretical paper), and noted that withmmarkers and n individuals, this
threshold is

τBBP =
1√
nm

(20.15)

An FST value above τBBP generates a clear eigenvalue signal, while populations with
FST below this level have little signal. For 100,000 markers scored in 1000 individuals,
τBBP = 0.0001, so that population structure such that FST > 0.0001 should have a strong
PC signal.

The PC correction for stratification proceeds as follows. Consider a marker matrix M
for the scored genotypes at m markers over n individuals, where

Mn×m =


g1,1 g1,2 · · · g1,m

g2,1 g2,2 · · · g2,m

...
... · · ·

...
gn,1 gn,2 · · · gn,m

 (20.16a)

Here gi,j is the number of copies of the reference (typically the minor) allele at marker j in
individual i (taking on values of 0, 1, or 2). Hence, the ith row are the m marker scores for
individual i, while the jth column are the values for marker j over the n individuals in the
sample. M often represents a trimmed set of the SNPs used in the GWAS, but this need not
be the case. Zou et al. (2010) showed that PCs can be influenced by sets of linked SNPs in
high LD, falsely suggesting subpopulations. One approach to adjust for this is thinning,
wherein SNPs are pruned such that adjacent markers in high LD are excluded (e.g., Fellay
et al. 2007). Zou et al. noted that thinning discards potentially useful information, and
instead suggested a weighting scheme to adjust individual SNPs based on their LD scores
(Equation 20.13b). Note that the concern here is with high levels of LD between tightly-linked
SNPs. The low levels of LD expected between unlinked SNPs due to the presence of structure
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are not impacted by these corrections. Finally, the LOCO approach is used, so that each
chromosome has a specific M matrix, based on all of the used markers except for those on
the focal chromosome.

Typically, two adjustments are made to the elements of M before a PCA. First, the
elements are centered

gc,i,k = gi,k − 2pk, where pk =
1

2n

n∑
j=1

gj,k (20.16b)

so that the column average is zero. Second, the centered elements are then normalized (so
that all have the same variance). Note that gi,k is just a binomal random variable (Equation
2.19a; with n = 2 and p = pk), and hence (Equation 2.19c) has a variance of 2pk(1 − pk),
leading to

gn,i,k =
gc,i,k√

2pk(1− pk)
(20.16c)

Denote the centered, normalized marker matrix by M∗. A PCA analysis then proceeds on
the covariance between individuals in marker scores. The resulting n×n covariance matrix
is given by

Cn×n =
1
m

M∗n×m(M∗)Tm×n (20.16d)

where the ijth element of C is the inner product of the ith and jth rows of M∗,

Cij =
1
m

m∑
k=1

M∗ikM
∗
jk =

1
m

m∑
k=1

(gi,k − 2pk)(gj,k − 2pk)
2pk(1− pk)

(20.16e)

Note from Equation 8.15b is that this is just the correlation estimate of 2Θij , which assigns
more weight to loci with rare alleles. Hence, if the same set of markers is used to correct for
close relatives and to correct for structure, C is just the GRM used for kinship.

Let ej (length n× 1) denote the jth eigenvector of C, namely that associated with the
jth largest eigenvalue. The projected ancestry, aij , of individual i along the jth axis of
variation in C is given by the ith entry in ej . The correction for differing means over the
subgroups follows using the aij , with the adjusted mean value for individual i given by

µi = µ+
S∑
j=1

aij vj (20.17a)

where the vj are fixed effects, estimated by the model. The full model correcting for popu-
lation structure is given by Equation 20.14b, with Equation 20.14c now using

Qv =


a11 a12 a13 · · · a1S

a21 a22 a23 · · · a2S
...

...
... · · ·

...
an1 an2 an3 · · · anS



v1

v2
...
vS

 (20.17b)

The number (S < n) of nontrivial PCs to include in Q is a classic PCA problem, with a
number of proposed solutions (reviewed by Peres-Neto et al. 2005). One approach is a visual
examination of the eigenvalue scree plot (Figure 9.1), given the expectation of a few large,
and many small, eigenvalues. However, stopping based on some observed inflection point
in the scree plot is ad-hoc and often chooses too many PCs. More formal tests have been
proposed. For example, Patterson et al. (2006) used the Tracy-Widom distribution of the
largest expected eigenvalue of a covariance matrix (Tracy and Widom 1994) to estimate the
number of significant PCs. Simulations by Shriner (2011, 2012) showed that this approach
also systematically overestimated the number of PCs, and that the bias is larger in admixed
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populations (Patterson et al. also noted overestimate problems under admixture). Shriner
suggested that part of this bias may occur because stratified and admixed populations
display departures from Hardy-Weinberg (even if the underlying subpopulations are in
HW). Shriner found that an alternative stopping rule, Velicer’s minimum average partial
test (Velicer 1976), correctly selected the number of PCs to include. Velicer’s criteria stops
including PCs when the average of squared corrections (following removal of the included
PC effects) starts to increase. Alternatively, Tucker et al. (2014) suggested that as a general
rule incorporating five PCs was generally sufficient to correct for stratification in many (real
and simulated) settings. A caveat with any stopping rule is that the aim under GWAS is
not to include all nontrivial PCs, but rather just those that manage to capture the impact of
subpopulation structure and/or admixture.

Two final comments on the PCA approach. Lee et al. (2011) derived the relationship
between PC corrections and genomic control, noting that the latter could be expressed as
the sum of squared correlations between a PC and the trait value, each term weighted by
the eigenvalue for the corresponding PC. Li and Yu (2008) extended the PC approach by
jointly clustering individuals and then also correcting by PC score.

Using Admixed Populations Can Improve the Power of a GWAS

Finally, while structured populations are typically treated a complication that needs to be
corrected, starting with Pasaniuc et al. (2011), it was realized that using admixed populations
can often improve the power of a GWAS relative to a similarly sized unstructured population
sample (Zhang and Stam 2014; Atkinson et at. 2021; Lin et al. 2021; Hou et al. 2021). The
notion is that differential selection pressures and drift can result in differences in causal
allele frequencies between the underlying subpopulations contributing (either directly or
via admixture) to the mapping population sample. As a result, causal variants may be at
more intermediate frequencies in an admixed population, and hence offer greater power.
One measure of such power would be the FST values of the causal alleles of the focal trait.
Lin et al. (2021) estimated that causal-site based FST values in excess of 0.5 were commonly
found for traits in humans. With a strong reference sample (such as can be obtained for
some human populations), one can use the haplotypes around a particular SNP allele to
infer its ancestry, a proceed called local ancestry inference (LAI). The Tractor approach
of Atkinson et al (2021) leverages such LAI estimates by modifying the basic gene-dosage
regression (Equation 20.1a) to

zi = µ+
np∑
j=1

bk,jNi,k,j + ei

where Ni,k,j(= 0, 1,or 2) is the number of reference alleles (from SNP k) in individual i that
originated from ancestral population j. Hence, the modification is to partition the reference
allele (at the focal SNP) further into the ancestral population that contributed it to individual
i. The gain in power using this approach occurs when the effect size tagged by a marker
effect varies substantially over the ancestral populations.

MIXED-MODEL GWAS ANALYSIS

The QK Model

Mixed linear models (Chapter 10) provide an ideal framework for the joint incorporation
of corrections for recent (kinship) and deeper (population stratification) ancestry. While the
above discussion showed the early roots of mixed-model based GWAS analysis (especially
when correcting for cryptic ancestry), it was Yu et al. (2006) who jointly incorporated cor-
rections for both kinship and stratification. The result was their QK model. Their motivation
was in the analysis of complex association panels, such as those used by plant breeders.
These panels are typically constructed from a very diverse set of inbred lines, leading to a
collection of both related lines and sets of lines from very different subpopulations (often
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representing a global sample of diversity). By their nature, such panels have both recent
and deep shared ancestry.

The QK model proceeds by first partitioning fixed effects into three distinct sets of
factors (β,v, bk,). Two of these sets are common over all markers: the vector of trait covariates
β (such as sex, age, or environmental effects) and the vector of population structure effects
v, while bk is the specific SNP effect for the marker being tested. This is under an additive
model, while under the general genotype model bk is replaced by the vector (bk, dk) of
additive and dominance effects (Equation 20.1b). Random effects enter as the vector u of
polygenic values and the vector of residuals (e). The resulting model for testing marker k
becomes

z = Xβ+ Nkbk + Qv + Zu + e (20.18a)

The vector Nk has Ni,k as its ith component (the number of copies of the reference allele in
individual i), while the vector Qv adjusts for population structure (either by STRUCTURE
or a PCA; Equations 20.14c or 20.17b, respectively).

Hence, we can write the vector of adjusted mean values as

µ∗ = Xβ+ Qv (20.18b)

Combining the two random effects as e∗ = Zu + e, Equation 20.18a can be written as

z = µ∗ + Nkbk + e∗ (20.18c)

Assuming OLS for e (Equation 10.10), the variance-covariance matrix for e∗ is

V = σ2
AZKZT + σ2

eI = σ2
A(ZKZT + δ2I), where δ2 =

σ2
e

σ2
A

(20.18d)

Here, K is the genomic relationship (GRM), or kinship, matrix (whose elements are the
marker-based estimates of 2Θij), and these joint corrections for structure (Q) and kinship
(K) lead to the term QK model. Some authors (e.g., Sun et al. 2010) use P when PCs are used
and Q when STRUCTURE is used (e.g., PK vs. QK models). Adjusting the data to have a
mean of zero (in the absence of a SNP effect) leads to

z∗ = z− µ∗ = Nkbk + e∗ (20.18e)

With estimates of µ∗, σ2
A, and σ2

e , this is just a GLS regression (Equation 10.13a), with V
given by Equation 20.18d. One can think of the adjustment for population structure as a
fixed effect correction (a change in the mean), while cryptic relatedness enters not through
the mean, but rather through correlations among the residuals (e∗ not being of OLS form).

Example 20.9 Because both Q and K control for relatedness (distant and more recent, respec-
tively), obvious questions for a QK model are whether both corrections are needed, and if only
one correction is applied, which one is better. The answer depends on the (typically unknown)
relationship structure of the sample. Yu et al. (2006) considered three traits (flowering time, ear
height, ear diameter) in a diverse panel of 277 maize inbred lines. They compared the Q model
(Equation 20.18a with no u term; a structured population analysis), the K model (Equation
20.18a with no Q term (a single-population model with polygenic control for shared recent
ancestry), and the Q+K model (the full version of 20.18a). Over the three traits, all models
showed better performance relative to the simple model where both u and Q were absent.
Among the three corrections for confounding, the performance rankings were Q lowest, K
better, and Q+K just slightly better than K alone. For example, for flowering time, roughly
38% of the examined 560 SNPs were significant (p < 0.05) under the simple model, while
this fraction was reduced (presumably by reducing the fraction of false positives) to 14% for
the Q model, 6.1% for the K model, and 6.0% for the Q+K model.
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Yu et al. also examined power under different assumed effect sizes. The choice of trait im-
pacted power calculations because the impact of both structure and close relatedness depend
on the genetic structure of the particular trait. Both the Q and K models had greater power
than the simple model. For ear height and flowering time, the Q+K model had the greatest
power, while for ear diameter, K had slightly higher power than Q+K.

Zhao et al. (2007) also examined whether the K model alone was sufficient, or if Q must
also be included in an association panel of 95 Arabidopsis accessions. As did Yu et al, they
found that while the K model worked well, the Q+K model gave better results. However,
when they computed kinship using percentage of shared haplotypes (which they called K∗),
the K∗ model alone was essentially as good as the K∗+Q model. Conversely, Bradbury et
al. (2011) found that the K-only model was superior to other models over a wide range of
conditions given the population structure of their collection of Barley lines.

Kinship and Structure: Recent Versus Deep Ancestry

The thoughtful reader might have wondered about our apparently sharp distinction be-
tween kinship and population structure (K versus Q), as both are metrics of shared ances-
try, the former of recent ancestry, the latter of deeper ancestry. Further, the two corrections
often use the same marker information, as the GRM for kinship correction is often used by
the PCA to extract axes of population structure. However, this not need be the case, as the
GRM for kinship correction and the marker matrix for the PCA correction for structure can
contain different sets of markers. Indeed, there are suggestions in the literature that while
the structure correction should use a very large set of markers (to capture small signals;
e.g., Equation 20.15), kinship may be efficiently captured using a much smaller number of
markers (Lippert et al. 2011; Listgarten et al. 2012, 2013; Tucker et al. 2014; Liu et al. 2016;
Jiang et al. 2019).

