
21
Quantitative Genomics and Probing the

Nature of Quantitative Genetic Variation

Whether the goal is discovery of rare variants or common variants, sample sizes are a key limiting
factor for furthering our understanding of polygenic diseases, and increasing sample size remains a

research priority needed to further ... genetic discoveries. Wray et al. (2018)
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The previous chapter examined the powerful GWAS approach for detecting associa-
tions between SNPs (and potentially other markers, such as CNVs) and trait values at a
target phenotype. In the vast majority of cases, detected markers (GWAS “hits”) are not
themselves functional, but rather “tag” nearby causal variants via linkage disequilibrium
(LD). A GWAS amounts to a very high precision QTL mapping experiment, offering insight
into the genetic architecture of traits (the number of causal variants and their joint distri-
bution of effects and frequencies). What a GWAS leaves unresolved is the actual molecular
nature of causal variants, and how this variation imparts developmental and physiological
effects on a target trait or disease. The very nature of high LD that allows one to tag causal
variants also impedes their very-fine mapping (i.e., detection of causal quantitative trait
nucleotides, QTNs), as numerous variants around a causal site may be in almost complete
LD.

GWAS was fueled by the rise of high-throughput DNA scoring platforms, culminating
in rare allele methods using whole-genome sequence data (Chapter 20). Concurrent with
this rise in DNA technologies was the development of other high-throughput functional
genomics platforms. These scored intermediate features in the pathway between a DNA se-
quence and the final trait phenotype, such as epigenetic modification of the DNA (changes
in chromatin status and configuration) and levels of downstream transcripts, proteins, and
metabolites. This chapter examines what has been called the post-GWAS era (Zhang et al.
2014; Gallagher and Chen-Plotkin 2018), combining information from GWAS studies and
functional genomics to probe the nature of quantitative variation. We attempt to weave
together a diverse collection of topics, ranging from a more detailed description of gene
regulation to analytic methods for exploiting high-dimensional data sets. Here we con-
clude with an overview of our current understanding of the evolutionary forces that have
shaped existing genetic variation, how this translates into patterns of genetic architectures,
and offer some glimpses into the molecular mechanisms underpinning such variation.

We start with high-throughput studies of gene expression (microarrays and RNA-Seq)
that provide a snapshot of the transcriptome (the genomic set of all transcribed regions).
Genome-wide expression studies have had three major impacts on the field of quantitative
genetics. First, the amount of transcript for any given gene is a quantitative trait, as we can
quantify its value, and variation in this value typically has both genetic and environmental
components. Thus, we can perform standard quantitative-genetic (QG) tasks such as es-
timating the heritability of expression levels, search for genetic correlations in expression
over different genes, probe its variance components (e.g., how much nonadditive genetic
variance is present), test for G x E, and so on. The thousands of features scored in a single
experiment by high-throughput expression platforms thus represent a collection of thou-
sands of quantitative traits, allowing one to explore a distribution of trait architectures.
Second, when marker data is jointly gathered with expression data, one can use methods
discussed in Chapters 17–20 to map expression QTLs (eQTLs, or eSNPs when tagged by
SNPs), markers tagging genetic regions that influence the expression level of a target gene.
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Finally, if expression levels and trait values are both scored, one can search for quantitative
trait transcripts (QTTs), whose expression levels influence downstream trait values.

While our initial presentation is focused on the transcriptome, it is important to stress
that essentially any functional genomics feature of interest can be treated in a similar manner.
The QG framework used for analysis of the transcriptome easily extends to other genomic
features, such as the proteome or metabolome (the sets, respectively, of all proteins or
metabolites within a focal cell or tissue). It also applies to various regulatory intermediates,
such as chromatin structure and mRNA processing, leading us to next consider more general
regulatory QTLs (regQTLs) impacting these features, which, in turn, leads to discussions
on the method of transcript-wide association studies (TWAS) and statistical methods to
fine-map actual causal sites.

One of the early results from microarray studies was the generation of long lists of
differentially expressed genes (DEGs) between two different cell types (such as normal
and diseased). The resulting massive datasets sparked the explosive growth of statistical
methods—loosely called gene-set and pathway analyses—developed to search for patterns
among the lists of DEGs, such as enrichment of specific functional classes of genes and/or
pathways. We present a modest overview of this vast literature, which offers a number
of approaches for extending a GWAS analysis from the SNP or gene level (Chapter 20)
to the level of user-defined gene sets (such as known biological pathways or genes in the
same functional category). Our increasing ability for high-throughput analyses of genomic
features raises considerations about how to model and estimate these fine-scale interactions.
We briefly introduce the emerging field of systems biology, which attempts to model these
highly complex systems. As the analysis of gene expression shows, quantitative genetics
and systems biology represent natural starting units for a more holistic fusion of genome
biology.

We conclude by examining the current picture on quantitative variation offered by
existing GWAS and functional genomics studies. We start with an older debate as to whether
the bulk of quantitative genetic variation is due to common alleles of small effect or rare
alleles of large effects. We then turn to the observation of “missing heritability,” wherein
the variance accounted for by using just the significant GWAS hits is only a small fraction
of the value seen using phenotypic correlations among relatives (Chapters 22–24). Finally,
we consider current hypotheses, such as the omnigenic model, that attempt to provide a
general framework for the nature of quantitative variation.

As with Chapter 20, much of our focus here is on human studies, because this is where
the largest investment has been made in developing genomic resources and tools. The logic
and methodologies presented here apply equally well to most other study organisms, and
can often be further leveraged by exploiting unique biological features that a focal species
might possess. For example, Hymenoptera have haploid males and diploid females, a
feature that can be exploited by a clever investigator. Likewise, the ability in some species
to generate clones can result in much more accurate measurement of functional genomic
features by averaging over a population of clones (Example 21.1), as opposed to using less
precise measurements based on single individuals, or more derivative measurements based
on tissue cultures developed from these individuals.

PROBING THE TRANSCRIPTOME

Whole-genome Expression Analysis

Paralleling the rise of rapid whole-genome sequencing approaches was the development of
a number of high-throughput profiling technologies that simultaneously score very large
collections of cellular macromolecules, starting with whole-genome transcription analysis
(the transcriptome). First-generation transcriptome approaches were based on microar-
rays, which used RNA-DNA or cDNA-DNA hybridization to short gene-specific probes
(spotted in an array) to simultaneously score thousands to tens-of-thousands of transcripts
(Brown and Botstein 1999; Hedge et al. 2000; Berrar et al. 2003). This was an analog tech-
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nology, scoring the amount of hybridization by the brightness of a given probe (spot) when
made to fluoresce under a laser. This pioneering approach has been slowly replaced by
a digital second-generation technology, RNA-seq (RNA sequencing). This method uses
next-generation sequencing to count the actual number of copies of a given transcript in the
sample (Mortazavi et al. 2008; Nagalakshmi et al. 2008; W. Wang et al. 2009). Besides being
more accurate, RNA-seq also has more discrimination than a microarray, such as being
able to quantify the amounts of alternately spliced products (isoforms) of a given primary
transcript or detect allele-specific expression (e.g., Battle et al. 2014). The resolution of this
technology is such that one can perform single cell RNA sequencing (scRNA-seq) to gen-
erate cell-type specific transcription profiles, which can then be tested for trait predictability
(e.g., Watanabe et al. 2019; Võsa et al. 2021). Sources of systematic errors and quality control
issues in RNAseq are discussed by Li et al. (2014) and Feng et al. (2015)

Gene expression is expected to be exquisitely tailored to specific tissues, environments,
and developmental windows. As such, even when examining a genetically homogenous
collection of a unicellular organisms (such as yeast), care must to take to standardize en-
vironmental conditions and development stages (such as rapid growth versus stationary
phases). For metazoans, the situation is even more delicate. At a very crude level, one could
perform whole-organism RNA extraction, again under the caveat of using consistent en-
vironments and developmental stages. However, in metazoans, the focus is usually on a
particular tissue or set of tissues deemed relevant to the trait or question under study, such
as endosperm in seeds, muscle in cattle, or immortalized cell lines or blood from humans.
Accomplishing this standardization limits the tissues/environments/conditions examined,
which can skew the biological interpretation of any results by the bias introduced by the
choice of tissues and conditions. For example, seed yield may be constrained by root up-
take of limiting nutrients, which could be missed by a focus on expression in flower or seed
tissues. Even if the transcript change is similar across all tissues, a modest to small change
in one tissue may have a more dramatic effect in another.

One of the very surprising results from genomics is that the transcriptome is a much
more wild and unruly universe than was perceived just a few decades ago (Johnson et
al. 2005; Carninci 2006; Gustincich et al 2006; Kapranov et al. 2007; Amaral et al. 2008;
Kapranov and St Laurent 2012; Deniz and Erman 2017). The historical view was that the
vast bulk of the transcriptome was mRNA transcribed from protein coding genes, along
with a few other specialty RNAs (tRNAs, rRNAs) critical for translation. As such, extraction
and scoring methods tended to focus on mRNAs, for example by exploiting the presence
of a poly-A tail in most processed transcripts. It is now apparent that, at some level, most
of the human genome appears to be transcribed. Some sources for these transcripts are
obvious, such as those associated with mobile genetic elements and noise from leaky or read-
through transcription. However, it is also clear that there are numerous, and very diverse,
classes of noncoding RNAs (ncRNAs; also denoted as transcripts of unknown function,
or TUFs), that play critical roles in gene regulation, roles that are still being resolved.
These RNAs are often partitioned by size into either short ncRNAs (sncRNAs; transcript
less than 200 nucleotides) or long ncRNAs (denoted as either lncRNAs or lincRNAs, for
long intergenetic noncoding RNAs). Important classes of sncRNAs include small nuclear
RNAs (snRNAs) involved in regulating gene splicing, small nucleolar RNAs (snoRNAs)
involved in modification of functional RNAs (e.g., rRNAs, tRNAs, and snRNAs), and micro-
RNAs (miRNAs) and small interfering RNAs (siRNAs) involved in post-transcriptional
regulation of gene expression. While the roles of lincRNAs are less resolved (Deniz and
Erman 2017), given that there are over 15,000 lincRNAs in the human genome their impact is
likely nontrivial. Given the unknown roles of many ncRNAs, in a bit of physics envy Johnson
et al. (2005) referred to these as transcriptional dark matter (or the dark transcriptome).
It is highly likely that some of this “dark matter” is relevant to quantitative trait variation
(St Laurent et al. 2014; Issler and Chen 2015; Li et al. 2016; Gamazon et al. 2018; X. Liu et
al. 2019), especially under the view that much of phenotypic variation within a population
is due to regulatory variation. Given that many biologists hold the RNA world view of
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the first protocell (with RNA performing both coding and metabolic functions before being
displaced by DNA and proteins), this greatly expanded functional role for RNAs in current
cells should really not be that surprising.

Genetical Genomics and eQTLS: Basics

As was discussed in Chapter 18, the first mapping of regulatory QTLs was by Damerval et
al. (1994), who detected QTLs influencing the spot volume for anonymous proteins in maize
(Figure 18.13), which was followed by similar studies in mice (Klose et al. 2002; Hartl et al.
2008). Jansen and Nap (2001; de Koning and Haley 2005) coined the term genetical genomics
for this marriage of QTL mapping and expression of genomic features. Jansen (2003) further
suggested that functional analysis in a segregating population can be a more powerful tool
than more traditional single-gene perturbations (such as gene modification/knockouts or
iRNA silencing). With the development of high throughput RNA expression platforms, the
initial focus of genetical genomic studies was on the transcriptome. Most of the early studies
used classical linkage-based QTL mapping approaches (Chapters 18 and 19), with the trait
value being the amount of transcript from a focal gene, an integrated measure of both its
transcription rate and message stability.

The study and mapping of such eQTLs (expression QTLs; Jansen and Nap 2001;
Schadt et al. 2003) that influence the mRNA level of a target gene is of great interest for
several reasons. First, as noted by Rockman and Kruglyak (2006), “the road from genotype
to phenotype runs through gene expression.” Most traditional trait-based GWAS SNPs
map to noncoding regions (e.g., Edwards et al. 2013 found that 85% mapped to noncoding
regions in humans), and hence likely represent regulatory, as opposed to structural, variants.
While regulatory changes can occur at many levels—transcriptional, post-transcriptional,
translational, post-translational, cell-cell or tissue-tissue interactions, etc.—many of these
regulatory variants are likely eQTLs. As a result, the location of GWAS SNPs can be very
misleading as to the location of causal coding regions (e.g., Example 21.5). Suppose that
variation in the amount of transcript in gene Q impacts trait value/disease status. Variation
in regulation in transcript abundance might be governed by sites at some distance from the
coding region, with the resulting GWAS hits drawing attention away from Q. Conversely,
eQTLs can also map close to the coding region for the transcript they influence (see below).
In such cases, a correlation between trait value and transcript abundance of a focal gene can
provide support for that gene influencing the focal trait. Thus, eQTLs and GWAS SNPs can
jointly provide support for causal genes. Finally, the ability to score thousands of transcripts
in a single experiment offers a large, relatively unbiased, set of characters upon which
to draw influence about the distribution of genetic architectures over this class of traits.
Overviews of eQTLs are given by Rockman and Kruglyak (2006), Gilad et al. (2008), Nica
and Dermitzakis (2013), Albert and Kruglyak (2015), and Hill et al. (2021).

Early eQTL mapping studies included linkage-based designs using line-crosses (F2 and
RILs; Chapter 18) in yeast (Brem et al. 2002; Yvert et al. 2003; Brem and Kruglyak 2005),
mice (Schadt et al. 2003; Bystrykh et al. 2005; Chesler et al. 2005), rats (Hubner et al. 2005;
Petretto et al. 2006), maize (Schadt et al. 2003), and Arabidopsis (West et al. 2007). Early
work in humans was based on outcrossed pedigree designs (Chapter 19), with expression
levels being scored using either cell lines or blood extracted from each sampled individual
(Schadt et al. 2003; Monks et al. 2004; Morley et al. 2004; Deutsch et al. 2005). As with any
linkage-based design, the level of resolution of eQTLs was poor (typically on a megabase
scale), especially given the small sample sizes of most of these studies (usually < 100
individuals/lines). These initial linkage-based studies were soon followed by LD-based
GWAS in humans (Cheung et al. 2005; Stranger et al. 2005, 2007a, 2007; Emilsson et al. 2008;
Dimas et al. 2009; Dixon et al. 2009) and maize (Fu et al. 2013; H. Liu et al. 2017), moving
from eQTLs to eSNPs. While such expression-wide association studies (EWAS) offered
greater mapping resolution, early GWAS studies also suffered from very small sample sizes
(again, typically less than 100), and thus were dramatically underpowered.

As discussed in Chapter 20, structural DNA variation—such as copy number variation
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(CNV), insertions/deletions (indels), and presence/absence of mobile elements—can be
used in place of SNPs as markers in a GWAS. Often these structural variants are tagged via
LD to nearby SNPs (tCNVs, for tagged copy number variations; Gamazon and Stranger
2015), and hence their effects are largely captured by a SNP-based GWAS. However, many
structural variants are not well tagged by SNPs, and there are reasons to suspect that such
variants often have a direct impact on expression levels of nearby transcripts (leading to
eCNVs). Their impact could simply be due a duplication resulting in double the amount of
transcript, or through more subtle effects such as duplication or deletion of control elements
(e.g., enhancers). Consistent with this argument, Gamazon et al. (2011) found that tCNVs
were enriched for eQTLs compared to SNPs with matching allele frequencies. Stranger et
al. (2007) found that CNVs accounted for around 18% of the total detected variation in gene
expression in their study, which is likely an underestimate, as other CNV effects could have
been captured by nearby SNPs. Bryois et al. (2014) found that CNVs were more likely to
be eQTLs than were SNPs, and that CNVs can act in trans as well as cis. They also found
(as did Chiang et al. 2017 and Uzunovı́c et al. 2019) that the effects of structural variants
on expression were usually larger than SNP effects. One of the most detailed analysis of
the relative contributions from SNPs and structural variants was by Jakubosky et al. (2020),
who examined cis eQTLs (within 1 MB on either side of the coding region) for 7000 genes
showing genetic variation in expression. Over 7 million common variants (SNPs, indels,
and other structural variants) were scored, finding 11,000 lead makers impacting expression,
with 72% being SNPs, 24% being indels, while the rest were other structure variants.

The major difference between an eQTL/EWAS and a QTL/GWAS experiment is that, in
the former, thousands of traits (gene-specific expression levels) are scored at once. Further,
many of these traits are highly correlated, reflecting coordinated expression over sets of
genes. This trait dimensionality structure introduces two issues. First, it creates a heavy
multiple-comparison burden (testing over thousands of individual traits). Coupling this
burden of higher stridency levels for each test with the typically small sample sizes of many
eQTL experiments made these early studies very underpowered (Gibson and Weir 2005).
One consequence of lower power is poor mapping resolution and potentially unstable
estimates of eQTL locations (Pérez-Enciso 2004). A second concern are Beavis (winner’s
curse) effects (Figure 18.8), wherein detected effects are substantially overestimated due to
low power (de Koning and Haley 2005).

While many eQTL studies map one transcript at a time (or, conversely, test all transcripts
over a given marker, one marker at a time), greater power can be achieved by leveraging
information from these correlated values (Kendziorski and Wang 2006). When the number
of transcripts greatly exceeds the number of scored samples, methods for mapping low-
dimensional correlated traits from Chapter 18 are not applicable. Extensions of standard
QTLs methods to handle these high-dimensional, but correlated, traits were developed by
Kendziorski et al. (2006), Chen and Kendziorski (2007), Gelfond et al. (2007), Jia and Xu
(2007), Chun and Keleş (2009), Zou and Zeng (2009), Wang et al. (2011), Shabalin (2012),
Flutre et al. (2013), Davis et al. (2016), and Ongen et al. (2016). An alternative approach has
been to use principal components (or, more generally, the singular value decomposition;
Appendix 3) to reduce the dimensionality of the transcript data, and then map the resulting
PC/SV values as composite traits (Alter et al. 2000; Lan et al. 2003; Biswas et al. 2008). Sul et
al. (2013) suggested meta-analytic approaches for combining results over multiple tissues.

Given the potentially complex nature of the transcript correlation structure, permuta-
tion tests (Chapter 18) remain the gold-standard for significance testing for eQTLs, but the
exchangeable (shuffled) unit is no longer single traits. Permutation tests should instead be
constructing by keeping the vector of expression data intact. If ei and gi denote the vectors of
expression and marker data (respectively) for individual i, then the randomization should
be ei over gj , namely holding each vector intact, but shuffling their association.

Example 21.1 Several features about the biology of Baker’s yeast (Saccaromyces cerevisiae)
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make it an excellent a model system for classical and molecular genetics. Following the cross of
two strains, recombinant haploid spores are produced, each of which can be rapidly grown into
pure colonies (generating segregant lines, the haploid version of RILs). Because each line is a
haploid, no dominance is present and any epistasis is additive (e.g., AA, AAA, etc.; Equation
5.9). Finally, yeast has a very high recombination rate, offering increased mapping resolution.
Geneticists have long exploited these features, but the lack of any significant morphological
variation focused early quantitative-genetic studies on physiological traits such as growth
rate. More recently, high throughput systems to phenotype yeast morphological traits have
been developed (e.g., Ohya et al 2005), but these still only score a limited number of features.
Whole-genome expression analysis introduced thousands of new traits that could be cheaply
and rapidly scored, allowing for eQTL mapping. The resulting large sample of eQTLs for
different transcripts provides insight into the distribution of genetic architectures underlying
expression variation.

An early exploration of yeast expression architectures was done by Brem and Kruglyak
(2005), who scored 112 haploid segregant lines for expression level at 5727 transcripts. These
lines were also genotyped using 3000 markers, with eQTL mapping performed using the
standard RIL mapping framework (Chapter 18), modified for haploid lines. While the clonal
nature of each segregant allowed phenotypes (expression levels) to be measured with some
precision, the power of this design was still modest given the small number of lines. Over
3500 transcripts showed a significant among-line variation, indicating heritable variation for
expression levels. Of these, 2000 had at least one detectable eQTL, with the authors noting
that the other 1500 heritable transcripts likely had eQTLs with effects too small to be detected.
A similar observation was made in mice by Schadt et al. (2003), who detected eQTLs for only
about a quarter of the transcripts that showed significant among-line expression differences.

Brem and Kruglyak noted that the difference between the observed among-line variation
and the variation attributed to detected eQTLs provides information on the effect size of
undetected eQTLs. To remove any Beavis effects (overestimation of effect size when power is
weak), they split their 112 lines into a random set of 56 lines for detection, with the remaining set
of 56 used to estimate the eQTL effects (this procedure is called a subsampling approach). They
found that only 3% of highly heritable transcripts were consistent with a single controlling
locus, roughly 20% were consistent with one or two locus control, and over half required at
least five eQTLs. The latter bound assumed that undetected eQTLs had equal effects, so that
the actual number is likely much higher. Transgressive segregation (Chapter 18) was common,
where expression levels in some of the lines exceeded the values seen in their parents. Finally,
because no dominance is present in the haploid lines, departure of the mean of the segregant
lines from the midparent value (line cross analysis; Chapter 11) indicates (additive) epistasis,
which was seen in roughly 20% of the highly heritable transcripts. A much more powerful
follow-up study by Albert et al. (2018) using over 1000 segregant lines was able to account
for over 70% of the heritability in expression with mapped eQTLs. As predicted by Brem and
Kruglyak, control of transcript expression was highly polygenic, with a median number of 6
eQTLs per transcript, where the majority of variation was accounted for by eQTLs acting at
some distance from their target transcript coding region.

Example 21.2 Battle et al. (2014) performed an EWAS using RNA-seq on 922 human samples
of whole blood, finding detectable eSNPs for over ten thousand transcripts. Using this large
sample of traits, a number of patterns consistent with selection against variants with a large
effect on expression emerged. As in Example 21.1, subsampling was used to remove Beavis
effects, with the resulting estimated eSNP effect sizes tending to decrease as the variant fre-
quency increased. This same eQTL variant size–frequency pattern was detected in the mustard
Capsella grandiflora by Josephs et al. (2015). Battle et al. found two other patterns suggesting
that transcript level changes were more moderated for genes with potentially large, or impor-
tant, roles in cellular function. Reduced eQTL variation was seem for both highly conserved
genes and for genes whose products were hubs in protein-protein interaction (PPI) networks
(Appendix A2). Further, they showed that eQTL effect size was negatively correlated with the
number of PPIs for the product of that transcript.

A followup study on eQTLs in C. grandiflora by Uzunovı́c et al. (2019) found that CNVs,
in the form of transposable elements (TEs), made a significant contribution to expression
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variation. They observed that rare TE eQTLs tended to strongly downregulate expression,
in contrast to rare SNPs that showed no net directionality in expression levels. Conversely,
common TE eQTLs were more likely to increase expression. These observations suggest TE
insertions that downregulate expression are generally selected against, but variants that up-
regulated expression were often less deleterious.

Genetical Genomics and eQTLS: Cis Versus Trans Effects

The poor resolution of linkage-based eQTL locations has an important implication in their
functional interpretation. In classic genetics, regulatory factors are typically classified as
either having cis or trans functionality (Haldane 1942; Lewis 1945). A cis regulatory site
only impacts a gene residing on the same DNA molecule, and typically represents regula-
tory binding sites such as promoters or regional features such as enhancers, silencers, or
insulators. While cis sites are usually thought of as being adjacent to the coding sequence
they impact, in theory they act at some distance (especially given the tendency of chromatin
looping, wherein sites megabases apart may still find themselves in very close proximity in
a cell; Rao et al. 2014). Trans regulatory factors, on the other hand, are generally envisioned
as diffusable products (such as proteins or RNAs) that can impact genes residing on the
same, or different, chromosomes (for example, by binding to cis sites). The cis terminology
was used in the early days of eQTL mapping to refer to an eQTL location that mapped very
close to the coding region of the target transcript site, typically within a megabase from the
transcription start (TSS), or end (TES). Trans referred to an eQTL that was either at some
distance away on the same chromosome, or on an entirely different chromosome, from
the target transcript coding region. Given that these are distance, as opposed to functional,
metrics, they are often replaced in the literature with the terms of local (or proximal) and
distant (or distal) eQTLs (Rockman and Kruglyak 2006; Gilad et al. 2008). Given the poor
resolution from linkage mapping, “local” can operationally refer to regions on a megabase
scale, which could contain multiple eQTLs.

Note that local eQTLs could functionally act in trans. One classic example would be
regulatory feedback loops, where the amount of mRNA or protein product from a gene
self-regulates its own expression. One can formally distinguish between cis versus trans
functionality using allele specific expression, ASE (Wright and Moyer 1966; Knight 2004;
Wittkopp et al. 2004, 2008; Battle et al. 2014; Glassberg et al. 2019; Hill et al. 2021). Suppose
allele A shows a higher level of expression than allele B on their original backgrounds. If
this is due to a cis effect, then the level of expression of A should still exceed that of B in A/B
heterozygotes. However, if this is due to a trans effect from a factor closely linked to A, then
both A and B should show similar expression levels in heterozygotes, as any trans-acting
factors will operate equally on both. Using this approach, studies in yeast and mice showed
that most (but not all) local eQTLs are due to cis effects (Doss et al. 2005; Ronald et al. 2005).
This pattern was also seen using RNA-seq to score expression in human lymphoblastoid
cell lines (Prickrell et al. 2010). Wittkopp et al. (2008) and Emerson et al. (2010) discuss
separation of cis and trans effects when both impact ASE. As noted by Battle et al. (2014),
one can take this analysis a step further and map SNPs in LD with causal sites that directly
influence ASE, detecting aseQTLs (or aseSNPs). They did so by treating the ratio of the
two transcript types in a heterozygote as a quantitative trait. They used this same logic to
map sQTLs (or sSNPs) that influence the ratio of two different splicing product from a
transcript. Unexpectedly, some of their detected sSNPs acted in trans.

Given that a focal transcript could be impacted by both local and distant factors, rather
than provide a profile (or Manhattan) plot (Figure 20.1) for each of the thousands of tran-
scripts, the typical representation of an eQTL experiment is in the form of a transcriptome
map (Chesler et al. 2005). This is a two-dimensional plot, where each displayed point rep-
resents a significant association (which could also be color- or size-coded to represent the
strength of the effect; e.g., Jiang et al. 2013). As shown in Figure 21.1, one axis gives the
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Figure 21.1 A stylized transcriptome map, plotting eQTL locations versus the location of the
coding region for a transcript. Both axes correspond to genome position, with the horizontal
(x) axis denoting a region/marker being tested as an eQTL and the vertical (y) axis the location
of the coding region for a transcript (occasionally in the literature these two axes are reversed).
A point or pixel at position (x, y) on this map indicates a significant association between a
transcript whose coding region is at genomic position y and a marker/region at genomic
position x. Points falling on the diagonal correspond to eQTLs that map very close to, or at,
the same location as the coding region for the transcript they influence. These have been called
cis eQTLs, but as discussed in the text are better referred to as local (proximal) eQTLs. Points
falling off the diagonal correspond to eQTL locations that influence transcripts whose coding
regions are at a different location from the eQTL. These have been called trans eQTLs, but are
better referred to as distant (distal) eQTLs. A vertical stack of points correspond to a (small)
genomic region that is enriched for eQTLs, and is called a hotspot or hub, with the eQTLs in
that region impacting numerous transcripts.

genomic location of the eQTL/eSNP, while the other axis corresponds the genomic location
of the transcript coding region that it impacts. If an eQTL maps close (local) to the coding
region of the transcript it impacts, this generates a point on the diagonal of the plot, while if
the eQTL maps distal, the point will be off the diagonal (Figure 21.1). When eQTL location
is plotted on the horizontal axis (as in Figure 21.1), the presence of hubs or hot spots
(distant eQTLs that impact numerous transcripts) will appear as vertical lines, while they
appear as horizontal lines when the roles of axes are reversed (eQTL locations are mapped
on the vertical axis). As observed by Lutz et al. (2019; 2022), the genetic architecture of
variants at a hub can be rather complicated. In yeast crosses, trans-eQTLs mainly occur in
hubs, a rather different situation from humans, perhaps reflecting coordinated control of a
number of genes when the single-celled yeast experiences an environmental challenge. For
example, the protein encoded by the yeast IRA gene, a key regulator in the RAS signaling
pathway, is a trans-eQTL, impacting the level of expression at over a thousand transcripts.
The coding region of this gene is over 9,000 bases long, and contains at least seven causal
nonsynonymous variants displaying complex epistatic interactions with each other.

Bryois et al. (2014) noted multiple cis-eSNPs can impact the same coding region, which
can be missed if the lead SNP has a large effect. Akin to removal of the effect of a major
gene in standard QTL linkage analysis (Chapter 18), they suggested that the genotype of
the first detected cis-eSNP be used as a cofactor to search for additional cis sites. Using this
approach, they found that 20% of the genes in their modest sample of 870 human cell lines
had least two detectable cis-eSNPs, a percentage that is certain to rise with larger sample
sizes (Gusev et al. 2016). Any collection of such cis sites impacting the same transcript should
be subsequently tested for epistatic interactions (Chapters 18 and 20).