Despite the fact that different set of markers can, in principal, be used for kinship and
structure corrections, the issue remains as to why the Q+K model often outperforms either
the K or the Q models (Example 20.9). The key is that the dimensionality of deep ancestry
(i.e., population structure) is different from that for kinship. When structure is present, a
random individual shares deep ancestry with a considerable fraction of the population, and
this signal is often largely captured by the first few PCs of the marker covariance matrix. In
contrast, a random individual (the absence of large extended pedigrees) likely shares recent
kinship with only a very, very small fraction of the sampled population. Hence, while recent
kinship itself might not be uncommon, it is caused by a large number of very small groups
of close relatives. The small signal for each such cluster of close relatives is manifested by
very low rank eigenvalues from the GRM. Hence, when the GWAS sample is a mixture of
both deep and recent ancestry (such as often occurs with plant association mapping panels),
the resulting eigenstructure has a few high-ranking eigenvalues from deep ancestry and
a long tail of small eigenvalues from shared recent kinship. While PCs are a poor way to
exploit information from these small clusters of recent relatedness, these correlations can
be efficiently utilized by the GRM.

Another was to think about independent contributions from Q and K, even when both
use the same GRM, is the REML variance estimation framework (Chapter 32). Under a
REML analysis, one first removes the impacts from any fixed effects. The REML variance
estimate is thus the residual variation that remains after the fixed effects are removed.
Because PCAs are entered as fixed effects, the REML estimate for σ2

A that forms the basis
for the kinship correction extracts the remaining information not captured by the PCs.

Computational Improvements

There has been a considerable amount of theoretical work build around the basic QK struc-
ture for a GWAS (Table 20.2), most of it related to making this mixed model computationally
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Table 20.2 Optimization and approximation methods for improving the efficiency of a mixed-model
GWAS. Optimization methods attempt to find numerically more efficient methods for solving the
exact mixed-model equations. Most approximation approaches start by assuming a constant value
for polygeneic variance, rather than the exact model which allows this to vary over markers.

Continuous traits: Optimization of exact solutions

EMMA Efficient mixed-model association Kang et al. (2008)
FaST-LMM Factored spectrally transformed LMM Lippert et al. (2011)
GEMMA Genome-wide efficient mixed-model association Zhou and Stephens (2012)

Continuous traits: Approximation of exact solutions

EMMAX EMMA expedited Kang et al. (2010)
P3D Population parameters previously determined Zhang et al. (2010)
GRAMMAR Genomewide rapid association using mixed Aulchenko et al. (2007)

model and regression
GRAMMAR-GC Amin et al. (2007)
GRAMMAR-Gamma Svishcheva et al. (2012)
BOLT-LMM Loh et al. (2015a)
fastGWA Jiang et al. (2019)

Binary traits: Linear model approximations

LTMLM Liability-threshold mixed linear model Hayeck et al. (2015)
LEAP Liability estimator as a phenotype Weissbrod et al.(2015)

Binary traits: Logistic regression optimization/approximation

GMMAT Generalized linear model association test Chen et al. (2016)
SAIGE Scalable and accurate Implementation of Zhou et al. (2018)

generalized mixed model

more efficient so that it can scale to the size of a modern GWAS (n > 104,m > 106). Using
standard methods for solving mixed models (Chapter 32), the run times scale as at least
O(mn3). In the QK model, the vectors β and v of fixed effects, and the polygenic variance
σ2
A (and its associated vector u of random polygenic effects) are all nuisance parameters,

variables that must be included in the model, but that are generally not of much interest by
themselves (although we will return to the polygenic variance in Chapter 32). In a GWAS,
the sole interest is usually whether bk is significantly different from zero.

The computationally demanding step in applying the full QK model to each of the m
markers is the estimation of the background polygenic additive variance, σ2

A. In an exact
analysis, σ2

A must be reestimated for each different SNP as, in theory, it changes slightly
depending in the tested SNP. Indeed, we could have written this as σ2

A(−k) to remind the
reader of this fact, but choose not to for ease of presentation. Differences in σ2

A among
markers are largest when comparing a marker with a large effect and one with a small
effect. The latter has the large-effect site incorporated into σ2

A, while the former has it
removed. Hence the common assumption of an equal value of the polygenic variance σ2

A

over all markers (Table 20.2) is not really problematic for markers of very small effects (their
removal results in very small marker-specific changes in σ2

A). With large-effect markers,
however, this constant-variance assumption can introduce bias. One simple solution is to
incorporate a few of the largest-effect SNPs as cofactors (Chapter 18), which should result
in a more consistent value of σ2

A over markers.
Running a full mixed model analysis on the millions of markers (directly scored or

imputed) in a modern GWAS is thus computational very demanding, as standard methods
for the estimation of σ2

A typically scale as (at least) O(n3) (Chapter 32). Thus, a GWAS with
tens of thousands of individuals and millions of markers is exceptionally challenging if
an exact mixed-model analysis is performed on each marker. With σ2

A and σ2
e estimated,

inversion of the n× n matrix V (Equation 20.18d)—itself not a trivial operation for a large
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number of individuals—can be used to obtain exact estimates of the fixed effects (Equation
10.13a). However, as we detail in Chapter 32, estimation of variance is an iterative procedure,
with each step usually involving the inversion of V[i] = σ2

A[i](K + δ2
[i]I), where i indexes

the iteration. Because the updated variance components change the value of V[i], a new
inversion is required for each iterative step. Further, in the LOCO setting, the kinship matrix
K is slightly different for each of the tested chromosomes. Given this background, much
of the work on mixed-model GWAS analysis starts with some version of Equation 20.18a,
and then explores either computational improvements or approximations to make such an
analysis feasible for the scale of a modern GWAS. Summaries of the time complexity scaling
for the different methods presented below can be found in Svischeva et al. (2012), Zhou and
Stephens (2012), Zhou et al. (2018), and Jiang et al. (2019).

The first approach has been to develop computational improvements of the mixed-
model estimation algorithms (typically by improving the estimation of σ2

A). One of the
first suggestions was the efficient mixed-model association (EMMA) method of Kang et
al. (2008). They showed that using the eigenvalue decomposition (Equation A3.32a) of the
GRM K allowed one to avoid having to invert V[i] during each iteration of the variance
estimation procedure. Computing the initial decomposition has complexity of order n3,
with subsequent iteration steps having complexity of order rn (for r iterations). Traditional
iterative variance estimation schemes typically have a complexity of order rn3 (Chapter 32).
Under the LOCO setting with markers tested over ` chromosomes, there are ` separate K
estimates, so that scaling becomes O(`[n3 + rn]).

While EMMA reduces the computational complexity for each SNP, a new decomposi-
tion most be performed for each marker. Lippert et al. (2011) developed an improvement
for setting where the number mr of SNPs used to estimate the GRM K is less than n.
Their factored spectrally transformed LMM (FaST-LMM) method requires just a single
eigenvalue decomposition that can be used for all tested markers on a given chromosome.
Zhou and Stephens (2012) introduced their genome-wide efficient mixed-model associ-
ation (GEMMA) which, while also using an eigendecomposition of K, maximizes the
likelihood function in a more efficient manner than previous algorithms. As a benchmark,
Zhou and Stephens noted that the computation times for EMMA, FaST-LMM, and GEMMA
for two different human data sets were, respectively, ∼ 9 days, 6.8 hours, and 33 minutes
for one set and ∼ 27 years, 6.2 hours, and 3.3 hours for the other.

This first generation of accelerated methods scaled betweenO(mn2) andO(m2n) (Loh
et al. 2015a). While this is an improvement over the O(mn3) scaling of classic mixed model
analysis, even with these gains, the number of computational steps for a full exact mixed
model GWAS for a modern data set is at least 1014 to 1016. Second generation methods,
BOLT-LMM (Loh et al. 2015a) and fastGWA (Jiang et al. 2019), scale even faster, between
O(mn) and O(mn3/2). Both methods estimate σ2

A once (see below) and use clever compu-
tational tricks, such as sparse matrix inversion (Jiang et al. 2019).

In addition to more efficient methods for estimating the background polygenic variance
associated with each marker, a complementary approach is to approximate the exact model.
Several investigators suggested estimating σ2

A and σ2
e once under the null model of no SNP

effect (Equation 20.18a with no N term), with these estimates subsequently used when
testing each marker. This reduces Equation 20.18a to a GLS regression (Equation 10.13a),
with V = σ2

AK + σ2
eI. This constant polygenic variance approximation was first proposed

(for family-based association mapping) by Chen and Abecasis (2007). Kang et al. (2010),
using their EMMA variance estimator, called this approach EMMA eXpedited (EMMAX),
while Zhang et al. (2010) called this population parameters previously determined (P3D).
Zhang et al. also suggested that compression can be used, wherein individuals with very
similar relationship values are clustered as a group, and their mean relatedness used. This
has the effect of reducing the size of the kinship matrix, which can speed up calculations.
Simulation results by these authors showed these approximations generally work well with
low heritability traits, but become less precise as heritability increases. They also tended to
be less powerful than the exact method. As mentioned above, incorporation of a few of the
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largest-effect SNPs as cofactors should result in a more consistent value of σ2
A over markers.

A related approach was motivated by Equation 20.18e, with the idea that one could
correct each individual once and then subsequently use the adjusted values in the marker
regressions. Aulchenko et al. (2007) called this genomewide rapid association using mixed
model and regression (GRAMMAR). Once again, Equation 20.18a is fit under the null
model of no SNP effect (the N term is not included). With estimates of the vectors of fixed
effect (BLUEs for β̂, v̂ ) and predictions of the vector of random polygenic effects (BLUPs
for û) in hand, the trait value for each individual can be adjusted to remove these effects,

z∗ = z− ẑ, where ẑ = Xβ̂+ Qv̂ + Zû (20.19a)

The regression for any given SNP is then simply tested using

z∗ = Nkbk + e (20.19b)

This is just a GLS regression, and estimates for the marker effect, its sampling variance, and
its significance are obtained as follows. Let xk be the vector of mean-centered counts (Ni,k)
for marker k, whose ith entry is xi,k = Ni,k − 2pk. With estimates of σ2

A and σ2
e in hand, the

GLS estimates for the effect from SNP k, its variance, and its test statistic (distributed as χ2
1),

become

b̂k =
xkV−1z∗

xkV−1xk
, σ2

(
b̂k

)
=

1
xkV−1xk

, χ2
[k] =

(xkV−1z∗)2

xkV−1xk
(20.19c)

Note the V is assumed to be the same for all markers (the polygenic variance σ2
A is constant

over markers).
Aulchenko et al. originally corrected just for relatedness, but their approach easily

extends to the full QK model. GRAMMAR turns out to give slightly biased estimates of
SNP effects and p values that are conservative (the true p values are slightly less than the
reported p values). To adjust for these effects, subsequent modifications were offered by
Amin et al. (2007) (GRAMMAR-GC), and Svishcheva et al. (2012) (GRAMMAR-Gamma),
where SNP effects and test statistics are divided by correction factors to reduce bias and
make marker-effect tests less conservative.

One final comment on the GAMMA approach. At first sight, it appears that Equation
20.19a leads to the adjusted trait values (z∗i ) being free of correlations among relatives,
and thus exchangeable. If true, this would allow for permutation tests to easily be applied
(Chapter 18), randomizing the values of z∗ over the vector of marker information, creating
a random draw from the null. Unfortunately, this is only appropriately correct, as BLUPs
(predict values) for theui have a correlated error structure (Chapter 31), which compromises
the assumption of exchangeability. This concern does not apply to fixed-effects, so that the
z∗i are exchangeable with regard to any fixed-effect adjustments.

Mixed Models for Binary Traits

While the above mixed-model adjustments for cryptic relatedness and population structure
were presented in the context of a continuous trait, many traits of interest are binary (e.g.,
disease presence/absence). One approach for such traits is to ignore their dichotomous
nature (zi = 0, 1) and simply use the continuous linear mixed models (LMMs) developed
above (Equation 20.18a), e.g., Sawcer et al. (2011). This is an approximate approach, typically
done to reduce the computational burden of the analysis. Alternatively, one could perform
a more exact—and computationally more demanding— analysis using generalized linear
mixed models (GLMMs), such as logistic regression. We consider these in turn.