A common observation (Rockman and Kruglyak 2006; Breitling et al. 2008; Albert and
Kruglyak 2015) is that individual cis effects tend to be both larger, and more common,
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that individual trans effects. There was considerable debate as to whether this represented
reality or was simply a reflection of the low power of most early designs. The biological
notion for stronger cis effects is that they are likely to be more direct, often focused on
just a single transcript, than are trans effects, which are diffusive and may only become
apparent after interaction with cis sites. There is clearly an ascertainment bias in favor of
cis sites in that many studies only searched for associations with markers immediately
adjacent to the transcript coding region. When power is low, the Beavis effect implies that
any such sites declared to be significant will likely have an overestimated effect size (de
Koning and Haley 2005). Note that tests of only transcript-adjacent (local) markers results
in a much lower multiple comparison burden that testing every genomic location (distant)
against the focal coding region. If indeed most trans sites have weaker effects, their heavier
multiple comparison burden will further make then difficult to detect. Note from Example
21.1 that the yeast data suggest eQTLs of modest to weak effect are likely to be the norm,
and that most of these are likely trans. Conversely, Stamatoyannopoulos (2004) noted a bias
in diploids that can result in an underestimation of cis effect sizes, in that expression level
measures incorporate values from both alleles (unless allele specific expression is scored),
potentially diluting a strong cis effect from one of the alleles.

Given their weaker power of detection, Kendziorski and Wang (2006) suggested that
one approach in a scan for trans sites is to test each marker separately, and look for ac-
cumulating evidence over the entire set of transcripts. Under the null hypothesis of no
marker-expression effect, the distribution of p values follows a uniform, so a marker-specific
histrogram of the p values for each transcript could be used to estimate the number of sig-
nificant effects at each marker (e.g., Cotsapas et al. 2011). Appendix 6 discusses a number of
these methods, but the complication to applying them to expression data is that we expect
some transcripts to be highly correlated (Brynedal et al. 2017 suggest adjustments based
on the decompositon of the transcript correlation matrix). This also raises concerns about
the validly of apparent hubs (Figure 21.1), as Pérez-Enciso (2004) showed via simulation
that the correlated structure of transcripts can easily create false positive (or ghost) hubs. A
related issue is that subtle environment changes can result in expression shifts of a num-
ber of genes, potentially creating ghost hubs if individuals in the sample vary over these
conditions (Stamatoyannopoulos 2004).

As mentioned, there is a huge disparity in testing local versus distal effects. Peterson
et al. (2016a) noted that with their human date set of roughly 6.8 million SNPs and 30,100
transcripts, they had 142 million local tests (as an average of 21 genes were within a MB of
a typical SNP), and over 200 billion distal tests. As a result, they suggested a hierarchical
structure for hypothesis testing, first separating local and distal tests. For local tests, they
focused on the entire collection of local SNPs for a given gene (using gene-based GWAS
approaches; Chapter 20). Among those genes that showed a significant effect on a local
transcript, they then tested each SNP within the gene separately. By first focusing on sets of
SNPs, the multiple comparisons burden is greatly reduced. Similarly, for distal tests they first
tested significance of a given SNP over the entire collection of distal transcripts (consided
as a single set; again, modification of gene-based tests can be used), and, if significant,
subsequently tested this SNP against each distal transcript.

Recalling the lessons from early GWAS studies (Chapter 20), wherein increasing sample
sizes resulted in the discovery of more associated SNPs and greater replication over studies,
we expect this same pattern applies to early eQTLs/eSNPs studies given their very small
sample sizes. Even more recent studies are typically of rather modest relative to a modern
GWAS, with samples sizes often no greater than one to a few thousand individuals (e.g.,
Zeller et al. 2010; Westra et al. 2013). As would be expected for eQTLs of small effect, Bryois
et al. (2014) found that eQTL detection improved with increasing sample size. Indeed, Võsa
et al. (2021) were able to detect cis-eQTLs for roughly 90% of the genes in a study of almost
32,000 individuals. Further, most of these eSNPs replicated over several tissues.

An important breakthrough in the analysis of eQTLs was the hypothesis of cis-me-
diated trans effects, or cis-mediation for short (Fehrmann et al. 2011; Jiang et al. 2013;
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Figure 21.2 The concept of cis-mediation. The observation is that eSNP i acts at some distance
away from a coding region (Gj ) to regulate the level of its transcript Tj (eSNP i is a trans-eSNP
for transcript j). The mediation hypothesis is that the impact of eSNP i is through a cis effect
on the transcript from (local) gene Gi, whose transcript Ti then influences the regulation of
transcript Tj of a distant gene Gj . Path analysis methods (Figure 21.3; Appendix 2) allow this
idea to be extended over much more complex regulatory networks, as well as providing a
framework for estimating direct and indirect effects of any component player (Example 21.3).

Battle et al. 2014; Bryois et al. 2014; Pierce et al. 2014). As shown in Figure 21.2, this idea
postulates that many of the observed trans effects are the result of a cis effect at the eSNP
that impacts the transcript of a local gene, with that transcript then having a trans effect on
distant transcripts. Formally, suppose that SNP i is observed to have a trans effect on the
transcript Tj from a distal coding region j, then the causality path is eSNPi → Ti → Tj , in
that SNP i cis-regulates the level of transcript Ti, which in turn influences transcript Tj . As
an aside, the causalty notation x → y implies that a change in x while holding all other
variables (other than y) constant results in a change in the distribution of y, but a change in
y (holding all other variables constant) does not change the distribution of x.

The cis-mediation model explains, in part, why trans effects appear to be weaker that
cis effects, as we are scoring a secondary effect. It also suggests strategies to improve trans
detection. For example, Bryois et al. (2014) focused on only those eSNPs showing a local
effect. These were then tested for trans effects over the rest of the transcriptome (an idea
loosely akin to searching for epistasis by first starting with a QTL having a marginal effect;
Chapter 18). This strategy significantly reduces the number of comparisons, resulting in
improved power, and allowed Bryois et al. to detect addition trans-eSNPs. As outlined in
Example 21.3, and discussed in more detail in Appendix 2, multiple regression and path-
analytic models can be used to detect, and quantify, mediation effects. In humans, the
observation is that cis-mediation is common, but usually is only partial (Example 21.3). One
explanation is mediator confounding (Figure 21.3), wherein some unmeasured variable
impacts both the cis mediator (Ti) and the trans transcript (Tj). This can arise when the
eSNP used has imperfect LD with the causal SNP, or when measurement error impacts
estimates of Ti and/or Tj (Pierce et al. 2014; Yang et al. 2017). Pierce et al. (2014) and Yao
et al. (2017) found that many human trans-eQTLs are also cis-eQTLs for local genes. While
partial mediation was common for many of these, complete mediation was rare.

What is the current big-picture view of the quantitative genetics of RNA expression
levels? The bulk of work on eQTLs comes from two very distinct biological systems:
multicellular humans and unicellular yeast (recent summaries in Albert and Kruglyak 2015,
Albert et al. 2018, and GTEx Consortium 2020). Given the rather modest sample sizes of most
studies, a substantial number of additional eQTLs, especially trans-eQTLs, are expected to
be detected as sample size increases. Despite this limitation, the conclusion is inescapable
that eQTLs are ubiquitous, and control of expression for almost all transcripts is polygenic,
with trans effects generally contributing between two- to four-fold more variation than
cis effects (Liu et al. 2019). In both humans and yeast, almost all major transcripts have
associated cis-eQTLs. In humans, this is greater than 95% for protein-coding regions and
67% for lincRNAs (GTEx Consortium 2020), while most yeast protein-coding genes have
detectable cis-eQTLs. Further, in humans allelic heterogeneity is common for cis sites, with
multiple independent cis variants being the norm.
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Figure 21.3 Path-analysis of a trio (eSNPi, Ti, and Tj ) to separate direct and indirect effects.
(A): The path diagram when only these trio elements are involved (Example 21.3). The direct
effect eSNPi → Tj (avoiding Ti) is given by β5, and the indirect (mediated) effect via Ti,
eSNPi → Ti → Tj , is β2 · β4. The total effect is given by β1 = β5 + β2 · β4. This same logic
can be applied to a trio of an eSNP, a transcript it impacts, and a trait value (i.e., replacing
Tj with zk, the value for trait k), or other more complex regulatory pathways (e.g., Example
A2.2). (B): Mediator confounding occurs, in the simplest case, when an unmeasured factor
(C) impacts both Ti and Tj . In this setting, estimates of the direct and indirect effects can be
biased.

The situation for trans-eQTLs is a bit more complex. These tend to have much weaker in-
dividual effects than cis-eQTLs, and are currently vastly undercounted. In humans,
roughly one-third of detected trans-eQTL show some cis-mediation (GTEx Consortium
2020). Further, cis-eQTLs tend to be more tissue-sharing, while trans-eQTLs are more tissue-
specific, indicating that even more are awaiting discovery as the tissue pool expands. Finally,
trans-eQTLs are more enriched for known GWAS hits than are cis-eQTLs, which themselves
are enriched relative to random frequency-matched SNPs. Hubs (trans-eQTLs that impact
numerous transcripts) are seen, but generally impact only a modest number of transcripts.
In contrast to humans, the vast majority (90%) of trans-eQTLS effects in yeast map to just
around 100 hubs. The median number of transcripts impacted by a yeast hub is 425, with
a range of 26 to 4600 (Albert et al. 2018). Four of these hubs impact over half of the genes
showing variation in expression. In contrast to the highly-structured trans hubs of yeast, the
hub structure of humans is far weaker and much more diffuse. Part of our current view of
the human hub structure is likely impacted by low power. Indeed, highly structured hubs
have been seen in other line-crossed eQTL mapping experiments with model organisms
(mice, rats, Arabidopsis). In the line-cross setting, segregating alleles have equal frequencies
(Chapter 18), as opposed to a GWAS setting where there is lower power to detect effects
associated with rare alleles (Chapter 20). Despite these issues, at present it appears that
humans and yeast may have rather different trans structures.

Example 21.3 As developed by a number of investigators, one can use conditional regressions
(path analysis methods; Appendix 2) to both detect, and quantify, the amount of mediation
that gene i has on transcript j (Chen et al 2007; Jiang et al. 2013; Pierce et al. 2014; Yang et
al. 2017; Yao et al. 2017; Shan et al. 2019). This is done using a nested series of regressions to
establish causality. Using the notation in Figures 21.2 and 21.3, first consider the association
between the dosage of SNP i (Ni) and the transcript associated with coding region j (Tj ),

Tj = α1 + β1Ni + e1 (21.1a)

One declares SNP i to be a trans-eSNP for coding region j when the slope β1 is significant.
This slope measures the total effect of SNP i on Tj , the contributions from both direct effects
and indirect effects (such as through Ti). Next, we declare SNP i to be a cis-eSNP for coding
region Gi when the regression

Ti = α2 + β2Ni + e2 (21.1b)

has a significant slope. Similarly, we declare the Ti has an effect on Tj when β3 is significant
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for the regression
Tj = α3 + β3Ti + e3 (21.1c)

Significant slopes in the above three regressions establish that (i) SNP i is associated with Tj ;
(ii) SNP i is associated with Ti, and (iii) Ti is associated with Tj . These univariate regressions,
by themselves, do not separate direct from indirect effects. To do so, a multiple regression of
Tj is constructed based on both Ni and Ti,

Tj = α4 + β4Ti + β5Ni + e4 (21.1c)

If β5 = 0, then any effect from SNP i on Tj is simply through its effect on Ti, namely, full
mediation (the effect of SNP i on Tj is entirely through its cis-effect on Ti). When both β4 and
β5 are significant, then partial mediation occurs, where both Ti and SNP i (through a path
independent of Ti) impact Tj . Note that this logic need not be restricted to just transcripts, one
could measure (say) Pi, the level of protein from gene i, or some other regulatory measure
such as methylation, splicing, etc. Modifications of permutation tests to accommodate the
correlation structure of mediation analysis are discussed by Jiang et al. (2013) and T. Wang et
al. (2020).

From the theory of path analysis (Appendix 2), the indirect effect of SNP i on Tj through
the path given by Ti, is just the product of the path coefficients, which turns out to be β2 · β4

from the above regressions. As shown in Figure 21.3A, the total path effect β1 assumes the
potential of a direct effect β5 from eSNPi to Tj (Ni → Tj ) and an indirect of eSNPi via paths
through Tj (Ni → Ti → Tj ) with effect β2 · β4. Hence, the proportion of the total effect on
Tj from eSNPi mediated via Ti is

(β1 − β5)/β1 = β2β4/β1 (21.1d)

If there are no unscored correlated factors that impact members of this trio, then the relation
β1 = β5 +β2 ·β4, namely total effect = direct effect plus indirect effect, should hold. If it does
not, one is likely missing correlated elements (confounders). Figure 21.3B shows one example.
Such confounding could be caused by the focal eSNPi being in LD with different causal SNPs
for the cis effect on Ti and the trans effect on Tj (Pierce et al. 2014).

Negative values of Equation 21.1d are commonly observed (e.g., Yang et al. 2017), indi-
cating mediator confounding (Figure 21.3B). Even when one has a candidate lists of potential
confounders to test (e.g., age, sex, environment risk factors, etc.), two variable selection is-
sues arise. First, even assuming that the correct potential confounder variables have been
identified, testing all of them in a single regression greatly lowers power. Second, and more
problematic, confounder variables can vary over both trios (eSNPi, Ti, Tj ) and the tissues in
which a trio is tested. Yang et al. (2017) developed Genomic Mediation analysis with Adap-
tive Confounding adjustment (GMAC) to address this concern, a trio-tissue specific variable
selection approach to choose the appropriate confounder variables (from some candidate list).