The starting point for LMM and GLMM binary trait analysis is to consider a latent
variable, which we will call the liability, yi, associated with individual i. In QK model form,
we can express this as

yi = bkNi,k + ŷi (20.20a)
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where

ŷi = µ+
m∑
j=1

βjxi,j +
∑
j

qjivj + ui (20.20b)

is the background liability for i, and, as before, our interest is in the significance of bk, the
effect of SNP k. The standard continuous LMM uses zi = yi + ei, where the residuals are
assumed to be homoscedastic, e.g., σ2(ei) = σ2(e), namely a constant over all i. This residual
structure is invalid for a binary trait, as if E[yi] = pi, then σ2(ei) = pi(1− pi), which varies
over i. If this variation is small, then the use of a LMM approximation may be reasonable.
However, Chen et al. (2016) showed that residual heteroscedasticity was rather problematic
in an asthma dataset of individuals of Hispanic/Latino heritage. Different subpopulations
had different disease risk, and thus had stratification-specific variances. Using a LMM for
this data resulted in incorrect p values. A second issue is that many binary traits use a case-
control design. If the disease/trait is rare, then cases are a highly nonrandom sample from
the population, and failing to accounting for this ascertainment results in a loss of power
(Yang et al. 2014).

Hayeck et al. (2015) and Weissbrod et al. (2015) suggested improvements to account
for ascertainment using LMM based on the threshold-liability model (Chapter 30). Under
this model, if yi exceeds some threshold value T , then the disease is present, else it is
absent. Hence, yi > T for cases, while yi < T for controls. If the disease prevalence and the
heritability on the underlying liability scale (Chapter 30) are known, then one can estimate
the posterior mean liability for each individuals (ŷi). This is accomplished using the GRM
and the case/control status of all individuals. Then, in the same spirit as Equation 20.19, one
performs a standard GWAS regression of y∗i = yi − ŷi on Ni,k for each SNP. This approach
was called the liability-threshold mixed linear model (LTMLM) by Hayeck et al. (2015)
and liability estimator as a phenotype (LEAP) by Weissbrod et al. (2015). The improvement
in power of these methods over a standard LMM analysis increases with sample size and
with the rareness of the disease.

A more exact approach to acount for shared relatedness in a binary trait GWAS is
to used a generalized linear mixed model, such as a logistic regression (Zhu et al. 2002;
Setakis et al. 2006; Zheng et al. 2006; Chen et al. 2016; Banerjee et al. 2018; Shenstone et al.
2018). These formally model the correct (binomial) error structure, allowing for the residual
variance to vary over individuals. As we saw above, under a logistic regression framework,
the underlying latent value yi is mapped into the expected value on the observed (binary)
trait scale z via a logistic regression,

p(yi) = E[zi | yi] = Pr[zi = 1 | yi] = g(yi) (20.21a)

where the link function g(y) is given by the logistic,

g(yi) =
1

1 + exp [− (yi)]
(20.21b)

where yi is given by Equation 20.20. This expands on Equation 20.3a by adding fixed-effects
terms for population structure (the vj) and a random effect ui for the background polygenic
value.

Logistic regression introduces a few subtleties typically not present in a LMM analy-
sis. First, the careful reader might recall our above discussion that adding covariates into
a logistic regression can actually reduce the power of a GWAS, especially under a case-
control design when the disease is fairly rare. This statement still holds for the βj terms
in Equation 20.20b. However, recall that fixed effects are also added to a model to account
for confounding factors, reducing the number of false positives. This is the role played
by the fixed effects vj for population structure in Equation 20.20b. Second, the addition of
the random effect ui to control for close relatives makes this a generalized linear mixed
model (GLMM), whereas our above discussion of logistic regressions (where the elements
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of y were all fixed) are generalized linear models (Chapter 14). While exact solution to a
mixed-model logistic can be obtained using either ML or Bayesian methods, the analysis of
GLMM raises a number of computational issues (Breslow and Clayton 1993). As a result,
they are even more computationally demanding than a LMM GWAS, facing serious scaling
problems to accommodate both the number of individuals n and markers m in a modern
GWAS.

One approximate approach, the generalized linear model association test (GMMAT),
was suggested by Chen et al. (2016). Their logic was similar to that used for GRAMMAR
(Equation 20.19), in that the mixed-model logistic is fit just once for y∗i (i.e., the model with
no SNP effect), using the mixed model parameters to predict this value, ŷ ∗i , for individual
i. One then does the GLS regression

zi − ŷ ∗i = bkNi,k + ei (20.22)

where the covariance matrix for the ei can be expressed in terms of parameters estimated in
the original mixed logistic regression (see Chen et al. for details). Zhou et al. (2018) developed
an even more efficient computational approach for GLMM-based GWAS, SAIGE (Scalable
and Accurate Implementation of GEneralized mixed model). They did so by exploiting
optimization methods (such as saddlepoint approximations and preconditioned conjugate
gradients; see their paper for details).

In the early period of GWAS, a case-control design was typically based on sampling a
population for a specific disease, and then sampling an appropriate set of controls. However,
with growth of large-scale biobanks (collections of electronic medical records and genome
sequences), GWAS are now often conducted by sampling diseases from these datasets.
The result is often very unbalanced numbers of cases versus controls (especially when
a focal disease is rare). As noted by Zhou et al. (2018) such case-control imbalances can
result in greatly inflated type I errors. Fortunately, the SAIGE approach handles even very
unbalanced case/control designs while controlling the type I error.

In the broader context of GLMM, there are other candidates for the link function g
(Equation 20.21b) that maps y into the expected value of z besides the logistic. For example,
the threshold-liability model uses the probit function, g(y) = Pr(U ≤ y) where U denotes a
unit normal, as its link. The choice of the link function involves assumptions about how ad-
ditivity on the underlying scale maps into interactions on the observed scale (Clayton 2012).
Under a logistic link function, additive terms on the underlying scale become multiplicative
odds terms on the observed value (Equation 20.3f).

Assessing Model Fit

In a GWAS, as in any model-fitting endeavor, the investigator wishes to assess model quality
and determine whether improvements are required. Because the SNP effect is usually the
only parameter not regarded as a nuisance variable, the goal is less about improving overall
model fit, and more about improving power and controlling the type one error rate. WTCCC
(2007) suggested the two approaches most widely used to both assess a current GWAS model
and to compare it with others: probability plots and genomic control (λ) values.

The motivation for probability plots follows from the powerful observation that p
values follow a uniform distribution (over [0, 1]) under the null hypothesis (Appendix 6).
For a GWAS, the expectation is that most SNP effects are zero (i.e., from the null), but a
tiny fraction should be true positives. Hence, there should be a slight excess of very small p
values, while the rest of the values should be draws from a uniform. Probability plots are a
useful device to visually inspect if this pattern holds. One of the most common such plots
used in GWAS is constructed as follows. With m tested markers, compute − ln(p) for each
and rank these from smallest to largest,

− ln(p)[1],− ln(p)[2], · · · ,− ln(p)[m]

where− ln(p)[k] is the value of the kth smallest value of− ln(p). Note that this scaling awards
the smallest p values the highest rankings, so that− ln(p)[1] corresponds to the test with the
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Figure 20.4 Accessing a GWAS model using probability plots. The straight line with a slope
of one represents the expected realization between predicted and observed p values under
the null (a uniform distribution), while pixels represent p values for individual tests. Left:
For a population with no stratification, or one corrected for its effects, one might expect a few
tests with very small p values (on the far right of the plot) representing true positives, while
the rest of the p values follow the expectation under the null. Center: When stratification
is present, p values are elevated over many of the tests, resulting in a large fraction of the
p values exceeding their neutral expectations. Right: Stratification coupled with markers
showing excessive divergence, resulting in not just departures above the neutral expectation,
but in excessive departures. (After Price et al. 2010a.)

p value closest to one, while − ln(p)[m] corresponds to the test with the smallest p value.
This scaling also avoids the compression of very small p values near zero. One then plots
− ln(p)[k] against − ln(1 − [k − 1/2]/m), the latter representing the expected kth smallest
value under a uniform (the use of [k − 1/2] instead of k is a continuity correction). The
resulting plot of observed versus expected values should be a straight line with a slope of
one, perhaps with a slight, to strong, upturn as k approaches m (representing the small p
values of true positives). Deviations from this pattern suggest that the current model needs
improvement (Figure 20.4).

There are a number of different approaches for constructing probability plots, which
are typically used to test if an empirical distribution matches a theoretical candidate (Wilk
and Gnanadesikan 1968; Gerson 1975). The two most common are p-p and q-q (or quantile-
quantile) plots. If p[k] and S[k] denote the kth smallest p value and test statistic, respectively,
then a standard p-p plot graphs p[k] against (k−1/2)/m . The common GWAS use of− ln(p)
is a version of a p-p plot, emphasizing the smallest p values, as these same values would
be visually indistinguishable from zero if plotted as p[k]. Conversely, q-q plots compare the
ranked values of the test statistics (as opposed to the associated p values of those statistics)
with the corresponding expected ranked values from the null distribution. Suppose that
the test statistic under the null is a χ2

1. In a q-q plot, the value of the kth (of m) smallest test
statistics is compared with value f[k] that satisfies Pr(χ2

1 ≤ f[k]) = (k−1/2)/m, generating a
point of (S[k], f[k]) in the plot. Again, the expectation under the null is a straight line with a
slope of one. WTCCC (2007) used q-q plots, while many other GWAS use the− ln(p) plots,
but both essentially convey the same information. Stirling (1982) discusses the construction
of confidence bounds for probability plots.

While an aberrant probability plot is cause for concern, an important cautionary tale
was offered by Chen et al. (2016). They observed an apparently well-behaved probability
plot for one of their simpler GWAS models. However, a more careful analysis showed this
plot resulted from conservative p values in some SNPs balancing out anti-conservative p
values from other SNPs. The result was a visually well-behaved probability plot that masked
substantial underlying issues.

Typically, a probability plot is presented along with the inflation factor λ for a given
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model, with the idea that a well-behaved model should also have a small inflation (typ-
ically λ < 1.05). Recall that λ is a general measure of the inflation of the test statistic for
a random marker. Models with different complexities (such as Q, K, or Q+K) are often
ranked by their λ values (smaller is better). If a model has a substantial inflation (λ > 1.05),
historically the view was that additional corrections were required. However, as we have
seen, this is not strictly correct. If a large number of small effect QTLs underlie the trait,
this can inflate λ even after accounting for any confounding effects from structure or cryp-
tic relatedness. Further, this polygenic inflation becomes more pronounced as sample size
increases (Equation 20.13a). A more correct genomic-control metric for model comparison
is the λ value computed using LD-score regression (Equation 20.13c), which adjusts for
polygenicity (Bulik-Sullivan et al. 2015).

GWAS WITH RARE ALLELES

As we discuss in detail in Chapter 21, an ongoing debate is whether a common disease
is due to common alleles of small effect or rare alleles of large effect. This is somewhat
of a false dichotomy, as numerous studies show that both classes of alleles impact many
diseases, and the more appropriate question is their relative contributions. Across a variety
of diseases and traits, large-effect alleles generally tend to occur at very low frequencies
(Bodmer and Bonillna 2008; WL Chapter 28). One explanation for this observation is that
such alleles are likely under negative selection, either by their direct impact on a focal
trait, or via pleiotropic effects on other fitness traits (WL Chapter 25). From the theory
of mutation-selection balance (WL Chapter 7), we expect such alleles to have frequencies
that are inversely proportional to the strength of selection against them. Hence, one view of
disease variation is that major-effect alleles (such as amino-acid replacements or knockouts)
are under strong selection, and thus tend to be rare, whereas alleles with smaller effects (such
a minor regulatory changes) experience weaker selection and thus tend to be at higher
frequency. In the extreme where an allele has no impact of fitness, neutral theory predicts
(in an idealized equilibrium population) that frequencies follow the Waterson distribution
(WL Equation 2.34a), where φ(x) = C/x, with x the (derived) allele frequency and φ its
density function (pdf). Hence, most neutral alleles are rare. Selection against alleles further
shifts this distribution towards even smaller values (as do many demographic features,
such as recent population expansions; Kryukov et al. 2009; WL Chapter 9).

A fair assessment of the relative contribution of common versus rare alleles requires
unbiased methods that offer equal power of detection of alleles from both classes. The
standard one variant at a time GWAS framework discussed above is rather powerful at
detecting common alleles (minor allele frequency, MAF, greater than one to five percent),
but is very underpowered for detecting rarer alleles (Li and Leal 2008; Asimit and Zeggini
2010; Bansal et al. 2010). There are two reasons for this. First, for an additive locus, the
relative contribution is σ2

Q = 2a2p(1 − p) where a is the allelic effect. For two alleles with
the same effect, σ2

Q increases with the value of the minor allele frequency (p). Hence, there
is a strong bias in favor of detecting common alleles when the common and rare allele have
the same effect size. Given our discussion above, this may be less of a concern, as we might
expect a to increase as pdecreases, so that the average value forσ2

Q between common and rare
alleles could be more similar than we initially expected. Even in this case, a second factor, the
correlation (r2) between the marker and causal alleles, results in greatly reduced power for
rare alleles. Example 20.1 shows the reason for this: r2 decreases as the mismatch between
the marker and causal allele frequencies increases. Hence, by mainly using common SNP
alleles as markers, we are biasing detection toward common causal alleles, even if common
and rare alleles have the same value of σ2

Q. Because different methodologies from traditional
GWAS are often used to search for rare variants, the phrase rare variant association study
(RVAS) has been suggested (Auer and Lettre 2015).

A different approach is thus required to discern the impact of rare alleles. Note that we
are now in the realm of deep resequencing (high coverage sequencing of a small region),
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and potentially even whole-genome sequencing (WGS), as rare alleles are typically not
scored by standard DNA chips (Asimit and Zeggini 2010), and accurately imputing them
requires a very large reference collection of full sequences (for the region, exome, or genome,
of interest). The basic logic behind the menagerie of rare-allele approaches (summarized in
Table 20.3) is to pick a candidate region (often a single gene), and then test for an excess of
rare alleles in this region in the cases over that seen in the controls (or in high versus low
trait-valued individuals; Example 20.10).

As we detail shortly, a variety of approaches and weighting schemes have been pro-
posed to quantify such comparisons (reviewed by Asimit and Zeggini 2010; Bansal et al.
2010; Basu and Pan 2011; Chen et al. 2011; Pan and Shen 2011; Stitziel et al. 2011; Lee et al.
2012, 2014; Ionita-Laza et al. 2013; Derkach et al. 2014; Moutsianas and Morris 2014; Pan et
al. 2014; Moutsianas et al. 2015; Nicolae 2016; Santorico and Hendricks 2016; Povysil et al.
2019). Basic design issues for detecting rare variants are discussed by Li and Leal (2009), Li
et al. (2011), Lee et al. (2014), and Auer and Lettre (2015).

Example 20.10 The basic logic of rare-allele mapping traces back to Cohen et al. (2004). These
authors were interested in the impact of three potential human candidate genes (ABCA1,
APOA1, and LCAT) on HDL cholesterol (HDL-C) levels. The exons of these genes were se-
quenced in two different high-low group comparison designs. Variants were classified as
either nonsynonymous (NS) mutations that changed the amino acid sequence of the encoded
protein or synonymous (S) variants that did not. The first comparison involved 128 low in-
dividuals (HDL-C score less than the fifth percentile) and 128 high individuals (HDL-C are
least in the 95th percentile) in the Dallas Heart Study (a diverse collection including both
European and African ancestry). The second study was a corresponding group of 155 lows
and 108 highs from a more homogeneous Canadian population. Lumping the variants over
the three genes, 10 NS and 19 S mutations were found in both the high and low Dallas groups,
15 NS and 7 S mutants restricted to the low group, and 3 NS and 6 S variants were only in
the high group. Similar distributions of variants were found in the Canadian study. Hence,
NS variants were significantly more common in the low than in the high group. Of the 18
NS variants restricted to one group, all but two were singletons, with these latter two alleles
present at four copies each. The PolyPhen program (Ramensky et al 2002; Adzhubei et al.
2010), which attempts to predict the functional impact of a specific amino acid replacement
(benign, possibly damaging, or probably damaging), suggested that these latter two muta-
tions had a benign impact on function. A brief overview of bioinformatical approaches for
functional annotation of sequence variation can be found in Auer and Lettre (2015).

A similar study by Ahituv et al. (2007) examined sets of candidate genes in 379 obese and
378 lean individuals. One set consisted of 21 genes with known mutations impacting obesity
in mice or humans, and the second set had 37 genes from weight-related pathways. The first
group of genes had 46 NS mutations restricted to the obese cohort, but only 26 restricted to
the lean group, a significant difference. Further, 19 of NS mutations in the obese cohort were
predicted to be deleterious, as opposed to 4 in the lean group. In contrast, the pathway gene
group had 72 NS in the obese group, and 69 in the lean group, which was not significantly
different.

These two examples highlight the logic for many rare allele tests: contrast the distribution
of rare variants between case/control or high/low (extreme phenotype) groups. The above
examples focused on private alleles, those restricted to just one group, and hence are often
called private allele tests. More generally, one can also incorporate shared alleles. Further,
mutational classes could be differentially weighted (such as a focus on only NS mutations).
One could go further, scoring the severity of a NS mutation (or other functional change), and
include this information in a weighted comparison statistic.

One important source of bias when using rare alleles in a case-control (or extreme
phenotype) design was noted by Li and Leal (2009). If rare variants were discovered by
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exclusively resequencing only in cases and then searching for these same rare variants in
controls, the result is a large inflation in false positives. The reason is simple: if an allele is
rare, an allele unrelated to the trait may by chance be found only in cases. Conversely, a rare
allele may only be found in controls. More formally, given a random sample of n (diploid)
individuals, for an allele with frequency p,

Pr(at least one allele in sample) = 1− (1− p)2n ' 1− e−γ (20.23a)

whereγ = 2np is the expected number of allelic copies in the sample, with e−γ the probability
that no copies are seen. Rearranging Equation 20.23a, the required sample size to ensure a
probability π that at least one copy of the rare allele is present is

n =
− ln(1− π)

2p
(20.23b)

For example, if p = 0.001, the sample size to have a 95% chance of seeing at least one copy
is n = − ln(0.05)/[0.002] = 1498. The probability that no copies of an allele are found in a
sample of n0 controls while at least one (or more) copies are found in a sample of n1 cases
becomes

e−γ0(1− e−γ1) (20.23c)

where γi = 2nip. For example, with 3000 cases and 3000 controls, and a rare allele (p =
1/3000), the expected number of copies in both samples is 2. The probability that at least
one allele is found in the cases is 1 − e−2 = 0.8647, while the probability of at least one
copy in the cases and none in the control is e−2[1 − e−2] = 0.117. Hence, a number of rare
alleles with no impact on the trait would exclusively be found in the cases. More generally,
the probability of exactly k copies in the sample follows from the Poisson (Equation 2.21)
as γk exp(−γ)/k!, for k = 0, 1, · · ·.

Burden and Collapsing Tests

The central problem with detecting rare alleles in a standard GWAS framework (such as
using a chi-square or regression test) is that the very large sampling variance associated
with rare alleles implies very low power, even when the allelic effect is large. A growing
number of approaches have addressed this concern building on the basic logic of Example
20.10: contrasting the total frequency of rare alleles between comparison groups. These are
often called burden or collapsing tests: burden because the presence of rare alleles might
imply a fitness burden, and collapsing because rare alleles are consolidated into one (or a
few) classes, increasing the effective sample size, reducing the sampling variance and thus
increasing power. Collapsing tests can be classified as indicator (present/absence of one,
or more, rare alleles), counting (how many rare alleles are carried by an individual), and
data-adaptive (scores are weighted by some feature of the data, such as MAF or functional
information).

The biological assumption for aggregating rare alleles at a locus into a single class
is that extreme allelic heterogeneity (EAH) is present, where a disease (or extreme trait
value) is generated via independent rare mutations. If each mutation has roughly the same
effect, then the power of a method that treats them all as a single class is a function of
the frequency of that class. For example, Bansal et a. (2010) considered a rare allele with a
frequency of 0.01 in the controls and 0.02 in the cases, where 80% power required 250,000
cases and control. However, if there are five such alleles, then when treated as a single class,
the frequencies becomes 0.05 in the controls and 0.10 in the cases, now requiring only 3,000
cases and controls for the same power.

Beyond deciding the appropriate scope of the testing unit, or genomic unit of analysis,
(a single gene or set of genes connected in a pathway), a related issue is whether resequencing
in the search for rare alleles uses an exon-only or a whole-gene approach. The logic for exon-
only is that variants in the coding region are more likely to be impactful, and less likely
to have no effect (often referred to as neutral or null variants), with the latter diluting a
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rare-variant signal (Zawistowski et al. 2010; Pan et al. 2014). Conversely, an exon-only focus
assumes that coding mutations are the major source of rare disease/trait variants, ignoring
contributions from regulatory effects in noncoding regions (e.g., Haller et al. 2009). For more
general genome-wide scans, one might consider an exome scan over all coding regions in
the genome, or using a genomic sliding window, or scanning all evolutionary conserved
regions (which are often noncoding). The problem with such global scans is their relatively
modest power within any tested region, coupled with a very high multiple-comparison
penalty.

Early versions of burden tests include the cohort allelic sums test (CAST) of Morgen-
thaler and Thilly (2007) and the combined multivariate and collapsing (CMC) method
of Li and Leal (2008). CAST simply sums the total number of rare alleles at a target gene
(or more generally, region or pathway) and compares the mean number of rare alleles per
individual in cases versus controls. Li and Leal (2008) independently proposed a similar
collapsing method that compares the fraction of cases carrying rare alleles in a target with
the same fraction in controls, which can be tested by using a Fisher’s exact test. Li and Leal
also suggested an improvement by collapsing variants into a small number of classes based
on their allele frequency, and then using a Hotelling’s T 2 test (Equation 20.5) over these
classes to test significance. This binning approach can accommodate both rare and common
alleles, such as collapsing all the rare alleles into one class, and then either considering each
common allele separately, or using some collapsing/exclusion scheme on them as well.

While the choice of using only NS mutations (or only private alleles) implicitly assumes
a weighting scheme, the next generation of burden tests assigned more formal weights to
variants. Madsen and Browning (2009) proposed a weight sum statistic (WSS) where each
variant was weighted by the standard deviation of its frequency,

wj =
√
nj p̃j(1− p̃j), with p̃j =

cj + 1
2(n0,j + 1)

(12.24a)

Here nj is the total number (cases plus controls) of individuals scored for SNP j, and p̃j
corresponds to the pseudocount frequency in the controls (adding one to the numerator
and denominator to adjust for small-sample issues), where cj is the number of j alleles seen
in the n0,j individuals in the control scored for SNP j. If the allele is absent in the control,
then p̃j = 1/[2(nj +1)]. A burden score is then computed for individual i over them chosen
SNPs in region of interest, with

Si =
m∑
j−1

Iij
wj

(12.24b)

where Iij is the indicator function, being one if the minor allele at SNP j is found in i and
zero otherwise. One then ranks of the Si and uses a Wilcoxon test for whether the ranks in
cases and controls are nonrandom (such as an excess of higher ranks in cases). Zawistowski
et al. (2010) suggested a cumulative minor-allele test (CMAT) which contrasts weighted
minor and major allele counts in cases and controls. Finally, in the Accumulation of Rare
variants Integrated and Extend Locus-specific test (ARIEL) of Asimit et al. (2012), weights
on variants are given by a called-sequence quality score (such as a phred score), with rare
variants called with higher confidence given more weight.

Using similar logic, burden tests can be constructed for continuous traits. Consider the
trend test (Equation 20.1a), but now express the trait value for individual i as a function of
gene (or marker region) k as

zi = µ+ bkφi,k + ei (20.24c)

where φi,k is some collapsing of the total rare variants at region k in individual i. Morris
and Zeggini (2009) suggested using either (i) the proportion of scored rare alleles in the
region for individual i (if ni,k rare SNP sites in region k are scored in individual i and ri,k
of these contain the rare allele [a count method], then φi,k = ri,k/ni,k) or (ii) assigning φ
a value of one whenever any rare allele in the region is seen in i, else it has value zero
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[an indicator method]. These suggestions are often referred to as the MZ method in the
literature. As noted by Zawistowski et al. (2010) and Asimit et al. (2012), φ can also use
probabilistic genotype calls (such as the posterior mean allelic dosage discussed above),
when rare alleles are either called using low-coverage sequencing (which can be error prone)
or by imputation (Mägi et al. 2012).