The Epigenome and More General Regulatory QTLs (regQTLs)

The same logic used for mapping QTLs for protein- and transcript-level regulation can be
applied to other regulatory features, such as methylation (Gibbs et al. 2010; McRae et al. 2018;
Wu et al. 2018), DNAse I sensitivity (Degner et al. 2012), and mRNA splicing (Battle et al.
2014). Indeed, any genomic or cellular feature that can be quantified (assigned a numerical
value, such as a binary 0/1 on-off score) can be treated as a quantitative trait. We refer to
QTLs (or SNPs) associated with a scored regulatory feature as a regulatory QTLs (regQTLs
or regSNPs). Table 21.1 lists a some of the different types of QTLs/SNPs that have been
mapped using functional genomics features. Note that these classes are not exclusive, as
an eQTL might be the result of regulatory variation at splicing (sQTL), DNAse I sensitivity
(dsQTL), methylation (methQTL), or any number of other steps (Example 21.4). regQTLs
represent a key step in the merging of quantitative genetics and functional genomics, a
union we refer to as quantitative genomics, the natural extension of genetical genomics. The
machinery of quantitative genomics provides a powerful analytic framework for extracting
signals from the growing tsunami of functional data.
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Table 21.1 A few of the different classes of QTLs (SNPs). The general terminology is to use QTLs
generically, especially in a linkage-based analysis to indicate a region, and SNP in a GWAS setting to
refer to a SNP showing an association. The QTL/SNP terminology is a bit idiosyncratic, with different
versions for some of these abbreviations appearing in the literature.

acQTL/acSNP Chromatin acetylation QTL/SNP
aseQTL/aseSNP Allele-specific expression QTL/SNP
caQTL/caSNP Chromatin accessibility QTL/SNP
cis-xQTL/cis-xSNP Cis (local) QTL/SNP for feature x
dsQTL/dsSNP DNAse I sensitivity QTL/SNP
eQTL/eSNP RNA expression QTL/SNP
hQTL/hSNP Histone QTL/SNP
haQTL/haSNP Histone acetylation QTL/SNP
hmQTL/hmSNP Histone methylation QTL/SNP
meQTL/meSNP DNA methylation QTL/SNP
methQTL/methSNP DNA methylation QTL/SNP
miR-QTL/miR-SNP MicroRNA QTL/SNP
pQTL/pSNP Protein expression QTL/SNP
pb-xQTL/pb-xSNP Population-based QTL/SNP for feature x
QTN Quantitative trait nucleotide
QTT Quantitative trait transcript
rQTL/rSNP Ribsome occupancy QTL/SNP
regQTL/regSNP Regulatory QTL/SNP
sQTL/sSNP Splicing QTL/SNP
sb-xQTL/sb-xSNP Sex-based QTL/SNP for feature x
tQTL/tSNP Trait QTL/SNP
trans-xQTL/trans-xSNP Trans (distal) QTL/SNP for feature x
vQTL/vSNP Variance QTL/SNP

As with eQTLs, regQTLs are conditional, potentially having tissue or developmental-
state specificity. For example, even when using the same tissues, one could be scoring a
functional feature under steady-state behavior in some settings and under the dynamic
response following some environmental perturbation in others. Similarly, ascertaining the
direction of causality for regQTLs remains a major problem. A phenotype could cause a
change in some functional feature, rather than being the result of that feature. Mendelian
randomization (Example 21.10; Appendix 2) offers one approach for assigning causality.

An especially interesting set of regulatory features is the epigenome (Susuki and Bird
2008), the structure of the chromatin (and associated binding proteins), as well as other
features, that distinguish different tissues between cells with otherwise identical DNA se-
quences. Examples include methylation of DNA CpG sites, acetylation and methylation of
histones, and DNAse I sensitivity regions (Strahl and Allis 2000; G. Wang et al. 2007; Chi et
al. 2010; ENCODE Project Consortium 2012, 2020; Romanoski et al. 2015). A growing num-
ber of studies highlight the importance, and potential use, of the epigenome. For example,
Rakyan et al. (2011b) examined differences in the DNA methylation patterns (the methy-
lome) between monozygotic twins (MTZ) that were discordant for childhood-onset Type
1 Diabetes (T1D). Despite being genetically identical, in discordant twins, one sib displays
the disease while the other does not (discordant MTZ are expected to be common unless the
disease prevalence is high, Yang et al. 2010c; Visscher et al. 2012). Rakyan et al. were able
to detect 132 CpG sites, differentially methylated between discordant pairs, that correlated
with T1D status. Such an association does not imply causality, as cellular perturbations from
T1D might induce these changes, rather than these changes causing T1D. Rakyan et al. then
used an independent data set to show that many of these methylation differences could be
seen prior to the expression of the disease in case individuals.

If environmentally induced methylation events are persistent, then (provided the cor-
rect tissue is chosen), one could (in theory) search the methylome for signatures of past
environmental exposures. Human epigenetic markers can persist over a lifetime (Shah et
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al. 2014). For example, Heijmans et al. (2008) found that, even after 60 years, Dutch ex-
posed prenatally to famine during a food embargo near the end of World War Two still
showed reduced methylation (in peripheral blood) at the insulin-like growth factor II gene
relative to appropriate control groups. Breitling et al. (2011) found a single locus that was
under-methylated (again, using blood) in smokers (relative to nonsmokers) in an initial
sample of 177, and were able to replicate their finding using an independent sample of 316
individuals. Hence, in at least some cases the epigenome may display persistent signals
of past environmental events and exposures. A genome-wide scan for epigenetic features
associated with particular traits has been refered to as a epigenome-wide assocation study,
or EpWAS (EWAS is also widely used in the literature, but we reserve this for expression-
wide studies) or a methylome-wide association study (MWAS). Issues when conducting
an EpWAS are reviewed by Rakyan et al. (2011a).

Example 21.4 Two interesting studies attempted to dissect the impact of cis variation at
various stages in the regulatory pathway (from gene to transcript to protein) using a collection
of lymphoblastoid cell lines extracted from 72 Nigerian Yorubas (Battle et al. 2015; Li et al.
2016). The use of cell lines allowed for the detailed measurement of a number of genomic and
cellular features, while SNP genotyping of these lines allowed for a GWAS to be conducted for
each scored feature. The GWAS was restricted to cis (local) QTL by restricting the search to a
20-kb window around the target gene. Battle et al. used RNA-seq to measure standing mRNA
levels, ribosome profiling (ribo-seq) to measure translation (via occupancy rates, a measure
of transitional rates and efficiency; Ingolia et al. 2009), and mass spectroscopy to measure the
associated protein levels. Despite the very low power of their design (given their very small
sample size), they still found numerous regulatory QTLs at all three steps: 4,400 genes were
tested for protein abundance, detecting 300 cis-pQTLs; 15,000 genes were scored for ribosome
occupancy, yielding 930 cis-rQTL; and 16,600 genes were scored for mRNA levels, finding 2400
cis-eQTLs. Among the 4300 genes scored for all three regulatory phenotypes, 66% of eQTLs
had some overlap with both downstream rQTLs (66%) and pQTLs (35%), while 52% of rQTLs
overlapped with their corresponding pQTLs. While the eQTL and rQTL effects (when both
were present) tended to have a similar effect size, pQTL effects tended to be diminished relative
to their upstream eQTL effect. Thus the signal from a change in mRNA expression tends to
be at least somewhat buffered when it reaches the protein level. Finally, they detected a class
of cis-QTLs that influenced protein levels with essentially no effect on mRNA levels (pQTLs
that were not eQTLs), suggesting that these might arise via posttranslationa regulation.

Li et al. (2016) conducted a more granular analysis of using these same lines, adding
several additional regulatory steps in addition to those measured by Battle et al. (2015). They
examined potential regulatory steps upstream from the TSS by considering several markers
for chromatin modification relating to transcription factor accessibility. The first was a putative
enhancer signal, acetylation of the lysine at position 27 on Histone 3 (H3K27ac) around the TSS,
which is associated with enhanced transcriptional activity (Wang et al. 2016). [Methylation of
this lysine, H3K27me3, and of the lysine at position 4, H3K4me1 and H3K4me3, are associated
with silencers, enhancers, and promoters, respectively.] They also scored methylation levels
and DNAse I sensitivity. While RNA-seq measures the steady-state level of transcript, the
actual rate of transcription was scored (4sU-seq) by using pulse-labeled uridine (s4U). Their
RNA-seq analysis included isoform ratios for alternatively spliced products. Regulatory QTLs
were detected at each of these steps. They found that around 65% of all eQTLs have effects
on chromatin. They also found an uncoupling of expression level and splicing in that sQTLs
and eQTLs tend to be independent (only 14 of 275 genes shared the same lead SNP for both).
Further, eQTLS are enriched around the TSS, while sQTLs are enriched within the body of the
coding sequence (in particular, within the introns that they regulate). While not influencing
expression level, 90% of sQTLs generated variation in the final protein sequence. Finally, they
noted that GWAS SNPs for four disease and two traits were enriched for both eQTLS (as
noted above) and sSNPs, and that the latter appeared to have effect at least as great as the
former. Hence, variation in alternative splicing rates may be an important player underlying
quantitative variation.
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What is the Nature of GWAS Noncoding SNPs?

One of the surprising observations from GWAS studies was that the vast majority of sig-
nificant “hits” (SNPs/CNVs statistically associated with trait variation) fall into noncoding
regions, and thus are not the result of structural changes (variation in the amino acid se-
quence of coded proteins). While, by default, these GWAS hits are likely regulatory in nature,
can we associate noncoding hits with specific regulatory features? One could examine one or
a few model traits for such associations, but these results might be somewhat idiosyncratic,
and not that representative of traits in general. A much more powerful approach is to uses
catalogues of noncoding SNP hits assembled over a wide array of traits and diseases to
see if these SNPs are enriched for regulatory features (such enrichment tests will be dis-
cussed shortly). For example, Maurano et al. (2012) showed that a collection of over 5600
noncoding human SNPs for 200 different diseases and 450 different traits preferentially
mapped to DNase I hypersensitive sites (DHS) as scored using the ENCODE collection of
85 cell-tissue types. DHS sites are a strong regulatory signal, indicating an open chromatin
structure that allows the transcriptional machinery to have greater accessibility to genes.
Trynka et al. (2013), Pickrell (2014), Farh et al. (2015), and Gusev et al. (2018) reported similar
observations using other human chromatin markers.

An even more direct regulatory connection is the observation in humans that collections
of GWAS SNP hits (involving numerous traits and diseases) are significantly enriched for
eQTLs. This is especially remarkable in that most of the early studies scored eQTLs using
just a single cell line/tissue type, yet the detected eSNPs were enriched for GWAS hits over
a wide variety of traits (e.g., Nicolae et al. 2010; Fehrmann et al. 2011; Westra et al. 2013;
Battle et al. 2014; Bryois et al. 2014; GTEx Consortium 2017, 2020; Yao et al. 2020; Barneira
et al. 2021). One might imagine that focusing attention on only a single tissue (such as
lympholbastoid cell lines) or peripheral blood (a mixture of a limited number of cell types)
would only capture a small fraction of eQTLs over the whole organism, and yet even with
this restriction, a strong enrichment emerged. Later studies used eQTLs detected over a
variety of tissues, similarly showing strong enrichment for GWAS SNP hits over a variety
of diseases and traits. For example, Gamazon et al. (2018) used a bank of 44 human tissues
in 450 individual, finding that 60% of known trait-associate SNPs were in LD with cis-
eQTLs detected over one (or more) of the cell lines. They classified detected eSNPs as either
tissue-shared, or tissue-specific, eSNPs, finding that for most (but not all) traits, tissue-
shared eSNPs (detected in more than one tissue) accounted for great proportion of trait
associations than did tissue-specific eSNPs. Further, at least in humans, local eQTLs tend to
be more tissue-shared, while distal eQTLs are often tissue-specific (GTEx Consortium 2017;
Liu et al. 2017).

Example 21.5 An important cautionary tale on fine-mapping was offered by Smemo et al.
(2014). A set of roughly 90 variants in very high LD that map within a 47 kb region spanning
introns 1 and 2 of the FTO gene had very strong, and highly reproducible, GWAS hits for
human obesity (measured by body mass index, BMI). Individuals homozygous for risk alleles
averaged more than 3kg heavier than individuals homozygous for non-risk alleles. Deletion
of FTO in mouse models results in leaner mice, while mice overexpressing FTO are heavier.
Finally, this 47kb region is heavily enriched with cis-acting control factors (enhancers, repres-
sors, DNAse I sensitivity sites, TF binding sites). However, none of the variants within this
region map as eQTLs for FTO expression. Smemo et al. found that this regions is involved
in chromatin looping to a region over a megabase away containing the gene IRX3. In a hu-
man EWAS using brain tissue, 11 of the FTO SNPs associated with BMI were also eSNPs for
IRX3, but not FTO, expression. Further, of the eSNPs associated with IRX3 expression in either
brain or mature adipose tissue, only those expressed in the brain showed highly significant
associations with BMI. Hence, the FTO GWAS hits appear to be distal eSNPs that impact ex-
pression levels of IRX3 in the brain. The apparent colocalization of FTO GWAS hits and mouse
knockout effects gave a misleading picture of how these specific causal sites influence human
body mass. Further, focusing expression studies solely on one obvious target, mature adipose
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tissue, would have missed this signal.
An independent study by Claussnitzer et al. (2015), using gene editing in human tissue

cultures, offered a rather different finding, highlighting the subtleties of tissue choice. They
found strong effects of a particular SNP variant (rs1421085) within this FTO region on the
expression of IRX3 and the nearby IRX5 gene in precursor adipocyte cells, resulting in a switch
from fat burning to fat storage. This variant disrupted a repressor within this region (ARID5B),
resulting in the activation of a rather potent early adipocyte enhancer and a doubling of IRX3
and IRX5 expression early adipocyte differentiation. Thus, there appear to be potentially
several different gene circuits (with different tissue specificity) influencing BMI from genes
some distance from the location of the GWAS hits. The different, but not necessarily exclusive,
conclusions from these two studies highlight the concern stressed by Barbeira et al. (2018) that
researchers need to adopt a more agnostic scanning approach when assessing correlations
between expression levels and trait values.

A variety of approaches have been proposed to functionally associate a SNP to a particular
gene (S2G, for SNP-to-gene), such as whether the SNP is within an exon, distance to the
TSS, fine-mapped cis-eQTL, promoter capture or assessable chromatin information. These
approaches are all restricted to detecting relatively closing-acting cis regulatory effects. A
number of approaches are reviewed by Gazal et al. (2022), who propose an optimal weighting
for combining several S2G metrics into a single index.

TRANSCRIPTOME WIDE ASSOCIATION STUDIES (TWAS)

Quantitative Trait Transcripts, QTT

The logical complement to an eQTL study is to directly search for quantitative trait tran-
scripts, QTTs (Passador-Gurgel et al. 2007), whose expression levels are correlated with
trait values. At first blush, this idea seems very straightforward. Starting with a sample
consisting of both expression and trait data, simple modifications of a variety of GWAS
approaches (Chapter 20) can be used to search for QTTs. The resulting analysis is often
called a transcriptome wide association study or TWAS. We note that there are two fla-
vors of TWAS, based on either using observed transcript values (which we denote as an
oTWAS) or using predicted transcript values (given some reference set of eQTLs), a pTWAS.
A pTWAS tests association based on genetically predicted expression levels, while an oTWAS
tests association using the total expression level (genetic plus environmental contributions).
Most TWAS studies, especially in humans, are pTWAS, and indeed the common literature
use of TWAS refers to this class of analysis. We examine pTWAS in detail shortly, framing
our initial discussion by assuming we have observed transcript values in some appropriate
tissue (or set of tissues) given our trait.