Significance of any of the above methods can be accessed using standard permutation
techniques: keep the genotype information for any individual intact, and then shuffle the
phenotypic labels (cases/controls or continuous values). There are two limitations with this
approach. First, if population stratification is present, the shuffling has to be done in such
a way that stratification information is retained. Second, when multiple comparisons are
performed, the resulting smaller p values per comparison (to control the FWER) requires a
substantial increase in the number of permutations per region to obtain sufficiently stable
estimates of empirical significance thresholds. IfRmultiple (independent) regions are being
compared, a Bonferroni FWER of γ requires testing each region using γ/R. For testing 10
regions, a 5% FWER requires testing each region at p = 0.005, which requires at least
104 permutations per region. Hence, scaling this approach to more than a small number
of candidate regions is both computationally challenging and results in greatly reduced
power. For example, with an exome-wide scan scoring roughly 20,000 genes separately, a
FWER of 0.05 requires testing each gene at α = 2.5 × 10−6. Estimating stable empirical
thresholds to achieve this level of α requires on the order to 107 to 108 permutations per
gene.

Variance Component (Dispersion) Tests

Neale et al. (2011) noted that unweighted collapsing methods (treating all chosen rare alleles
as functionally equivalent) can be underpowered. In particular, they noted that in a given
gene, one could have neutral rare variants with no impact on risk (with the expectation
of being equally represented in cases and controls), variants that increase risk (overrepre-
sented in cases), and protective variants that decrease risk (underrepresented in cases). Early
collapsing methods attempted to account for neutral variants by focusing on variants with
apparent functional differences (such as using only nonsynonymous, NS, mutations; Ex-
ample 20.10). However, by lumping potential protective variants with risk variants, power
is decreased. In effect, early collapsing methods required a mean directionally of effect for
rare variants. In contrast, Neale et al. proposed using variance, rather than mean, compar-
isons between cases and controls. Their approach was motivated observations on the APOB
gene and triglyceride levels. They examined NS APOB mutations in a sample of 96 high
and 96 low individuals, finding 18 segregating NS mutations in the combined sample. One
variant was present as six copies in the high cohort but absent in the low, while a second
variant was absent in the high but with six copies in the low. Hence, the first mutation likely
increased risk, while the second was likely protective. If both of these are collapsed into the
same category, the result is six copies in both the high and low, and no signal.

To deal with this concern, Neale et al. proposed using the C-alpha, C(α), test for
overdispersion (excess variance) in binomial samples due to an underlying mixture of
effects (Neyman and Scott 1966). The idea is that the between-group variance would be
larger than expected under binomial sampling (assuming equal chances of an allele being
in the cases or controls). More formally, let p1 = ncase/(ncontrol + ncase) be the fraction of
the total sample that are cases (p1 = 1/2 when the cases and controls have the same sample
size). Suppose there are ni total number of copies (in cases plus control) of variant i, with yi
of these in cases. For a variant that has no impact on the trait, yi ∼ B(p1, ni), a binomial with
sample size ni and success probability p1 (Equation 2.19a). In this case, Equation 2.19b gives
the expected sample variance as nip1(1 − p1). However, suppose that the true underlying
distribution is a mixture,

yi ∼ πrB(ni, p > p1) + πpB(ni, p < p1) + (1− πr − πp)B(ni, p = p1) (20.25a)

where πr and πp are, respectively, the probabilities of a risk or protective allele. Because
of the between-class variance (p varying over classes), such a mixture results in a variance
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larger than the expected binomial variance. The C-alpha test statistic, which tests for such
an overdispersion over m groups, is given by

T =
m∑
i=1

[
(yi − nip1)2 − nip1(1− p1)

]
(20.25b)

Here (yi−nip1) is the observed deviation from the neutral expected value, namely a standard
burden test. The C-alpha test instead uses the squared deviation and contrasts it with its
expected value under neutrality (the binomial variance). For example, for the two APOB
variants discussed above, y1 = 6 and y2 = 0, their two deviations cancel

(y1 − n1p1) = 6− 3 = 3, (y2 − n2p1) = 0− 3 = −3

Conversely, n1p1(1 − p1) = n2p1(1 − p1) = 1.5, yielding T = 2[9 − 1.5] = 15. For large
samples T/σ(T ) ∼ N(0, 1) under the null, being one-sided test of excessive dispersion
(the expression for σ(T ) can be found in Neale et al.). Note that singletons, by themselves,
do not provide information on overdispersion, but the entire collection of singletons can
be lumped to form a new category. The APOB data found 6 high group and 4 low group
singletons, giving yi = 6, ni = 10 in the summation term in Equation 20.25b. Finally, one
can use the EM method (Appendix 4) to estimate the mixture proportions (πr and πp) in
Equation 20.25a, as well as the average value of p for each category (Neale et al. 2011).

A somewhat related approach that also allows for both protective and risk variants is
the kernel-based adaptive cluster (KBAC) test of Liu and Leal (2010). One unusual feature
of KBAC is that it uses the frequencies of multilocus genotypes as the unit of analysis, and
hence allows for the potential of detecting epistatic interactions that could easily be missed in
standard burden tests. The basic structure of KBAC is that one considers all of the observed
multilocus genotypes in the region of interest that contain at least one rare allele. Suppose
there are k such combinations, which we label as G1, · · · , Gk, while G0 is the collapsed set
of all multilocus genotypes lacking any rare alleles. KBAC then computes a weighted sum
of the squared differences between the frequency of Gi in the cases versus controls. The
weights are based on the likelihood (under a neutral model) of the observed number of Gi
in the cases. For example, if 7 of 10 copies are found in cases, the weight is the probability
(under a neutral model) of seeing 7 or fewer copies in the cases. By considering the squared
difference, the impact of directional effects is reduced, and Liu and Leal noted that KBAC
is also fairly robust to the inclusion of variants with no functional impact.

As noted above, when most of the variants included in the test set are not causal (the
sparse alternative setting), methods can lose power. Most of the above models arrive at a
final summary statistic by taking some weighted sum of individual deviations, or squares
of such deviations, e.g., S =

∑
wisi. Chen et al. (2012) noted an exponential combination

(EC) procedure, using sum of the exponent of these individual statistics, e.g.,
∑

exp(wisi/2),
is a much more robust approach under the sparse alternative setting.

Regression-based General Framework

The connections between simultaneously testing multiple markers in a normal GWAS (e.g.,
Equation 20.5), burden tests, and variance component tests—as well as the relative roles of
common versus rare alleles—can all be seem by using a multiple regression framework. We
do so by extending the trend test (Equation 20.1a) tommarkers, whose inclusion is based on
some criteria (such as all being within a target gene or candidate pathway). LetNi,k denote
the copy number for the minor allele at marker k in individual i, and let bk be the associated
regression slope. In its simplest form (assuming only additivity), the multiple-marker trend
test becomes

zi = µ+
m∑
k=1

bkNi,k + ei (20.26a)

Note that the multiple regression framework accommodates correlations among markers,
and (at this point) makes no distinction between common versus rare alleles. Equation
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20.26a can be modified to explicitly model dominance or recessivity by replacing Ni,k by
Xi,k, with

Xi,k =
{

0 homozygous recessive
1 otherwise

or Xi,k =
{

1 homozygous recessive
0 otherwise

(20.26b)

for a dominance or recessive, respectively, assumption.
We can further extend Equation 20.26a by adding cofactors (e.g., Equation 20.18a), and

likewise to a logistic regression on binary traits by replacing zi by logit(zi) (Equation 20.2b).
The null hypothesis is that the vector bT = (b1, b2, · · · , bm) of regression coefficients is zero.
This can be tested using Hotelling’s T 2 statistic, resulting in a χ2

m, and hence a degree
of freedom for each marker. If the chosen alleles are common, then there is often sufficient
power, in isolation (e.g., testing one marker at a time), to detect those with an effect. However,
when testing for the significance of a region (as opposed to an individual maker), inclusion of
markers with no impact on the trait reduces power. This occurs by increasing the degrees of
freedom associated with the test statistic (χ2

m versus a χ2
1) without a corresponding increase

in the noncentrality parameter.
Hence, when testing for the significance of a region we would like some criteria to

enrich the fraction of markers with true effects. Collapsing methods, with their general
focus on rare alleles, represent an attempt to improve power by both increasing the fraction
of potentially causal variants and by reframing Equation 20.26 as single degree-of-freedom
statistic. They test the significance of a shared marker effect bc by rewriting this regression
as

zi = µ+ bcXi + ei, with Xi =
m∑
k=1

wkNi,k (20.27)

HereXi is the burden score for individual i, andwk is the weight for tested marker k. For the
set of included markers, one could define Xi in Equation 20.27 has having value one when
any marker in the testing set has a rare allele, else it has value zero (an indicator approach).
One could also set Xi as the total copy number of rare alleles over all scored markers in i
(a counting approach). Both these approaches amount to collapsing the multilocus marker
genotype into a set of synthetic “super alleles” at a single locus and then performing a
standard trend test.

One can view the weights as an attempt to increase the signal from potentially causal
variants while decreasing the signal for neutral variants. Thus, at one level, the assumed
weights provide a simple masking scheme for which variants within a region to include
(wk = 1) or exclude (wk = 0). As we saw in Example 20.10, one could focus on only private
alleles, or on a specific type of mutation (such as NS vs. S, motivated by the assumption
that NS mutations are more likely to be causal than S mutations). One could go further, and
only include NS alleles that are predicted to be possibly or probably damaging, or even
just probably damaging. While inclusion of variants is often based on such a prior informa-
tion, Hoffmann et al (2010) noted that this approach is only optimal when the information
is very accurate. They proposed their step-up approach, akin to stepwise regression, for
determining the optimal set of variants within a region to include based on model fit alone
(and hence is agnostic to any assumed biological knowledge).

More generally, one could base weights on other features, such as the sampling variance
given the marker frequency in controls (Equation 20.24). Several adaptive burden tests have
been proposed, where the weights are informed by single-marker regression slopes of each
variant. The data-adaptive sums test (aSUM) of Han and Pan (2010) assigns weights of
wi = −1 when the univariate marker effect is sufficiently negative and wi = 1 when it
is positive. The estimated regression coefficient (EREC) test of Lin and Tang (2011) bases
weights on the estimated single-marker regression slopes (adjusted for estimate instabilities
when alleles are rare). A number of other adaptive tests have been proposed (e.g., Pan and
Shen 2011; Pan et al. 2014), again using the logic of upweighting variants with causal
signatures (such as being NS) and downweighting those without such signatures. Bayesian
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approaches have also been suggested to filter out noncausal variants (e.g., Quintana et al.
2011; Logsdon et al. 2013). A related approach is the RareCover method of Bhatia et al.
(2010), which starts with a set of k candidate markers within a region, and extracts the set
of these giving the highest correlation with phenotypic value.

A basic issue with the collapsing approach that we have not explicitly considered is
what exactly constitutes a rare variant. Ionita-Laza et al. (2013), using results from large
sample theory, suggested setting the allele frequency threshold as τ = 1/

√
2n, with n the

sample size. For example, for n = 500, the threshold is 0.03, while for n = 10, 000, the
threshold becomes 0.007. This is a statistical definition, while the threshold is usually set
for biological reasons (enhancing the chance that included markers are causal, or linked to
causal sites). Operationally, if the allele frequency threshold is set too high, we may include
too many noncausal variants (reducing power), while if set too low we may exclude causal
variants. One strategy is to use a variable threshold (VT) test (Price et al. 2010b), which
computes the test statistic over a range of thresholds, and then takes the largest score as the
final test value. Again, significance is typically assessed via permutation tests.