Regardless of how transcript values are obtained, a TWAS scores each primary tran-
script (as opposed to a GWAS scoring each SNP), with the resulting Manhattan plot showing
expression level-trait association p values at each transcriptional coding location. One sim-
ply changes the predictor variables, replacing the GWAS discrete variable of gene dosage
(minor allele copy number, N ) with the continuous variable of expression level (T ) of a
given transcript (which can be extended to the constellation of splicing variants for a given
coding region). For example, standard linear regressions can used for continuous traits,
with

zi = αk + βk Ti,k + ei (21.2)

where zi is the phenotype of individual i and Ti,k is the transcript amount of gene k in i. As in
Chapter 20, the simple intercept αk can be extended to a set of fixed effects to account for any
relevant cofactors. Similarly, with binary traits, one could use logistic regressions (Equation
20.3). The dimensionality of the TWAS test set is on the order of the number of transcripts
(in the low tens-of-thousands), as opposed to the number of SNPs (often in the millions),
and thus has a much lighter multiple-comparison burden (essentially a gene-based GWAS;
Chapter 20). This burden is likely even smaller than the number of transcripts, due to their
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high correlation structure (e.g., Peterson et al. 2016b).
Unlike a traditional GWAS, a significant transcript effect in a TWAS has immediate bio-

logical interpretation. In a SNP-focused GWAS, the sign of a significant SNP effect typically
does not convey much of a biological meaning. However, a positive βk from Equation 21.2
implies that upregulation of transcript Tk increases the trait value (or disease risk), while a
negative βk implies that downregulation of Tk increases the trait value (or risk). As noted
by Gamazon et al. (2015), this has immediate therapeutic implications, as targeted down-
regulation of a gene is usually easier to achieve that targeted upregulation. Hence, genes
whose transcripts have positive βk are better potential targets of therapeutic intervention,
as reducing the level of these transcripts would decreases disease risk.

Several important statistical considerations arise when moving from a GWAS to a
TWAS. Like SNPs in LD, the predictor variables in a TWAS (transcripts) can be correlated,
and one must account for their covariance structure. In the case of SNPs, LD generates
these correlations, which do typically not extend outside of a block of tightly-linked sites.
Trimming SNPs within such a block is often used reduce the impact from high SNP colin-
earity. With transcripts, however, there is no genomic locational impact on the correlation
structure, as transcripts from unlinked genes can be very highly correlated. There are two
other, rather subtle, complications when moving from SNPs to transcripts. First, while the
SNP genotype of an individual does not change over the environment, this is not the case
with transcripts. Different environmental exposures can impact which genes are expressed
(E → T ), and also impact the trait, independent of transcript levels (E → z). Such an envi-
ronmental effect would be a confounder (Figure 21.3B), generating a false associate between
transcript level and trait value. An appropriate choice of cofactors can often mitigate this
effect.

The second (closely related) TWAS complication is that while the direction of GWAS
causality between SNP and trait is always unidirectional (SNP→ trait), such that an indi-
vidual’s trait value cannot change their SNP value, causality can flow in both directions for a
trait-transcript pair (Tk → z and z → Tk). Flow in the latter direction is often called reverse
causality. When the SNP is correlated with both T and z, three base models are possible
(Schadt et al. 2005): causal (SNP→ Tk → z), reactive (SNP→ z → Tk), and independent
(z ← SNP → Tk). Consider weight. An environment feature (such as diet) may have a
strong impact of trait value, independent of any underlying transcript values. Conversely,
as weight increases, the expression levels of genes can change as a result of the trait value.
The resulting trait-transcript association is driven by the trait, not the transcript (the reactive
model).

The impact of high correlations among predictor variables differs between a GWAS and
a TWAS. In a GWAS, a number of significant hits can be generated over a set of SNPs that
are all in high LD with the same causal site. Fortunately, the locational clustering of these
SNPs usually suggests this possibility. Conversely, a TWAS can have noncausal transcripts
showing significant associations with a trait because of tight coregulation with a true causal
transcript (for the trait). Unlike the case with SNPs, there is no obvious locational clustering
to suggest that most are false positives (arising from correlations with a true positive). One
potential approach for decoupling the effects of correlated transcripts is to construct the
covariance matrix of all nk transcripts correlated with a focal transcript Tk, and then extract
the leading mk < nk PCs from this matrix, and use these in a regression,

zi = αk + βkTi,k +
mk∑
j=1

βk,jPCi,j,k + ei (21.3)

Here PCi,j,k is the jth PC score for individual i of the covariance matrix for all transcripts
associated with the focal transcript k. One could proceed in this manner over each member
of the set of correlated transcript (using some threshold value for a minimum absolute
correlation) to extract a subset of leading predictors, which could be then be simultaneously
fit in a multiple regression. Penalized regressions, such as the LASSO (Example 20.4), could
also be used for model selection. Given the potential of very high transcript colinearity, these
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approaches are not fool-proof. Further, if there are additional, but unmeasured cofactors
(such as important environmental factors that influence both trait and transcript values),
false associations can arise. The above-mentioned methods of path and mediation analysis
can be used to probe the causality structure (Appendix 2; Example A2.2), but such an
analysis is only as good as the variable selection of possible confounders. As we will see
next, the solution to this concern is to use eQTLs as proxies for transcript values, as changes in
the trait value, or the value of other transcripts, will not change the eQTL genotype. This
is the instrumental variable approach that Mendelian randomization (Appendix 2) uses to
test the impact of some factor (such as high blood pressure) on a disease, free of the effect
of confounders or reverse causality (Figure A2.7). If the factor has a direct effect on the trait,
genotypes that influence that factor should also influence the downstream trait value.

Example 21.6 Kirst et al (2004) measured growth rate in clones of 91 backcross individuals
from a Eucalyptus cross (F1 offspring of E. grandus×E. globulus were backcrossed to a E. grandus
parent). This set of clones was also scored for expression levels at 2600 genes via a microarray.
After adjusting for multiple comparisons, 26 transcripts were significantly correlated with
growth, with an addition 11 transcripts added using a slightly less stringent threshold. All of
these transcript levels were negative correlated with growth (lower mRNAs levels were seen
in faster growing individuals). A single transcript in the lignin (a major wood component)
biosynthetic pathway explained 38% of the growth variation, and the majority of the other
significant transcripts coded for enzymes in this pathway. An independent analysis found
lower amounts of lignin in the faster-growing clones. All, save one, of the significant transcripts
associated the lignin pathway were influenced by a single trans-acting eQTL on linkage group
9. A second trans-eQTL on linkage group 4 also influenced the majority of these transcripts.
These two eQTLs colocalized with two QTLs independently mapped for growth (however,
confidence intervals for QTL/eQTL locations were very large due to small sample sizes).

TWAS Using SNP-predicted Transcript Values (pTWAS)

The term TWAS as it commonly appears in the human literature refers to a GWAS setting
where one has SNP and trait, but no expression, data. Hence, to be consistent with the
more common use, in what follows we use TWAS in place of pTWAS. The idea is to lever-
age the SNP-trait data (without performing any additional genomics) by using the eQTLs
previously detected in some reference transcriptome population, and then (based on the
observed SNP genotypes of an individual) predict the expected values for their unmeasured
transcripts (Gamazon et al. 2015; Gusev et al. 2016). In essence, this is a form of imputation
(Chapter 20). Instead of using the observed SNP genotypes and some larger SNP reference
collection to infer unscored genotypes, one instead uses the observed SNP genotypes and a
reference collection of eQTLs, and then infers the unscored transcript values (Schadt et al.
2012 discuss the converse issue of predicting an eSNP genotype from an observed transcript
value). For example, in humans one could use eQTLs detected using the Genotype-Tissue
Expression Project (GTEx) set of roughly 50 different tissues from 900 individuals (GTEx
Consortium 2017, 2020) or the Genetic European Variation in Health and Disease (GEU-
VADIS) set of 460 lymphoblastiod cell lines (Lappalainen et al. 2013). As noted by Huang et
al. (2018), one concern is that eSNP effects are overstaimted when power is low,, and suggest
using bootstrap appraoches (CHapter 18) to obtain less biased estimates. One concern is
that eSNP effects are overestimated when power is low, and Huang et al. (2018 suggested
using bootstrap approaches (Chapter 18) to obtain less biased estimates. Wainberg et al.
(2019) presents an overview of TWAS advantages, limitations, and best practices.

The massive leverage of a TWAS occurs because once a model for predicting transcript
values is built, it can be applied to any GWAS study lacking expression data, provided two
strong assumptions hold. First, that the LD patterns are very similar in the GWAS sample
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and the transcriptome reference populations. Note that this is the same general restriction as
with imputation of missing SNP. Second, that the appropriate tissue type(s) are used as the
reference for the trait of interest, or expressions levels in the target tissues have a high level
of genetic correlation with in the proxy tissue(s) scored. Provided that these assumptions
hold, one can take previous (and future) GWAS studies and reanalyze each using TWAS.
The resulting shift from testing all the SNPs to testing just the (predicted) transcripts is akin
to moving from a SNP-based, to a gene-based, GWAS (Chapter 20), with a huge reduction in
the multiple comparisons burden, and, as a result, a potential increase in power. However,
any power gain from reduction in the burden of multiple tests could be more than offset by
prediction inaccuracies of the expression levels (Huang et al. 2018). It is also worth noting
that while we frame TWAS in terms of using local eSNPs to predict the impact of transcript
levels on a trait, the exact same approach would be used for other regulatory features.
For example, prediction the methylation levels from local meSNPs and then examining the
impact of methylation site status on the trait.

The starting point for a TWAS is to first map eQTLs using the reference transcriptome
data in the desired tissue(s), using SNPs proximal to the coding region in a statistical model
to predict its transcript level (i.e., cis-eSNPs). Let Ni,k,j be the number of reference alleles
(typically the minor allele count, 0, 1, or 2 at each SNP) for individual i in the reference
sample at a proximal SNP 1 ≤ j ≤ nk for the coding region of transcript k. One then fits the
linear model

Ti,k = αk +
nk∑
j=1

βk,jNi,k,j + eik (21.4a)

using a variety of approaches, such as using the lead (or sentinel) SNP (that with the
largest effect), or more generally penalized regression/model selection approaches such as
LASSO (Example 20.4). Distal eSNPs are generally not fitted because of model instability
issues given their generally weaker effects coupled with the massive increased in model
dimensionality. This statistical justification also has some biological justification, in that local
eQTLs tend to be tissue-sharing, while distal eSNPs are often more tissue-specific (GTEx
Consortium 2017; Liu et al. 2017; Urbut et al. 2019). Hence, one can use a proxy tissue
when the real focal tissue (or tissues) for a trait/disease is unknown, as the proxy may
often capture much of the local eQTLs (but could easily miss important distal eQTLs). For
example, Qi et al. (2018) examined the correlation of both cis-eSNPS and cis-meSNPs effects
between blood and brain tissue. Blood is far easier to obtain and score for genomic features
than brain tissue, and thus much larger sample sizes can be used for the regulatory reference
panels (in their study, 500 to 1000 for brain tissues versus 2000 to 14,000 for blood). They
found a high correlation in effect sizes between the two tissue types, 0.70 for cis-eSNPs and
0.78 for cis-meSNPs. Hence, the reduction in accuracy in using blood for brain expression
is more than offset by far greater reference population sample sizes. Ongen et al. (2017)
discussed how to leverage information from an expression panel of different tissues (e.g.,
GTEx) to determine the causal tissue(s) for a given trait.

Letting nk∗ denote the number of proximal SNPs retained in the final model for tran-
script k, the predicted value of transcript k in individual i from the GWAS (with no expres-
sion data) becomes

T̂i,k = αk +
nk∗∑
j=1

βk,jNi,k,j (21.4b)

with this value then substituted into an oTWAS ( T̂i,k replaces Ti,j in Equation 21.3). Gama-
zon et al. (2015) called this approach PrediXcan. More generally, the βk,j weights can vary
over tissue type. For tissue type h, one can compactly write the vector of nT predicted
transcript values for individual i, t(h)

i , as the product of an tissue-specific ns × nT weight
matrix, W(h), and an ns-dimensional column vector of SNP genotype scores (the Ni,k,j) for
individual i, gi, e.g., t(h)

i = W(h)gi. Because of the use of only local SNPs in the weight
matrix, it is very sparse. The power of the TWAS approach is that W(h) is estimated just
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once from the transcriptome reference populations, and can then be applied to all relevant
GWAS studies (different sets of gi vectors). Ideally, a separate TWAS is performed over each
of the tissue-specific matrices. Xu et al. (2017) discussed the connections between TWAS and
multiple-SNP gene-based GWAS tests (Chapter 20).

There are two shortcomings with this basic TWAS approach that were addressed by
subsequent investigators. The first is that any uncertainties in the estimates of βj,k are not
incorporated into the resulting TWAS (the T̂i,k values are assumed to be predicted without
error). This limitation was addressed by the collaborative mixed model (CoMM) approach
Yang et al (2018) and Yeung et al. (2019), which jointly estimates the effects of a SNP on
transcript levels in the transcriptome reference set and its effects on the focal trait in the
GWAS. This allows for uncertainty in the predicted transcript levels to be accommodated for
in the final TWAS. The cost of this approach is that βj,k values must be (jointly) estimated
for each new GWAS, as compared to a single estimation that can be used on all future
GWAS (using their gi values). The second shortcoming is that Equation 21.4b assumes one
has access to the full GWAS data set (in particular, the genotypes of each individual). More
generally, one may only have access to the summary statistics, not the individual genotype
data. As outlined in Example 21.7, a number of investigators have extended TWAS to the
summary data setting.

While using predicted transcripts values might appear to be less optimal than using
their observed values, as noted by Gamazon et al. (2015) they have two important advan-
tages. By predicting transcription levels solely on the basis of the genotype at the eSNP,
what Gamazon et al. (2015) refer to as the genetically regulated expression component
(GReX) of the transcript (eSNP→ Tk → z), any contribution from trait feedback (z → Tk),
which is included in the observed transcript value, is not in the TWAS predicted value.
Similarly, by conditioning on the eSNP, any environmental contribution is also removed.
Note that only common local eSNPs appear in the weights in Equation 21.4b, ignoring any
genetic contribution from rare local eSNPs or distal eSNPs. TWAS is thus a test of a nonzero
genetic correlation between local control of expression of a target transcript and a focal trait.
As mentioned, TWAS is an application of the method of Mendelian randomization (MR),
testing for the effect of a factor (transcript Tk) on an outcome (trait value z), where the use of
an instrumental variable (cis-eSNPs) that predicts Tj controls for bias from reverse causality
and confounders (factors influencing both the transcript and trait, but not the genotype).
Appendix 2 examines the MR approach in more detail.

Using the TWAS approach, Gusev et al. (2016) leveraged existing GWAS studies to
discover 70 new genes associated with obesity related traits (using expression in blood and
adipose tissues as the reference transcriptomes). Their simulation studies showed that when
transcript level was due to multiple causal local eSNPs, TWAS offered greater power than
either a standard GWAS or an eGWAS (a GWAS with increased power by only testing for
associations using significant eSNPs).

Unfortunately, the TWAS approach based upon (predicted) genetically control tran-
script levels can also generate false positives in many settings (Mancuso et al. 2019; Wain-
berg et al. 2019). For example, suppose local eSNPj impacts both transcripts Ti and Tk

(pleiotropy), but only Tk impacts trait value (Ti ← eSNPj → Tk → z). Gene i would still
be declared as significant in a TWAS. An alternative setting (linkage) occurs when distinct
SNPs (j and `) impact the two different transcripts, but these SNPs are in high LD (Ti ←
eSNP` ↔ eSNPj → Tk → z). Again, gene i would be declared significant under a TWAS.
The FOCUS (fine-mapping of causal gene sets) method of Mancuso et al. (2019) attempts
to removed correlations due to LD among eSNPs from different transcripts. Wainberg et
al. (2019) suggested that best practices are to followup significant TWAS results by using
colocalization methods to control for linkage (to be discussed shortly).

Example 21.7 A common setting is that one has access to just the summary statistics from



QUANTITATIVE GENOMICS 273

a trait GWAS, rather than the full SNP genotypes of all the study individuals (i.e., we do
not know Ni,k,j ). Similarly, the amalgamation of a number of individual GWAS into a single
meta-populaion study usually returns just summary statistics for each SNP (Chapter 20). As
shown by a number of investigators, one can still use the weights βk,j from Equation 21.4a on
the local SNPs around a target transcript Tk to perform a TWAS. For example, the summary
statistics extension of PrediXcan (S-PrediXcan) by Barbeira et al. (2018) proceeds as follows.
As in Equation 21.4a, consider 1 ≤ j ≤ nk∗ local SNPs around a transcript k. From the
GWAS summary statistics, we have the estimated effects for these SNPs on the focal trait, bk,j ,
and their sampling variances, σ2(bk,j). From the reference transcriptome, one can estimate
the variance of transcript k, σ2(Tk), and either from the GWAS, or an equivalent reference
population, one can estimate the variance in reference copy number σ2(Nk,j) for each SNP,
which is function of their population frequencies. An approximate z score for a TWAS for the
coding region associated with transcript Tk is then given by

zk '
nk∗∑
j=1

βk,j

(
σ(Nk,j)
σ(Tk)

) (
bk,j

σ(bk,j)

)
(21.5)

where βk,j are the regression prediction weights from Equation 21.4a. See Barbeira et al. (2018)
for a derivation. A number of such summary statistics-based TWAS approaches have been
proposed, such as by Mancuso et al. (2017) testing for a genetic correlation between expression
and the trait, the Summary TWAS (S-TWAS) of Gusev et al. (2016), and the summary statistic
collaborative mixed model (CoMM-S2) of Yang et al. (2020). The UTMOST (unified test for
molecular signatures) test of Hu et al. (2019) provides a single unified approach for considering
all tissues (in the reference set) simultaneously.

STATISTICAL APPROACHES FOR FINE-MAPPING CAUSAL VARIANTS

The high level of LD among blocks of variants that powers a GWAS is also the major
impediment to unambiguously declaring a particular variant (or set of variants) to be causal.
Depending on the structure of the study population, an LD block could be less than a kb
(wild maize), tens of kb (humans, with Europeans having longer blocks than Africans),
or over hundreds of kb (association panels of elite cultivars; Buckler and Gore 2007). A
shorter LD block does not necessarily mean fewer candidate variants, as the nature of the
evolutionary forces generating LD is such that populations with shorter LD blocks also tend
to have higher levels of variation (WL Chapters 3 and 8). A further complication is added by
recalling Example 20.1: the strength (r2) of LD is a function of the allele-frequency matching
between a marker and a causal site. A nearby marker can actually have a lower r2 value
than a more distant marker. When attention is focused to an association region tagged with
confidence in a GWAS (also called a risk region when mapping a disease gene), one is
still left with tens to thousands of potential candidate variants. Within this region, p values
likely do not monotonically become increasingly significant as one approaches the causal
site. The tagged region could also contain multiple causal variants (such as a collection of
rare variants), further complicating the use of spatial distribution of p values as an aid for
fine mapping of the causal site(s).

Even after sequencing the entire association block (so that all variants, including those
that are causal, are scored), the lead, or index, SNP (that displaying the most significant p
value) within that block is likely not the causal variant, especially when power is low and
LD is extreme (Ledur et al. 2010; Udler et al. 2010; van de Bunt et al. 2015; Wu et al. 2017;
Huang et al. 2018; Schaid et al. 2018). Simulations by van de Bunt et al (2015) assuming
whole-genome sequencing (WGS) data still found that the lead SNP corresponded to the
causal SNP only 80% of the time when the allele had high frequency and a strong effect
(p = 0.5, OR = 1.5), and less than 3% of the time when the allele was less common and
of modest effect (p = 0.05, OR = 1.1). Hence, even with WGS data and a large population
sample, determining the causal variants is far from trivial. The term QTN (quantitative
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trait nucleotide) has been used to declare a clear demonstration of a causal SNP (or some
other variant, such as a CNV), but this has been very challenging to accomplish in most
settings (see Example 21.8 for some exceptions).

Simulations by Wu et al. (2017) highlighted the impact of marker-causal allele fre-
quency mismatch on fine mapping. They examined the distance between the lead SNP
and the actual causal site under a variety of assumptions and genotyping schemes (WGS
and imputation using different reference sets). Their simulations were based on WGS data
of 3600 individuals with roughly 18 million (retained) genetic variants. Randomly-drawn
common (minor allele frequency, MAF, > 0.01) and rare (MAF≤ 0.01) variants were chosen
to be causal, with an effect size ranging from 0.2% to 3% of the trait variance. GWAS was
them performed using this underlying data and different sets of variants (imputed sets and
WGS). When the causal allele was common, 95% of the lead SNP–causal site pairs had an
MAF difference of < 0.05. For rare alleles, 95% had an MAF difference of ≤ 0.003. Hence,
rare alleles are not tagged by common alleles (the LD, r2, is just too small). In terms of
mapping precision, under WGS, 80% of the lead SNPs for common causal variants were
within roughly 10kb from the causal site. With imputation (instead of WGS; Chapter 20), this
distance increased to between 25 and 34 kb (depending on the reference population used).
Hence, for common alleles, the mapping resolution using WGS data was only marginally
better than using imputed data, and is usually not a cost-effective approach. In contrast,
for rare variants, almost 95% of the lead SNPs were with 5kb of the causal variant using
WGS, but only 37% were this close using imputed data. Even assuming WGS data, mapping
precision was a function of the causal allele frequency. With very rare causal variants (p <
0.001), 98% of the lead SNPs corresponded to causal sites, but this decreased to 30-40% for
common causal alleles (MAF > 0.1).

Historically, the hope was that a GWAS would limit causal variants to a region in which
obvious nonsynonymous variants were segregating, with these structural changes in the
protein sequences of causal genes driving the majority of trait variation and disease risk.
Alas, as we have detailed above, the vast majority of tagged SNPs occur in either noncoding
(intergenic) or intronic regions. Regulatory, rather than structural, variation appears to
underlie most quantitative trait variation (although protein variation can be generated via
the regulatory effects of sSNPs). This has enormous implications for determining a potential
set of causal variants within a GWAS region. While we have a fairly good understanding of
the impacts of amino acid changes (e.g., Cooper and Shendure 2011), this is not the case for
regulatory variation. First, the functional annotation of regulatory sites, especially beyond
the TSS and intron-exon boundaries, is still an evolving enterprise. Second, for trans-acting
regulatory variants, genomic location provides little insight as to the target they influence
(e.g., Example 21.5). As noted by Spain and Barrett (2015), the “physical distance of a variant
to a gene is not substantive evidence of causality.” Indeed, in a schizophrenia GWAS, Gusev
et al. (2018) found that the gene closest the lead SNP was the eventually implicated gene
less than a quarter of the time.

Given these concerns, a number of statistical approaches have been developed to prior-
itize a smaller set of variants from a tagged region for any future functional studies, such as
gene editing in model organisms. These fall into two categories: agnostic approaches that
simply use the correlation (LD) structure among scored variants along with their marginal
association statistics, and annotation-driven approaches that attempt to leverage additional
functional information. The later could simply be some prior probability of a given class of
change having some functional effect (such as a variant in a known promoter box or splicing
junction). An important class of annotation-driven approaches searches for colocalizations
between a GWAS-detected SNP and a regSNP (such as eQTLs, sQTLs, meQTLs, haQTLs,
etc.; Table 21.1). We examine these different approaches in turn. Statistical fine-mapping
methods are reviewed by Spain and Barrett (2015), Cannon and Mohlke (2018), Schaid et
al. (2018), Sieberts and Schadt (2019), Cano-Gamez and Trynka (2020), and Hutchinson et
al. (2020a). While we frame the following discussion on fine mapping in term of SNPs, the
logic applies equally well to other classes of variants (e.g., CNVs).
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Selecting Variants and Exploiting Local LD

Suppose a GWAS has been performed, and a number of association regions with genome-
wide level significant SNP-trait associations have been detected (e.g., Figure 20.1). The next
step is to break these regions down further into blocks of SNPs that are highly correlated (in
high LD) with each other, but weakly correlated over blocks. Within each such block, there
is a lead SNP (or SNPs) and a collection of tightly-linked SNPs in high to very high LD with
the lead (e.g., Figure 20.2). The goal is to obtain some minimal causal set of SNPs that jointly
has a high probability of including the causal SNP (or SNPs), while still containing as few
members as possible. In an ideal setting, this set has a membership of one (e.g., Example
21.8).

The simplest analysis, often called the heuristic approach, is to consider all SNPs within
some (arbitrary) correlation threshold of the lead SNP. Under the heuristic framework, an
investigator typically ranks the importance of SNP candidates by their p values, with the
largest viewed as the marker most likely to be closest to the causal variant. There are three
reasons why this is incorrect. First, as mentioned, a more distal marker can often have a
larger r2 with the causal site than a more proximal marker if the allele frequency match is
closer (Example 20.1). Second, p values are a function of the standardized effect, e.g., β̂/σ(β̂).
A marker could have a larger actual effect (β̂) but also a larger standard error (e.g., due to
having a low-frequency minor allele), resulting in a smaller standardized effect. Finally,
there is always statistical noise in the realization of the underlying expected value.

A more formal approach is to use regression and model selection: starting with some
initial set of SNPs within the association region, a stepwise, multiple, or penalized regression
is used to extract the most impactful SNPs after accounting for their LD structure. If the
number of SNPs in the region is small, one might fit them all in a multiple regression, but
this fails when LD is very high. A more common approach is to use a forward stepwise
regression: The best fitting SNP is added to a regression model as a cofactor, and then the
next best SNP is selected, and so on until the increase in model fit is no long significant
(e.g., Yang et al. 2012). Penalized regressions, such as LASSO (Example 20.4), offer a very
flexible model-selection approach, as (depending on the penalty function used; Example
20.4), most SNP effects are shrink to zero. SNPs remaining in the final model form the
reduced set of candidate causal sites. Regression and model selection approaches provide
a formal framework to make full use of the LD structure (the pairwise correlations among
all SNPs in the starting set). When using summary data, typically LD estimates from some
reference population are used, which can introduce bias if the LD in the reference and
study populations have different structures. While regression-based methods are better
than heuristic approaches, if SNPs are very highly correlated, even penalized models can
be problematic (Schaid et al. 2018). Suppose that two SNPs are almost entirely correlated. A
model-selection approach will reject one of the SNPs, which, by chance, could be the causal
one (Hormozdiari et al. 2014).

The final, and best, class of methods are Bayesian (also called probabilistic methods),
based on simple applications of Bayes theorem (Equation 3.3b). They return posterior inclu-
sion probabilities (PIPs) for each SNP, allowing for the construction of Bayesian credible
sets (Example 21.8). The rank of SNPs using PIP is often rather different from their p-value
ranks (e.g., Maller et al. 2012). Variants not included in the credible sets can be excluded
as being causal, allowing the investigator to focus on a smaller set of candidates in more
detailed followup studies. Bayesian methods can use the full SNP correlation structure and
can incorporate additional information in their priors, such as differential weighting for
different variants (e.g., promoter mutations given higher weight than variants in random
intergenic regions). Example 21.9 outlines their basic structure. Another tool, suggested by
Udler et al. (2010), is to use information from two (or more) different populations, an ap-
proach called trans-ethnic mapping in humans. The logic is that if the same causal variants
are segregating in all populations, but under different LD structures, a more precise signal
can be generated by a combined analysis (van de Bunt et al 2015; Schaid et al. 2018).

Finally, Wang et al. (2020) noted a problem with just reporting marker PIP values.
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Suppose there are two causal sites within a focal region, sites 1 and 3. Further, suppose that
site 2 is in full LD with site 1 (r2 = 1, so that the marker effect sizes using a single-marker
regession are equal, b2 = b1). Likewise, assume noncausal site 4 is in full LD with site 3
(b3 = b4). Under a model allowing two causal sites, the PIPs for each of these four sites
would 0.5, where in reality a more informative metric would be based on sets of markers,
e.g.,

Pr[(b1 6= 0 or b2 6= 0)] and Pr[(b3 6= 0 or b4 6= 0)]

This altered credible site would return the PIPs that at least one set member is causative
(a set, as opposed to single marker, metric) and provides a more informative view of the
biological situation. Wang et al. developed their sum of single effects (SuSiE) model to
accomplish this goal of constructing better credible sets by adding contributions from a
regression assuming a single marker effect and then computing a posterior distribution
over these (see their paper for details).