An alternative approach to control degrees of freedom is to use a random-effects model
for the slopes of marker-trait regression (Dandine-Roulland and Perdry 2015). Here the bk
are drawn from a normal distribution with mean zero and variancewkσ2, where the weights
are assigned by some criteria. The test for no marker effects reduces to whether the variance
componentσ2 is zero, a one degree of freedom test. This is the approach used in the sequence
kernel association test, or SKAT, of Wu et al. (2011), which is a generalization of the C-alpha
test, and allows for both positive and negative effects. Indeed, it can be shown that C-alpha
is a special case of SKAT, but the latter method has greater flexibility in that cofactors are
easily incorporated. The SumSq (also referred to as the SSU) test of Pan (2009), based on∑
b2k (the sum of squared estimated slopes), can also be shown to be a special case of SKAT.

Finally, Xu et al. (2012) noted that the machinery of penalized regressions (Example 20.4;
Chapter 31) offers a very powerful approach for incorporating rare variants (also see Zhou
et al. 2010). Penalized regression methods are designed to both handle over-parameterized
models and models with sparse data (Hastie et al. 2009). Xu et al. showed that both LASSO
and RR tended to outperform both burden (VT) and variance tests (SKAT), unless causal
alleles are extreme rare (or singletons). Further, both LASSO and RR allow for the joint test
of common and rare variants, with Chen et al. (2011) noting that using the LASSO to choose
which common variants to include greatly improves power in the setting of many rare, but
few common, causal variants.

One closing comment about the regression framework. As stressed above, correction
for population structure is often a serious concern in a traditional GWAS, and this is gen-
erally accomplished by adding cofactors to Equation 20.26a (e.g., Equations 20.14b and
20.17a). One unresolved issue is that the population structure for rare alleles can be rather
different from that for common alleles (Mathieson and McVean 2012). Common alleles tend
to have long evolutionary histories, whereas most rare alleles are rather recent events, po-
tentially leading to different population structures. Further, because of their recent history,
rare variants can be spatially clustered (for example, due to different histories of recent ex-
pansions, some subpopulations may harbor many more rare variants than others). Hence,
using common alleles when constructing cofactor corrections for structure can bias rare-
allele tests (but see Listgarten et al. 2013). In theory, one could construct corrections using
only low-frequency to rare alleles (MAF less than 0.5%), but these can potentially be unsta-
ble and may have a smoother eigenvalue distribution (so that more PCs must be included to
capture a stratification signal). Zaidi and Mathieson (2020) further examine PC corrections
based on only rare alleles. An especially problematic issue was noted by Zhang et al. (2013).
They found that PC-based structure correction based on low frequency variants tended to
overadjust in the absence of structure, leading to a substantial loss of power.

Omnibus Tests

A number of authors have examined the power of rare-allele tests (e.g., Basu and Pan
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2011; Ladouceur et al. 2012; Lee et al 2012; Moutsianas et al. 2015). When all of the chosen
variants have roughly the same effect and act in the same direction, burden tests are the
most powerful. Conversely, when the chosen variants are a mixture of neutral, protective,
and risk variants, variance component methods (e.g., SKAT) are more powerful. Given that
the optimal method depends upon unknown details of the genetic architecture of the trait,
several omnibus tests have been proposed that combine burden and variance-component
tests. The logic is that by combining information from two (or more) tests, there will be more
robust power under a random genetic architecture. Conversely, an omnibus test might loose
power if one of the extreme architectures is correct (e.g., equal effects in the same direction).

Derkach et al. (2013) proposed using Fisher’s method (Equation A6.1a) to combine the
p values from a burden test and the SKAT test,

TFish = −2 ln(pSKAT )− 2 ln(pburden) (20.28a)

where TFish follows a χ2
4 distribution. A related approach is the Mixed effects Score Test

(MiST) of Sun et al. (2013). Their method starts by considering the slope bk in Equation
20.26a as bk = bt + δk, where bt is a fixed effect for the slope when the variant is of type t
(such as a NS mutation), assumed to be the same for all type t variants, and δk is a random
effect unique to variant k. Burden tests assume a constant value for the fixed effect bt, while
variance component tests use the variance of δk. Both SKAT and standard burden tests are
special cases of this more general slope model, with MiST based on a joint test of the mean
effect of a slope (bt nonzero) and the variance effect of the slope (σ2[δk] > 0). They cleverly
constructed these two test to be independent, so that Fisher’s test can be used to combine
their two probability values (as in Equation 20.28a). They also used Tippett’s method (1931):
for k independent test, their combined p value is given by

1− [1−mink(pk)]k (20.28b)

The Tippett threshold for an overall level of α is the

mink(pk) ≤ 1− (1− α)1/k (20.28c)

As noted by Westberg (1985), neither Fisher’s or Tippet’s method is uniformly superior to
the other over all settings. Sun et al. (2013) noted that Fisher’s procedure seems to be more
powerful when both the mean and variance effects of bk are nonzero, while Tippett’s is more
powerful when only one component is nonzero. Another common method for combining
p values from independent tests is Stouffer’s Z score (Equation A6.2). Using the same logic
as above, tests could be constructed using Stouffer’s method in place of the Fisher or Tippet
method. More generally, one can combine the p values from a chosen set of k different tests
(e.g., Moutsianas et al. 2015; Liu et al. 2019).

The limitation of standard p-combining methods (Fisher, Tippett, Stouffer) is the re-
quirement that tests are independent. The recently proposed aggregated Cauchy associa-
tion test (ACAT) approach of Liu et al. (2019) relaxes this assumption. The key is that they
translated p values into Cauchy random variables. The Cauchy (the distribution of the ratio
of two unit normals) is unusual, in that its density function integrates to one (making it
a proper distribution), but none of its moments are finite, because its tails are sufficiently
heavy (do not decay sufficiently fast at large values). As a result of this heavy-tail feature,
it is largely insensitive to correlations among p values (especially when the p values are
small). Second, ACAT upweights small p values, so that (like the EC method) it is a more
robust approach under the sparse alternative setting (many neutral variants in the test set).
The ACAT test statistic is

TACAT =
n∑
i=1

wi tan[(0.5− pi)π] (20.29a)

with the associated overall p value being

p ' 0.5− arctan[TACAT /w]
π

(20.29b)
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Table 20.3 Rare allele mapping approaches. General modification procedures can be applied to fine-
tune most of the tests. See text for details on specific tests.

Unweighted Burden Tests
CAST Cohort allelic sums test Morgenthaler and Thilly (2007)
CMC Combined multivariate and collapsing test Li and Leal (2008)
MZ Morris and Zeggini (2009)

Weighted (Adaptive) Burden Tests
WSS Weighted sum statistic Madsen and Browning (2009)
CMAT Cumulative minor-allele test Zawistowski et al. (2010)
aSUM Data-adaptive sums test Han and Pan (2010)
Step-up Hoffmann et al (2010)
RareCover Bhatia et al (2010)
EREC Estimated regression coefficient Lin and Tang (2011)
ARIEL Accumulation of Rare variants Integrated Asimit et al. (2012)

and Extend Locus-specific test

Variance Component
SumSq Pan (2009)
KBAC Kernel-based adaptive cluster Liu and Leal (2010)
C(α) C-alpha Neale et al. (2011)
SKAT Sequence kernel association test Wu et al. (2011)

Omnibus Tests (Burden plus variance component)
SKAT-O SKAT-optimized Lee et al. (2012)

Fisher’s method Derkach et al. (2013)
MiST Mixed effects Score Test Sun et al. (2013)
ACAT-O Aggregating Cauchy Asssociation test Liu et al. (2019)

Omnibus Tests (Common plus rare variants)
Burden-F, Burden-C Ionita-Laza et al. (2013)
SKAT-F, SKAT-C

Omnibus Tests (Weighted p values)
σ-MidP Cheung et al. (2012)
ADA Adaptive combination of P-values for rare Lin et al. (2014)

variant association testing

General Modifications: Variable rare-allele frequency threshold
VT Variable threshold Price et al. (2010b)

General Modifications: Sparse alternative setting
EC Exponential combination Chen et al. (2012)
ACAT-V Aggregating Cauchy Association test Liu et al. (2019)

where w =
∑
wi. Liu’s ACAT-V test examines each rare variant within the target region,

weighting then by a function of their frequency (a modification of Equation 20.24a), and
then combines the individual p values using Equation 20.29a. Given the robustness of ACAT
under the sparse alternative, ACAT-V easily accommodates regions with a large number of
neutral variants. Liu et al. also proposed an omnibus test by combining the p values from six
separate tests: ACAT-V, SKAT, and a burden test, where each test is performed assuming
equal weight and then recomputed using weights that place more emphasis on rare alleles.
The p values from these six test are then combined using ACAT,

TACAT−O =
1
6

6∑
i=1

tan[(0.5− pi)π] (20.29c)

The idea of using this combination is to construct a test that it relatively robust over different
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weights, varying directionality of variants, and fraction of neutral variants.
Lee et al. (2012) proposed their SKAT-optimized (SKAT-O) test, which constructs a

linear combination of the a Burden and a SKAT test statistic

TSKAT−O = ρ TSKAT + (1− ρ)Tburden (20.30)

where ρ, determined via a grid search over [0,1], is the value that maximizes Equation 20.30.
Lee et al. showed how the corresponding p value for this test statistic can be obtained via
numerical integration.

As noted by Ionita-Laza et al. (2013), the idea of omnibus tests can be extended to jointly
accommodate common and rare alleles. Their Burden-F tests computes pvalues for a burden
test using rare alleles and then applies the same test using common alleles, combining the
resulting p values using Fisher’s method. Similarly, their SKAT-F tests Fisher-combines the
p values from separate SKAT tests based on rare and common alleles. They also constructed
Burden-C and SKAT-C akin to Equation 20.30 by weighted combinations of Burden and
SKAT statistics for a test using only common and a test using only rare alleles.

Finally, variations on combining p values have been proposed that weight individual
variant ln(pi) terms (from a case-control contrast) in Fisher’s method by their MAF (using
Equation 20.24a). Theσ-MidP approach of Cheung et al. (2012) used this weighting scheme,
but excluded rare alleles with roughly equal counts in cases and controls (to control for the
reduction in power from neutral alleles). The Adaptive combination of P-values for rare
variant association testing (or ADA) method of Lin et al. (2014) modifies this rare alleles
exclusion criteria. They do so by (i) using a variable MAF threshold for inclusion of a
variant, and (ii) computing separate sums for putative risk alleles (more frequent in cases)
and protective alleles (more frequent in controls), with the larger of these two sums being
the test statistic for that threshold. This approach is performed over a range of threshold
values, with the largest of the test values being the final test statistic. Again, permutation
tests are used for significance testing in both of these methods.

Closing Remarks

As summarized in Table 20.3, a number of rare variant tests have been proposed, built
around different assumptions about the distribution of variant effects within the region
being considered. As such, in the absence of any knowledge about the trait architecture
in the region, there is no uniformly most powerful test. Omnibus tests are a bet-hedging
approach, sacrificing a little power under specific extreme architectures, while having more
power under random architectures. The other issue is that the amount of signal within
a given region could easily generate a significant p value, but one not large enough to
persist under the much more stringent multiple comparison value required for an exome-
wide or genome-wide scan. Unless sample size is massive, rare-variant approaches are best
considered as tests over a small to modest number of regions, rather than the whole genome
scan of a typical GWAS.

META-ANALYSIS

GWAS projects, especially in humans, are often done under a consortium model, wherein
k groups perform independent GWAS on a given trait. If one has access to the individual
data from each study, then, in theory, one could combine all of the data sets and run a single
analysis. Such an approach is often called a mega-analysis or a joint-analysis. However, this
is often not possible. Medical privacy concerns usually prevent members of a consortium
from sharing their raw data. Further, for a variety of reasons, the study designs may not be
compatible, such as involving different confounding variables or using different markers.
The latter issue is typically dealt with by using imputation (de Bakker et al. 2008; Zaitlen and
Eskin 2010), creating a set of shared markers over all the studies (this assumes that each study
sampled from a population where accurate imputation is possible). Hence, for each shared
marker, the consortium typically has only summary statistics from each of the k studies
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(rather than individual data), such as marker p values, estimated effects, and standard
errors. A final potential roadblock to performing a full mega-analysis is computational
(Panagiotou et al. 2013). While each of the k individual studies may be computationally
feasible, a mega-analysis of a full mixed-model may be less so.