Example 21.8 Maller et al. (2012) performed a followup investigation on 14 associated re-
gions detected in the initial WTCC study (Chapter 20). They genotyped 5500 SNPs in 8000
individuals across 12 genomic regions for 3 diseases (type 2 diabetes [T2D], coronary artery
disease [CAD], and Graves’ disease [GD]). Under the (strong) assumption that each associa-
tion region contained exactly one causal variant, they showed that the PIP for SNP i among
the candidate set of m SNPs within a region is simply

Pr(SNPi is causal) = PIPi = BFi/
m∑

k=1

BFk (21.6a)

where BFi is the Bayes factor for SNP i (Chapter 20 and Appendix 7). [An alternative expres-
sion for Equation 21.6a was given by Udler et al. (2010), replacing the BFs by likelihoods,
which assumes a prior that all SNPs have an equal chance of being causal.] Wakefield’s (2008)
approximate Bayes factors are often used, which are given as follows. Let β̂i be the (regression
slope) estimate of the effect of SNP i, with sample variance σ2

i . Letting si = β̂i/σi be the
standardized effect for SNP i, with a β prior that is normal with variance σ2

b , then

BFi =
√

1− γi

exp [−γis2
i /2]

where γi = σ2
b/(σ2

i + σ2
b ) (21.6b)

Using the set of PIP values for a given association region, Udler et al. formed 95% (99%) credible
sets by choosing the smallest number of SNPs whose PIP values sum to 0.95 (0.99). For 3 of
the 14 regions (2 for T2D, one for GD), a single SNP accounted for most of the PIP (>70%),
while in four other regions, the number of SNPs in the credible set was small, excluding most
of the SNPs from further evaluation. In the remaining 7 regions, the credible sets were large
(> 70 SNPs). However, in two of these regions, a few SNPs had a PIP > 20%.

A more powerful analysis was offered by Huang et al. (2017), who examined two subtype
of inflammatory bowel (IB) disease: ulcerative colitis and Crohn’s disease (we use IB instead
of the medical literature abbreviation IBD, reserving the latter to denote identical by descent).
Roughly 200 IB loci have been mapped using GWAS, and the authors fined-mapped 94 of
these using high density genotyping in 68,000 individuals (roughly 34,000 cases and controls;
with the cases consisting of roughly 19,000 Crohn’s and 15,000 ulcerative colitis). With these
sample sizes, even very tightly linked markers in high LD could be somewhat decoupled.
Several of the original 94 regions could be further broken into two or more independent
signals, resulting in a total of 139 independent association regions. Three different Bayesian
methods were used to construct credible sets, and only elements present in at least two of
these were placed in the final set. The resulting set sizes ranged from 1 to over 400 variants.
For 18 of the regions, the 95% credible set had just a single member (single variant credible
set), 24 others had 2–5 variants in the set, and 27 associations had a SNP with a PIP > 0.5.
Hence, with sufficiently large sample sizes, very high confidence of causality can be assigned
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to a single variant (Udler et al. 2010 presented power calculations for the required sample
sizes to exclude a noncausal SNP in high LD). The vast majority of IB signals were associated
with both disease subtypes. While several of the regions were enriched for known regulatory
signals (e.g., regions with modified histones H3K4me1, H3K4me3, and H3K27ac, indicative
of active chromatin), variants with PIP > 0.5 in 21 noncoding regions could not be associated
with known regulatory motifs.

Hutchinson et al. (2020b; also Wallace 2013) noted that Beavis effects (inflated effect size
estimates for many of the top SNPs) introduced a slight bias on the construction of credible
sets, tending to include more members than are needed (in moderate to high power settings).
They propose an adjusted credible set method to reduce this bias.

Example 21.9 Bayesian methods (Appendix 7) return a posterior probability of inclusion
(the probability, given the model assumptions, that a particular SNP is causal). They do so by
using Bayes’ theorem (Equation 3.3b),

Pr(SNPi is causal) = PIPi = Pr(ci = 1 |D) = Pr(D | ci = 1) Pr(ci = 1)/ Pr(D)

where ci is a zero-one indicator variable equaling one when SNP i is causal and zero otherwise.
The data, D, consists of the vector s of standardized marginal association statistics for the k
SNPs being considered in the association region and the k × k correlation matrix C between
these SNPs. There are numerous way to implement this core idea, depending on assumptions
about the number of causal variants within a region, their prior distributions (e.g., using
functional information to weight variants), different computational approaches, and so on.
Commonly cited methods include BIMBAM (Guan and Stephens 2008); BVSR (Guan and
Stephens 2011); CAVIAR (Hormozdiari et al. 2014, 2015); PAINTOR (Kichaev et al. 2014,
2016); SSMR (Wen 2014); CAVIARBF (Chen et al. 2015); FINEMAP (Benner et al. 2016);
DAP-G (Wen et al. 2016); and SuSIE (Wang et al. 2020).

To illustrate the basic logic, we outline the CAusal Variants Identification in Associated
Regions (CAVIAR) method of Hormozdiari et al. (2014, 2015), which allows for ` ≤ k of
the SNPs in a focal region to be causal. Let c be a k dimensional vector, whose ith element,
ci, is one if SNP i is causal, and zero otherwise. We make the simplifying assumption that
all causal SNPs have the same (standardized) effect β, and that γ is the prior probability
that a SNP is causal (both these restrictions can easily be generalized via modifications of the
prior). Let si denote the standardized marginal association statistic for SNP i. Specifically,
the standard gene-dosage regression zj = µ + βiNj,i + ej is fit for SNP i (Equation 20.1a),

with si = β̂i/σ(β̂i). Hormozdiari et al. showed that if i is a causal variant in LD with
noncausal variant h (ri,h 6= 0), then sh ∼ N(rihsi, 1) and σ(si, sh) = rih. Hence, the vector
of association statistics, given the causal SNPs, s | c, is MVN with mean vector βCc and
covariance matrix C. As a result, the likelihood of s, conditional on c, follows from Equation
9.24, with

Pr(s |βc,C) ∝ exp
[
−1

2
(s− βCc)T C−1 (s− βCc)

]
(21.7a)

Assuming a constant probability γ that any SNP is causal, then the prior on c becomes

Pr(c) ∝
∏

γci(1− γ)1−ci (21.7b)

with the restiction that
∑

ci = `. The resulting posterior for a particular configuration c∗ of
causal sites becomes

Pr(c∗ | s,C) =
Pr(s |βc∗,C) Pr(c∗)∑

c∗∈C Pr(s |βc∗,C) Pr(c∗)
(21.7c)

where the set C is all the possible configurations for causal SNPs subject to the constraint that∑
ci = ` (` causal variants). For example, assuming a single causal SNP, there are exactly

k configurations of one 1 and (k − 1) zeros in c∗, with 2 causal SNPs, there are k(k − 1)
configurations of two ones and (k − 2) zeros, and so forth. For a given choice of `, the
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posterior value of ci (the PIP for SNP i) is obtained by summing the ci values from Equation
21.7c over all of the configuations in C. As an example of how c∗ is constructed with prior
information, suppose there are three sites within the focal region, and we assume only one is
causal. Further suppose, based on functional annotation (such as a site being an NS variant,
near a TSS, etc.), that the three sites show a four-fold, no, and a two-fold enrichment relative
to random variant. The resulting weights on these three sites would become (4/7, 1/7, and
2/7).

Colocalization: Exploiting Signals From regSNPs

The TWAS paradigm—a local SNP impacts a transcript, which in turn influences the trait—
naturally leads to a deeper discussion of how to leverage functional genomics information
to fine-map GWAS hits. With just GWAS summary statistics and SNP LD patterns, one
could use functional annotation (when available) to assign weights on the priors of the
SNPs in a candidate set when computing their PIPs (e.g., Gagliano et al. 2014; Kichaev et
al. 2014; Chen et al. 2016; Wen et al. 2017; Weissbrod et al. 2020). The utility of this approach
depends on the annotation accuracy, which is often very poor for many sites with regulatory
roles. A biologically more robust approach is an extension of TWAS, namely looking for the
colocalization between association regions for the trait and association regions for eQTLs
influencing a QTT for that trait. More generally, one could use other regulatory QTLs—such
as sQTLs, meQTLs, hQTLs, etc.—in place of eQTLs (Table 21.1). There are different levels
of granularity associated with a colocalization analysis, depending on both the data set (the
amount of recombination in the sample setting the mapping resolution) and the question of
interest. Typically, one might use colocalization on a coarse scale to implicate specific genes
(as in a TWAS), or on a much finer scale to fine-map specific SNPs that influence both the
trait and the molecular feature of interest.

Early searches of candidate loci, even under the crude resolution of linkage-based
mapping, looked for loci in a QTL region whose transcript variation was correlated with
trait variation. Wayne and McIntyre (2002) used this approach to identify 34 candidate
genes for ovariole number in Drosophilia. As mentioned above, the problem with simply
searching for transcript-trait associations is that the correlation could be generated by the
reactive model, where trait variation generates the transcript variation (z → T ), not vice-
versa (T → z). Similarly, both z and T could be impacted by a confounder C (z ← C → T ),
creating a correlation between z and T in the absence of T → z. Hence, simply finding a
GWAS hit close by a coding region whose transcript is a QTT is not sufficient evidence that
the causal variant acts through the nearby QTT. A more direct connection is provided by
demonstration that the trait GWAS hit is also a regSNP for the QTT that impacts the trait.
The initial step in such a demonstration is showing that a GWAS SNP for the trait colocalizes
with a regSNP.

There are three different levels of a colocalization analysis. The first is simply determin-
ing whether there is support for causal SNPs influencing both the focal trait and molecular
intermediates in a given association region. As shown in Figure 21.4, even when a very
strong colocalization signal is detected, its interpretation is still unclear. It could be the re-
sult of cis-mediation, linkage, pleiotropy, or a combination of all three involving multiple,
tightly linked, causal variants. Hence, the second step a colocalization analysis is ruling
out linkage (Figure 21.4B)—assocations generated by tightly linked SNPs with independent
effects on the two traits (T and z). The final step, distinguishing pleiotropy (Figure 21.4B)
from cis-mediation (Figure 21.4A), requires the type of analysis outlined in Example 21.3.
One concern is that multiple, tightly-linked cis-eQTLs are common (e.g., Zeng et al. 2019),
so that allelic heterogeneity (multiple causal variants with the association region) may be
the norm (as least for regQTLs).

Early attempts at detecting colocalization between trait and regSNPs were usually vi-
sual: looking for alignments of peak SNPs on separate Manhattan plots for the trait and
transcript, or using a two-dimensional scatter plot of the trait and transcript− log(p) values
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Figure 21.4 An apparent colocalization between a GWAS SNP for trait z (the small black
box), transcript (T ), and trait (z) could occur through three different pathways. (A): Direct
cis-mediation. The GWAS SNP is an eSNP which directly influences the transcript, which in
turn directly influences the trait. (B): Linkage. Two tightly linked SNPs are involved. One
directly impacts the transcript, the second directly impacts the trait. (C): Pleiotropy. The same
SNP directly impacts transcript levels and trait values separately, but the transcript level does
not impact the trait value. Any combination of these different pathways could be involved,
such as a direct cis-mediated SNP tightly linked to a separate SNP that only impacts the trait.

for each SNP (e.g., B. Liu et al. 2019). One immediate issue is that the trait and eSNP p values
almost always come from different studies, raising concerns (as in a TWAS) of whether the
appropriate tissues (given the focal trait) were used in the eSNP mapping and whether the
two different samples had the same LD structure. Another complication is stochasticity.
Even with the same underlying causal SNP and with appropriate tissue and population
match, the sampled lead SNP for the trait and for the eSNP are likely to map in different
locations. For example, if the lead SNP and causal site agree 50% of the time (which is often
overly optimistic given our earlier discussion), there is only a 25% chance that the lead
GWAS and lead eSNP agree, and there is a good chance that the two lead SNPs will map
kilobases apart, even if they have the same underlying causal SNP.

As a result of these concerns, a variety of increasingly more formal approaches have
been proposed for testing colocalization. When full (i.e., individual) data is available on both
traits, QTLMatch tests whether regressions of each character (the focal trait and transcript)
against multiple candidate SNPs have proportional slopes, as expected if the SNPs jointly
tag a common variant (Plagnol et al. 2009). A variant of this approach was used by Barbeira
et al. (2021), who examined the correlation between a SNP’s regulatory effect (they looked at
both eSNPs and sSNPs) and its effect of the focal trait, finding correlations of 0.18 for eSNPs
and 0.25 for sSNPs over a set of almost 75 different human traits/diseases. The regulatory
trait concordance (RTC) method of Nica et al. (2010) also requires individual data (at least
for expression sample), and looks at the impact on expression data after including the
peak GWAS SNP as a cofactor. The Sherlock approach of He et al. (2013) requires only
summary statistics, and looks for a concordance between GWAS SNPs and eSNP for the
focal transcript. Because there is low SNP filtering, even eSNPs with weak effects (e.g., with
nominal, but not genome-wide, significance) are included, and as a result Sherlock can
incorporate trans signals. Sherlock also has an useful evidence asymmetry feature in that an
eQTL for the focal transcript not corresponding to a GWAS SNP is taken as support against
the regSNP-GWAS colocalization, but a GWAS hit that does not correspond to an eQTL for
the focal transcript has a neutral impact on the support for colocalization.

These early methods have largely been replaced by Bayesian approaches (e.g., Giambar-
tolomei et al. 2014; Hormozdiari et al. 2016; Wen et al. 2017; Roytman et al. 2018; Wang et al.
2020). The coloc method of Giambartolomei et al. (2014) uses summary statistics (and does
not require any LD data), returning the posterior probabilities for five different hypotheses
concerning the association of a region with two traits. These are: no association within the
region for either trait (PP0); association with one trait, but not the other (PP1 and PP2); as-
sociation with both traits, but via two independent SNPs (PP3); and association with both
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traits due to a shared SNP (PP4). A helpful feature of coloc is that it distinguishes evidence
for colocalization (high PP4 value) from a lack of power (PP0, PP1, or PP2 have high values).
Further, the values of PP3 (linkage) and PP4 (pleiotropy) provide support for distinguish-
ing between these two sources of a colocalization signal. The multiple-trait-coloc (moloc)
method of Giambartolomei et al. (2018) extends this approach to the colocalization of any k
features (such as a trait SNP, an eSNP, and an meSNP), but still under the coloc assumption
of (at most) a single causal site (in the association region) for each feature. Wallace (2020,
2021) developed approaches to extend coloc to allow for multiple variants (impacting each
trait) within an association region. The TWAS MetaXcan framework of Barbeira et al. (2018)
uses these PP values following an initial TWAS, upweighting inclusion of regions with high
PP4 values and removing regions with high PP3 values.

While coloc tests for colocalization within an association region, a colocalization fine-
mapping approach (which SNP within that region), even when multiple causal sites are
present, is offered by the eCAVIAR (eQTL and GWAS Causal Variants Identification in
Associated Regions) method of Hormozdiari et al. (2016). This extends their single-trait fine
mapping CAVIAR method (outlined in Example 21.9) to jointly consider the causal support
for a pair of traits. The strength of evidence of colocalization at a specific SNP is given by a
colocalization posterior probability (CLPP). For a vector of M candidate SNPs within an
association region, CAVAIR returns PIPi, the probability that SNP i in this region is causal.
Basically, eCAVIAR works by computing PIPz

i and PIPT
i , the posterior probability that SNP

i is causal for the trait (z) and transcript (T ), respectively. The resulting CLPP for SNP i
becomes CLPPi = PIPz

i · PIPT
i , an approximation that does not account for enrichment.