The field of meta-analysis (the analysis of analyses; Appendix 6) deals with the analy-
sis of such a collection of summary statistics. While the p values for a given marker may be
combined over the studies, for a variety of reasons (see Appendix 6), a formal meta-analysis
typically deals with the estimated effects of a given marker. Lin and Zeng (2009, 2010; also see
Olkin and Sampson 1998) showed under rather general conditions that the standard error
for a meta-analysis estimate is approximately the same as a mega-analysis estimate using
the same data. Hence, in most settings, little efficiency is lost when moving from an analysis
based on the individual data to an analysis based on summary statistics from each of the un-
derlying studies. There is a rich, and growing, literature on the application of meta-analysis
to GWAS data. de Bakker et al. (2008), Zeggini and Ioannidis (2009), and Evangelou and
Ioannidis (2013) offer nice overviews of some the practical aspects of gathering, and harmo-
nizing, the data for a GWAS meta-analysis. General reviews of meta-analysis methodology
as applied to GWAS are given by Munafó and Flint (2004), Kavvoura and Ioannidis (2008),
Trikalinos et al. (2008), Begum et al. (2012), Panagiotou et al. (2013), and Dudbridge and
Newcombe (2019).

Meta-analysis Basics: Fixed Versus Random Effects Analysis

We begin with a quick overview of the machinery of meta-analysis (more fully covered in
Appendix 6) before examining specific applications to GWAS. Let Ti be some estimate of the
marker effect in study i (such as the odds ratio or regression slope), s2

i its sample variance,
and θi the true value for that study. Because of sampling error,

Ti = θi + ei (20.31a)

where we assume that the residuals are independent but heteroscedastic, as σ2(ei) = s2
i .

Under a fixed-effects (FE) meta-analysis, we assume that the actual effect size is the same
over all studies (θi = θ). Recalling generalized least-squares (GLS; Equation 10.13a), the
meta-analysis estimate of θ becomes

T =
∑k
i=1 wiTi∑k
i=1 wi

, where wi =
1
s2
i

(20.31b)

In other words, we use a weighted average, with each study weighted by its precision
(studies with smaller standard errors receive larger weights). Assuming a similar individual
variance (σ2) over studies,E[s2

i ] = σ2/ni, so that this scheme places more weight on studies
with larger sample sizes. However, the individual variance could easily vary over studies.
For example, a smaller study incorporating appropriate cofactor corrections, or with more
accurate scoring of the phenotype, may have a smaller standard error than a more poorly
designed, but larger, study. When imputation is used, Zaitlen and Eskin (2010) noted that
imputation accuracy is likely to vary over studies, and suggested a modification of the
weights to reflect this.

The meta-analysis standard error, sT , for the global (meta) estimate, T , is

s2
T

=
1∑k
i=1 wi

(20.31c)

For the situation where we assume that each individual observation in a given study has
the same variance (σ2), then for k studies with size ni,

σ2(T ) =
σ2∑k
i=1 ni

=
σ2

nk
, if ni = n (20.31d)



246 CHAPTER 20

The assumption of a single common value for the treatment mean over all studies
is often unrealistic, as we might except the true marker effect to vary, at least somewhat,
over studies. In this setting, our interest shifts to the variance among the actual effects over
studies. This leads to the random-effects (RE) meta-analysis model

Ti = µ+ ui + ei (20.32a)

where ui ∼ (0, σ2
u). Typically, the effect sizes (θi = µ+ ui) are assumed to be drawn from a

normal, θi ∼ N(µ, σ2
u). In addition to estimating the grand mean (µ), under the RE frame-

work our interest also extends to the heterogeneity of the studies, measured by the variation
(σ2
u) among the realized effects. The estimate of µ is also of the form of Equation 20.31b, but

with a critical difference. Under a random-effects model, the weights are now given by

wi =
1

s2
i + σ̂ 2

u

(20.32b)

where σ̂2
u is the estimate of σ2

u. Again, the standard error of the meta estimate is given by
Equation 20.31c, but now using the RE weights (Equation 20.32b).

This difference in study weighting between FE and RE analyses has several important
consequences. First, when σ2

u = 0, FE and RE estimates are identical. Second, when σ2
u > 0,

RE standard errors are larger, and as a result, an RE analysis almost always has lower power
than an FE analysis. Third, a subtle feature of RE weights arises when σ2

u is on the same
order as an average value (s2) of s2

i (namely, the between-study variance is at least large as
the within-study variance). In this setting, the RE wi tend to be more similar over studies.
The result is that, relative to an FE analysis, studies with less precision (for example, due to
smaller size) are given more weight under RE than under FE. In the extreme where σ2

u À s2
i ,

the weights are roughly the same over all studies, independent of their individual precision.

Example 20.11. A modification of the basic random effects (RE) approach has been suggested
by Han and Eskin (2011) and Lee et al. (2017). They noted that one reason for the loss of
power under an RE analysis (relative to an FE analysis) is testing against an incorrect null
hypothesis, and suggested an improved likelihood ratio test (Appendix 4) to account for this.
Their argument is as follows. As above, let Ti and s2

i denote the estimate and its variance. For
large sample size, Ti is distributed as N(θi, s2

i ), giving the meta-analysis likelihood as the
product of k normals. Under the FE model (θi = µ), the null (µ = 0) and alternative (µ 6= 0)
likelihoods become

LFE,null =
k∏
i

1√
2πs2

i

exp
(
− T

2
i

2s2
i

)
(20.33a)

LFE,alt =
k∏
i

1√
2πs2

i

exp
(
− (Ti − µ)2

2s2
i

)
(20.33b)

Substituting the MLE (θ̂) for θ (which Han and Eskin show is given by Equation 20.31b)
into the likelihood for the alternative and computing the likelihood ratio gives a test for the
significance of θ (Equation A4.9a).

Under the standard random-effects model, Ti ∼ N(µ, s2
i + σ2

u), giving the classic RE
null and alternative likelihoods as

LRE,null =
k∏
i

1√
2π(s2

i + σ2
u)

exp
(
− T 2

i

2(s2
i + σ2

u)

)
(20.33c)

and

LRE,alt =
k∏
i

1√
2π(s2

i + σ2
u)

exp
(
− (Ti − µ)2

2(s2
i + σ2

u)

)
(20.33d)
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Han and Eskin noted that Equation 20.33c is for the null hypothesis of a mean zero effect
(µ = 0 ), but still allows for a variance in the mean effect (σ2

u > 0). Framed this way, the
“null” hypothesis here is a mean effect of zero, but allowing for heterogeneity.

The RE2 model of Han and Eskin takes the null as µ = 0 with no heterogeneity (σ2
u = 0),

resulting in the same null as under the FE model (Equation 20.33a), and the alternative as
under the RE model (Equation 20.33d), giving the RE2 likelihoods as

LRE2,null =
k∏
i

1√
2πs2

i

exp
(
− T

2
i

2s2
i

)
(20.33e)

LRE2,alt =
k∏
i

1√
2π(s2

i + σ2
u)

exp
(
− (Ti − µ)2

2(s2
i + σ2

u)

)
(20.33f)

As above, the ratio of these two likelihoods (with the MLEs substituted into Equation 20.33f)
generates the test statistic, which becomes

LRHE =
k∑
i=1

ln

(
s2
i

s2
i + σ̂2

u

)
+

k∑
i=1

θ̂i
2

s2
i

+
k∑
i=1

(θ̂i − µ̂)2

s2
i + σ̂2

u

(20.33h)

which has a large-sample distribution that is a weighted sum of chi-square distributions,
namely, (1/2)(χ2

1 + χ2
2). Equation 20.33h is partitioned into a heterogeneity component (the

first term, testing σ2
u = 0), an FE component (the second term, testing µ = 0), and a final

term considering both. Han and Eskin showed that Equation 20.33h is more powerful than
the FE test when sufficient heterogeneity is present.

Meta-analysis Basics: Heterogeneity

Despite its lower precision and power, the strength of an RE analysis is in capturing any
heterogeneity (variance in true effect sizes) over studies. As we will see below, in many
GWAS studies, this is as important, indeed in some cases more important, than estimating
an average effect size. The simplest test for variance in effect sizes is the Cochran Q test of
heterogeneity,

Q =
k∑
i=1

(
Ti − T

)2
s2
i

(20.34)

where (under the null of θ1 = · · · = θk, and assuming that the values of Ti are normally
distributed) the distribution of Q is χ2 with (k − 1) degrees of freedom. While a standard
reported metric in a meta-analysis, Q is grossly underpowered when k is small, so that a non-
significant value does not imply a lack of heterogeneity. Indeed, when k is small, often a less
strict standard (p ≤ 0.1) is used to declare heterogeneity (e.g., Dudbridge and Newcombe
2019). Conversely, for large k, Q may be overpowered in the sense of declaring biologically
trivial heterogeneity as being statistically significant.

While Q is a test statistic for heterogeneity, it can also be used to obtain an estimate of
the between-sample variance, σ2

u. The DerSimonian-Laird estimator is given by

σ̂2
u =

Q− (k − 1)
S1 − (S2/S1)

, where Sj =
k∑
i=1

s−2j
i for j = 1, 2 (20.35)

which is set to zero if negative (DerSimonian and Laird 1986; 2015). Other estimation ap-
proaches (e.g., REML; Chapter 32) have been proposed (Appendix 6).

Higgins and Thompson (2002) noted two problems with quantifying the amount of
heterogeneity using either Q or an estimate of σ2

u. First, the expected value of Q is k − 1,
a function of the number of studies. Second, the value of σ2

u is dependent on the scale
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of measurement and test statistic used, and hence not readily comparable over different
meta-analyses. Hence, neither is an optimal measure for general heterogeneity, and they
proposed two related metrics for this task. Their H statistic is given by

H =

√
Q

k − 1
(20.36a)

and measures the excess in Q over its expected value. A modification is the Mittlbock-
Heinzl (2006) statistic,

H2
M =

Q− (k − 1)
k − 1

= H2 − 1 (20.36b)

Equation 20.36a is the basis for the Higgins-Thompson index of heterogeneity

I2 =
H2 − 1
H2

=
Q− (k − 1)

Q
(20.36c)

where

E[I2] =
σ2
u

σ2
u + s2

(20.36d)

with
s2 = (k − 1)

S1

S2
1 − S2

(20.36e)

measuring the average within-sample variation. The nice feature of I2 is its natural inter-
pretation as the fraction of the total variation (σ2

u + s2) due to heterogeneity (σ2
u). Equation

A6.36c can be used to construct approximate confidence intervals for I2 (as the latter is a
function of H). While I2 is widely used, Nakaoka and Inoue (2009) noted that there are
settings where H2

M might be a slightly better metric.

Meta-Analysis of a GWAS Collection: Basic Issues

A meta-analysis of a collection of independent GWAS has three aims: (i) the discovery of
new marker-trait associations not found in any single study, (ii) replication of any initial
associations, and (iii) detection of any variation in marker effects over studies. An early
example of the power of a meta-analaysis is from Crohn’s disease (Franke et al. 2010). Six
previous GWAS studies (comprising a total of 15,000 controls and 6,300 cases) had localized
32 different markers associated with the disease. A meta-analysis of these studies identified
30 additional associations.

The results of a meta-analysis for a given marker are usually displayed using forest
plots (Figure 20.5), which provide a visual representation of the individual studies, hetero-
geneity, and display the final estimates (often both the FE and RE values). These can also
be constructed as cumulative forest plots, where the top row is the initial study, the sec-
ond row the meta-analysis using the first two studies, and so on, with the final row giving
the full meta-analysis (Figure 20.5). These are usually displayed (from top to bottom) in the
chronological order in which the studies appeared. The observation that the first study often
has the largest effect has been termed the Proteus phenomena by Ioannidis and Trikalinos
(2005).

As mentioned, a meta-analysis has multiple objectives. If the goal is simply detecting
significant marker effects, then the higher power of an FE analysis is recommended, espe-
cially given the very stringent p values required to control the FWER (Begum et al. 2012;
Evangelou and Ioannidis 2013; Panagiotou et al. 2013; Dudbridge and Newcombe 2019).
Use of the FE model is appropriate because the null hypothesis of no marker effect jointly
implies µ = 0 (no average effect) and σ2

u = 0 (no heterogeneity). In theory, one could have
µ = 0 (the average marker effect is zero), but still have considerable marker heterogene-
ity (individual studies have significant marker effects). If there is a concern of heterogeneity,
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Figure 20.5 Left: A meta-analysis forest plot for a particular SNP (rs2470893) for a series of
GWAS examining coffee consumption. Each row represents a particular study, with middle
of the box locating the study estimate, the volume of the box representing the weight given
to that study, and the lines on both sides of the box (often called whiskers) represent the 95%
confidence interval. The vertical dotted line denotes the line of no effect. The diamond at
the bottom of the plot represents the meta-analysis estimate, with the peak of the diamond
denoting the estimate, and the edges denoting the width of the confidence interval. (After
Amin et al. 2012.) Right: A cumulative forest plot for a meta-analysis of rs961253 on
colorectal cancer risk. The top row represents the odds ratio estimate in the initial association,
and each subsequent row is the meta-analysis of all of the preceeding studies. Note the Proteus
phenomena effect, with the initial study having the largest effect. (After Zheng et al. 2012.)

then the RE2 model of Han and Eskin (Example 20.11) should also be used, as it has greater
power than FE when sufficient heterogeneity is present. While an FE analysis is typically
used for detection, if heterogeneity is present, the resulting FE confidence intervals for effect
size are too narrow, and an RE analysis is more appropriate. Recall that an RE analysis usu-
ally downweights larger studies and upweights smaller studies (relative to an FE analysis),
which may of concern in some analyses.

One complication that can arise in a GWAS meta-analysis is when the same subjects
overlap in one (or more) studies (such as when shared controls are used). This creates
correlations among the study estimates, which is problematic, as standard meta-analysis
models assume these are independent. Lin and Sullivan (2009) addressed this concern by
developing a GLS estimate that accounts for such correlations. For studies i and j, the
expected correlations are

rij '


nij/
√
nini population sample

(
nij0

√
ni1nj1
ni0nj0

+ nij1

√
ni0nj0
ni1nj1

)/
√
ninj case-control

(20.37)

where nij , nij1, and nij0 are, respectively, the total number of shared subjects, shared cases,
and shared controls for studies i and j, while ni, ni1, and ni0 are, respectively, the sample
size, number of cases, and number of controls in study i. When studies are independent, the
covariance matrix used in the GLS meta-estimate is diagonal, leading to Equation 20.31b.
When studies are correlated, the among-study covariance matrix now has off-diagonal
elements from these correlations, with estimates following from standard GLS expressions
(Equation 10.13a). An analogous situation occurs when a mega-analysis is performed over
a series of studies that contain relatives (such as mouse inbred lines). Furlotte et al. (2012)
show how to use an estimated relationship matrix to appropriately weight the studies.

While meta-analyses are typically framed in terms of testing the effects of a single
marker on a single trait over a collection of studies, their utility is much more general.
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For example, one could conduct a meta-analysis of a single marker over different traits,
namely a search for pleiotropic effects of a marker on multiple traits. Cotsapas et al. (2011)
examined the impact of 107 immune disease-risk SNPs detected for one disease on their
impact on other immune-mediated diseases. To do so, they developed a cross phenotype
meta-analysis (CPMA) test. Their concern was, given a detected marker for one disease,
how can we test for an association with some, but not necessarily all, of the other diseases.
The logic of their test (once again) follows from the assumption of a uniform distribution of p
values under the null (Appendix 6). This can be restated as− ln(p) following an exponential
distribution (Appendix 7) with decay rate λ = 1. Their CPMA test statistic is simply a
likelihood ratio of the data under the null (λ = 1) versus the likelihood under the MLE (λ̂)
for the fitted λ given the p values for the other diseases. Using this approach, they found
that 47 of the 107 SNPs (44%) were associated with some, but not necessarily all, of the other
diseases, so that (at least) 44% had pleiotropic effects.

Finally, an efficient meta-analysis heavily relies on stable marker estimates from each
individual study, and hence requires that the minor allele frequency (MAF) at the focal
marker (in each GWAS) is not too small. We have previously discussed various rare-allele
approaches for when this assumption fails (Table 20.3), and these statistics for each study
can be used as the entries in a meta-analysis, see Lee et al. (2013) for details. Alternately, a
mega-analysis (where possible) might result in a rare allele being sufficiently common in
the full dataset to allow for stable estimates of individual effects (Panagiotou et al. 2013).
Ma et al. (2013) showed that a joint analysis based on testing single markers can be more
powerful than a meta-analysis when the total minor allele count (MAC) is less than 400.
In this setting, they found (with a case-control design) that using logistic regression with
a penalized likelihood (the Firth biased-corrected test; Firth 1993; Heinze and Schemper
2002) over the joint data was the most appropriate analysis.

Meta-Analysis of a GWAS Collection: Heterogeneity

As noted by Ioannidis et al. (2007), heterogeneity in GWAS is both very common and “is a
useful aspect of the data, rather than a nuisance, as it can often point to leads that can clarify better the
nature of postulated association in the context of meta-analysis.” Heterogeneity can be formally
quantified using I2 (and its confidence interval), and visually displayed with forest plots
(Figure 20.5). When significant heterogeneity is present, a sensitivity analysis may provide
insight into its causal sources. Here, one assesses the effects of removing specific studies on
the meta estimate and I2.

At its simplest level, an understanding of potential sources of heterogeneity, and cor-
recting for them, can result in a more powerful meta-analysis (greater power for detection
and tighter confidence intervals). Different trait ascertainment criteria, differential scor-
ing of the trait, and testing the same marker with different genetic models (e.g., fitting a
recessive model in some studies and an additive in others) are all potential sources of hetero-
geneity that can often be easily addressed. More subtle issues involves differences between
populations in generating different levels of LD between markers and causal loci, genetic
heterogeneity (causal alleles vary over studies), and differential exposures (variation in en-
vironmental and/or genetic backgrounds). A deeper exploration of causes of heterogeneity
can result in significant biological insight (e.g., Example 20.12). For example, Zeggini and
Ioannidis (2009) found significant heterogeneity in a meta-analysis for the association be-
tween Type 2 diabetes (T2B) and the FTO locus known to be involved in obesity. In settings
where cases and controls were matched for body mass index (BMI), no association between
FTO and diabetes was found. Hence, it appears that FTO predicted obesity, which in turn
predicted diabetes, yielding some of the earlier detected associations.

Magosi et al. (2017) noted that heterogeneity is often better thought of as a study-wide,
rather than a marker-specific, effect, with some feature(s) of the study generating a systematic
signal over a large set of markers (systematic heterogeneity). Hence, there is potentially
more power to detect such an effect by jointly considering an appropriate collection of mark-
ers. This is the basis for Magosi’s aggregate heterogeneity M statistic, which is computed
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for each study. M is based on on the average of the scaled deviations of observed marker
effects from their meta-analysis predicted values. These scaled deviations are referred to as
standardized predicted random effects (SPREs), with the SPRE score for marker i (of m)
in study j given by

SPREj,i =
Tj,i − θ̂j,i√

σ2
u,i + σ2

j,i − E2
j,i

(20.37a)

where Tj,i is the association statistic for marker i in study j, σ2
j,i its sample variance, and

θ̂j,i its predicted realization. The other variance terms are σ2
u,i, the between-study variance

for marker i, and Ej,i the prediction standard error (Chapter 31). The resulting M value
associated with study j is given by

Mj =
1
m

m∑
i=1

SPREj,i (20.37b)

Extreme values of Mj indicate potential outlier studies, whose systematic effects result in
marker values being consistently overpredicted or consistently underpredicted, relative
to the rest of the studies. Statistical tests follow as Mj is approximately distributed as a
unit normal. Magosi et al. applied their approach to a coronary artery disease (CAD) meta-
analysis involving 48 different GWAS studies which involved a mixture of ethnicities. Based
on M scores, they found that studies with early-onset cases, those that used family history
for ascertainment, and those with individuals of East Asian ancestry explained a significant
proportion of between-study variation.

While systematic study effects represent one end of the spectrum of heterogeneity
sources, at the opposite end is marker-specific heterogeneity. For a given marker, this could
be generated by variation in causal alleles over studies, epistatic interactions over different
genetic backgrounds, or G x E interactions caused by major environmental factors varying
over studies. Kang et al. (2014) exploited this idea by noting that marker-specific hetero-
geneity can provide insight into G x E when study interactions correlate with environmental
features. They examined 17 mouse studies (with a total of roughly 5000 mice), performing
separate meta-analyses on 26 markers showing significant effects on HDL cholesterol levels.
By considering different mouse lines under different environment conditions, these stud-
ies varied in major environmental features (such as diet), sex, and in genetic background
(the presence/absence of knockout genes impacting other cholesterol pathway genes). For
markers with highly significant I2 values, they attempted to correlate heterogeneity with
specific study factors.

At such high-heterogeneity markers, some studies are expected to have interactions
while others are not. To determine which particular studies show an effect, Kang et al. used
the m statistic developed by Han and Eskin (2011). This estimates the posterior probability
that an effect exists in a particular study, given that the collection as a whole is signifi-
cant. This is an extension of the notion of the posterior probability of association (Equation
20.7b). Han and Eskin suggested that studies with m < 0.1 are predicted to have no ef-
fect, studies with m > 0.9 are predicted to have an effect, and intermediate m values are
ambiguous. Han and Eskin (2012) and Kang et al. (2016) proposed that using a P-M plot
(Figure 20.6)—plotting the p value for a given study and its associatedm value—was much
more informative as to which studies have effects. Their reasoning was that them value for
a given study borrows cross-study information, while its p value uses only within-study
information. For example, they note that markers can have m > 0.9, and yet not have very
significant p values (e.g., study 2 in Figure 20.6).

Example 20.12. In one of the first human obesity GWAS, Herbert et al. (2006) found a sig-
nificant signal at the rs7566605 SNP associated with the INSIG2 gene, with the CC genotype
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Figure 20.6 Left: A forest plot for the Fabp3 gene in a meta-analysis on mouse HDL levels.
Note studies 3 and 4, BXH-wt(M) and BXH-wt(F), which differ only in sex (males vs. females).
The impact of this marker on females (study 4) was significantly positive (the confidence
interval was entirely greater than zero), while the mean impact on weight in males (study
3) was negative, but not significantly so, showing a clear sex effect of this marker in this
background (the BXH wildtype strain) and a common environment (high fat diet). Right: The
associated P-M plot for these studies. For each study,− log10(p) is plotted on the vertical axis
and m (posterior probability that the effect is present) on the horizontal axis. Note that while
the confidence intervals for studies 3 and 4 overlap (left panel), so that their heterogeneity
might simply be the result of sampling noise, their relative locations on the P-M plot offers
some clarity (right panel). Study 3 had a low m value (0.03), while study 4 had a high m value
(0.93), supporting very little (if any) effect in males, but a strong effect in females. (After Kang
et al. 2016.)

increasing obesity relative to the CG or GG genotypes (a recessive model). This observation
proved hard to replicate, occurring in some, but not other, followup studies. Heid et al. (2009)
examined if this lack of repeatability was due to an initial false-positive or was a consequence
of study heterogeneity. A meta-analysis of 27 studies encompassing 66,000 Caucasians using a
case (body mass index, BMI,≥ 30) versus control (BMI< 30) design found a significant effect
(estimated odds ratio, OR, of 1.076, p = 0.023) under a fixed-effect analysis, but not under
a random-effects analysis (OR of 1.051, p = 0.268). For the RE analysis, I2 was 41% with a
confidence interval of 6.6% to 62.8%, indicating significant heterogeneity (a p value of 0.015
for Q). The OR and significance values increased as the case BMI threshold increased (using
controls with BMI < 25), with OR values of 1.16, 1.18, 1.22, and 1.27 for BMI cutoffs of 32.5,
35, 37.5, and 40.0. They then broke the 27 studies into three sets: 16 general populations (GP),
six obese populations (OP), and five healthy populations (HP). In the GP GWAS set, there
was a significant effect (OR = 1.092, p = 0.035) in a random-effects model, and a reduction in
I2 (down to 10.9%, confidence interval of 0% to 48.1%). No significant effect was seen in the
OP analysis, which showed a high level of heterogeneity (I2 of 63.2%, Q with a p value of
0.018). Surprisingly, in the HP population, the CC genotype had a significant protective effect,
with an odds ratio of 0.796 and with no heterogeneity (I2 = 0). The authors suggested that
the INSIG2 gene is associated with extreme obesity, a signal that can be masked by the study
design when an insufficient number of such individuals are sampled.