As noted by Wen et al (2017) and Hukku et al. (2021), there are connections between
fine-mapping, colocalization, and enrichment (next section) that are apparent when one
considers the priors for Bayesian methods. Following Example 21.9, let cz

i and cT
i be 0/1

indicator variables that SNP i is causal for the trait and transcript, respectively. From Bayes
theorem, the resulting expression for the CLPP, given the data D, can be expressed as

Pr(cz
i = 1, cT

i = 1 |D) ∝ Pr(D | cz
i = 1, cT

i = 1) Pr(cz
i = 1, cT

i = 1) (21.8a)

Focusing on the prior, we can write this as

Pr(cz
i = 1, cT

i = 1) = Pr(cT
i = 1 | cz

i = 1) · Pr(cz
i = 1) (21.8b)

Pr(cT
i = 1 | cz

i = 1)—the probability that the eSNP is likely to be causal when the trait SNP
is causal—represents the enrichment of eSNPs (or any other regSNPs) given a trait GWAS
hit. When this conditional probability exceeds Pr(cT

i = 1)—the chance that a random SNP
is an eSNP—then GWAS SNPs are enriched for eSNPs. The ENLOC method of Wen et al
(2017) models this enrichment using a logistic regression (Equation 20.2b), with

logit
[
Pr(cT

i = 1 | cz
i = 1)

]
= α0 + α1c

z
i (21.8c)

where the αi can be fitted empirically. A value of α1 > 0 measures the log of the odds ratio
increase in enrichment when the SNP is causal (cz

i = 1) for the trait. A variety of enrichment
tests are reviewed in the next section.

Example 21.10 Another approach for distinguishing linkage from pleiotropy—the latter
lumping both traditional pleiotropy (Figure 21.4C) and cis-mediated (Figure 21.4A) effects—
was suggested by Zhu et al. (2016). Their SMR method is based on Mendelian randomization
(MR), using GWAS summary statistics. As is more fully developed in Appendix 2, the concept
of MR is essentially a subset of path analysis, built around the concept of mediation (Figures
21.3 and Example 21.3). The methodology comes from epidemiology, where one tunes some
instrumental variable (here, a SNP genotype) that impacts a mediator, that in turn impacts an
outcome. Consider a genotype (g, scored by reference allele copy number, N ), transcript (T ),
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and trait value (z). Let βNz and βNT be the regression slopes of the trait and transcript level,
respectively, on minor allele copy number for a given SNP (obtained from trait and transcript
GWAS). If g → T → z, then assuming no additional path from g to z that is independent of
T , βNz = βNT · βTz , so that βTz = βNz/βNT is the mediation effect (Example 21.3). The
logic of Zhu et al. is that if the same causal variant underlies both z and T (whether through
cis-mediation or thorough the pleiotropy effects of g on both z and t), then the ratio βTz should
have the same expected value for any SNP linked to the causal site (as the correlation between
the SNP and causal site appears in both the numerator and denominator of βTz , and thus
cancels). In their HEIDI test (heterogeneity in independent instruments, the “instrument”
being the genotypes at the focal SNP) of pleiotropy versus linkage tests for heterogeneity of the
βTz estimates over a set of linked SNPs in the association region. Such heterogeneity is consis-
tent with linkage (different SNPs), but inconsistent with pleiotropy (assuming a single causal
variant). Hence, a significant p value indicates linkage as the source of the colocalization.

An alternative approach to resolving linkage versus pleiotropy when a strong colocaliza-
tion signal is found was offered by Chun et al. (2017). They reasoned that if the same causal
SNP underlies both the trait and expression signal, then this joint evidence should be max-
imized at markers in the tightest LD with the causal site. Conversely when this association
is due to LD between causal sites with independent effects, a different likelihood structure
occurs, and they proposed an LR test for this (the same type of linkage versus pleiotropy test
have been proposed for linkage-based mapping; Chapter 18).

GENE-SET, PATHWAY, AND NETWORK ANALYSIS

One outcome from the initial wave of whole-genome expression studies was an avalanche
of data in the form of lists (often very long lists) of differentially expressed genes between
case and control samples. As highlighted above, the development of numerous other high-
throughput platforms extends this data to differences in protein levels, methylated sites,
splicing isoform ratios, metabolite levels, chromatin modification differences (e.g. the pres-
ence of acetylated or methylated histones at a target site), and so on. Hence, while our
comments are framed in terms of expression data, the approaches presented here obvi-
ously extend over large classes of other genomic and cellular features. In an attempt to
extract insight from such data, a number of increasingly sophisticated knowledge-based
approaches have been developed. These attempt to leverage information from functional
genomics databases, such as the functional category of a gene (e.g., a transcription factor,
a kinease, etc.), their membership in known pathways, or their interaction partners in net-
works (e.g., proteins that make physical contact in the cell). Although initially developed
for expression data, it was quickly realized that these approaches could be easily modified
and applied to GWAS data. We start by briefly considering some of the basic logic of these
methods as applied to expression data before focusing on their applications to GWAS. Re-
views of expression analysis methods can be found in Drǎghici and Krawetz (2003), Allison
et al. (2005), Khatri and Drǎghici (2005), Curtis et al. (2006), Nam and Kim (2008), Fridley
et al. (2010), and Rahmatallah et al. (2016).

Gene Set Analysis of Expression Data: Enrichment Methods

Using a collection of genes as the unit of analysis is loosely called a gene set analysis
(GSA), as opposed to an individual gene analysis (IGA), which considers genes one at a
time. A GSA is often called a pathway analysis (not to be confused with the regression-
based method of path analysis; Appendix 2) when the gene set members are chosen from
a known pathway (e.g., A → B → C ). A GSA is used for two different, but not necessar-
ily independent, reasons. The first is power, in that a collection of individually weak IGA
signals—such as those showing nominal (e.g., p < 0.05), but not genome-wide (p < 0.05/n,
with n very large), significance—might be boosted under a GSA (akin to gene-based and
rare-allele GWAS approaches considered in Chapter 20). The second is that finding signif-
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icant sets of genes (such as members of the same functional class or pathway) may provide
greater biological insight than a focus on single genes. If a disease is caused by the disruption
of a pathway, individuals (and populations) may harbor mutations in different genes in that
pathway, resulting in a rather weak gene-based signal (Wang et al. 2007; Schadt 2009). A
pathway-based signal, however, may not only be stronger, but could also be more consistent
over replicates (e.g., Elbers et al. 2009; Wang et al. 2009).

Example 21.11 shows the initial GSA approach, enrichment analysis (EA; also called
overrepresentation analysis; ORA), which asks if there is a modest, but coordinated, shift in
expression levels over genes in some known pathway or in some defined category. The basic
structure of an enrichment test is that one starts with some bioinformatics database and then
examines whether differentially expressed genes are enriched for some feature (Tavazoie
et al. 1999; Mootha et al. 2003; Subramanian et al. 2005). In one of the early applications of
GSA, Mootha et al. (2003) showed that genes involved in oxidative phosophorylation had
coordinately decreased expression levels in the muscle tissue of diabetics. As mentioned
in previous sections, enrichment analysis has been widely used to examine whether lead
SNPs from a trait GWAS are enriched for SNPs other features (such as regSNPs) or are
overrepresented in specific genomic regions (such as sites with more open chromatin).

Example 21.11 Suppose that one has expression data for 5000 genes in normal versus cancer
cells, 300 of which are declared to show significant differences (using some threshold critical
value, say α = 0.05). Now suppose we choose (by some criteria) a set of these scored genes
(denoted by G ; the remainder are in the complement set, G c ), which consists of 100 members,
20 of which show significant differences. The resulting 2× 2 contingency table of expression
differences versus set membership becomes

Significant Not Significant Totals
Gene set G 20 80 100
Gene set G c 280 4620 4900

300 4700 5000

Using a standard Chi-square test shows that differentially expressed genes are significantly
overrepresentated in our gene set (p = 9× 10−9).

With smaller gene sets, the observed value in one (or more) of the entires in the contingency
table can be small, in which case Fisher’s exact test is more appropriate. This latter test is
based on the hypergeometric distribution (Equation 2.25). Under the null hypothesis (no
enrichment), the probability of observing at least k genes from a functional category (i.e., G )
in a sample of n genes declared to show significant differences is given from the upper tail of
the hypergeometric,

p = Pr(X ≥ k) =
n∑

i=k

Pr(X = i) =
(

g

n

)−1
[

n∑
i=k

(
f

i

)(
g − f

n− i

) ]
(21.9a)

where f is the total number of genes in the functional category and g is the total number
of scored genes, where g ≥ f ≥ n (Drǎghici and Krawetz 2003). If n is small relative to
f , one can approximate the hypergeometric (sampling without replacement) by a binomial
(sampling with replacement) with success parameter π = f/g and sample size n (Drǎghici
and Krawetz 2003), giving

p = Pr(X ≥ k) =
n∑

i=k

Pr(X = i) =
n∑

i=k

(
n

i

)
πi (1− π)n−i, with π = f/g (21.9b)

There are a variety of enrichment methods based on such 2× 2 contingency tables, differing in
whether a chi-square, Fisher, hypergeometric, binomial, or other (e.g., normal approximation
of a binomial; Doniger et al. 2003) is used to test significance (Khatri and Drǎghici 2005; Curtis
et al. 2006; Tryputsen et al. 2014).
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While Example 21.11 shows the basic logic for enrichment approaches, it leaves open a
number of important issues. The first is choosing the genes to include in the tested set (G ).
This could be hypothesis-driven, testing a few candidate gene-sets, akin to the candidate gene
approach of testing associations (Chapter 17). Alternatively, one could adopt an exploratory
approach, testing over a wide number of sets, whose gene elements are chosen by some
functional criteria. A major tradeoff between these approaches is correcting for multiple
comparisons (tests of specific gene sets), which imposes a mild burden in a candidate
approach, but can be large in an exploratory analysis.

One classifier for set construction is to use genes that cluster in the same Gene Ontology
(GO) group (Harris et al. 2004). GO is a hierarchical vocabulary of function (e.g., pigmen-
tation → regulation of pigmentation → regulation of eye pigmentation), with categories
becoming larger (and more general) as one moves up the GO hierarchy (toward parent
nodes, e.g., pigmentation) and narrower and more specific as one moves down the hierar-
chy (toward offspring nodes, e.g., regulation of eye pigmentation). One issue with testing
different sets of GO genes is that the hierarchical nature of their labels implies than genes
in different groups can be correlated. Zhang et al. (2010) suggested Bayesian approaches to
model this dependency structure.

Another criteria is to choose genes from known pathways, for example using the Ky-
oto Encyclopedia of Genes and Genomes (KEGG; Kanehisa et al. 2010) database. While
deciding which elements constitute a specific pathway might seem straightforward, this is
not always the case. A pathway is often treated as a discrete modular item, when, in real-
ity, smaller pathways are often nested within much larger pathways and networks. Hence,
the same gene could play key roles in several different user-defined pathways, creating
correlations among the analyses. Defining a specific pathway raises issues akin to those of
trying to assign SNPs to a particular gene that were discussed in Chapter 20 (in the context
of gene-based GWAS). Besides the biological concerns as to what constitutes a reasonable
pathway, there are also statistical issues with gene choice (which pathway members to in-
clude). As was the case for rare allele methods (Chapter 20), inclusion of too many pathway
genes with no effect on a trait in the gene set diffuses any true signal. Conversely, there is a
bias towards larger gene-sets being significant (Holmans 2010; Wang et al. 2010; Ramanan
et al. 2012) unless set size is appropriately controlled (for example, by using permutation
for significance testing).

The strength of any GSA depends on the quality of the data used to choose gene
set members. If a gene is incorrectly classified (annotated) as to its functional group, this
lowers the power of an analysis using that gene. Further, a gene can (correctly) be assigned
to multiple functional groups. In theory, one could use Bayesian methods to weight set
members by some metric of their perceived accuracy of correct assignment (such as was
done with imputed SNPs; Chapter 20). The same issue of quality of the bioinformatics data
using GO exists with pathways, with a further complication. The nature of a pathway can
easily change over cell type, developmental stage, or environment (such a high versus low
sugar diet, or well-watered vs. drought conditions).

A second issue is that the classification of an expression difference as being significant
in an EA is arbitrary, depending on the critical-value threshold used. As one changes this
threshold, the elements in the 2 × 2 tables change, potentially changing the significance of
the gene set. The gene set enrichment analysis (GSEA) approach of Mootha et al. (2003),
Subramanian et al. (2005), and Efron and Tibshirani (2007) avoids the arbitrariness of thresh-
olds by basing tests on the ranks of some expression statistic (such as their p values or score
statistics). One then tests for an enrichment of ranks in the gene set relative to a control set
of scored genes. This results in a running enrichment score statistic that changes with each
new gene added, yielding in a Kolmogorov–Smirnov-like test statistic. At some point the
score reaches its maximal value (maximum enrichment score, MES), after which is starts
to decline as further genes are added. The set of genes that yields the MES was called the
leading-edge subset by Subramanian et al. (2005), and contains the core members of the
gene set that provide the greatest signals. While the original GSEA method assumed cor-
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related expressions changes occurred in the same direction (e.g., all up-regulated), Saxena
et al. (2006) extended it to an absolute enrichment (AE) approach that scores absolute (as
opposed to signed) changes in expression levels between cases and controls.

A final issue is more subtle, but no less critical: What is the appropriate null hypothesis?
Is it that (i) there is no differential expression for any of the genes in the candidate set (G ), or
is it that (ii) the candidate set does not contain more differentially expressed genes relative
to the rest of the scored genes (G c ). This distinction was first noted by Tian et al. (2005), and
formalized by Goeman and Bühlmann (2007), who denoted the first null as self-contained
tests (Ho,sc), and the second as competitive tests (Ho,co; such as is performed in a GSEA).
Generally speaking, tests against Ho,sc are more powerful than tests against Ho,co, as if
Ho,sc is true, then so is Ho,co, while the converse relationship does not hold. As noted by
Goeman and Bühlmann, a self-contained test “always has a clear biological meaning. At
the same time, it may not always be biologically interesting,” as we expect some differential
expression over the genome. Conversely, a self-contained test does not require information
from genes outside of the candidate set.

To examine these different nulls more closely, suppose that the number of differentially
expressed genes inG c in Example 21.11 was 980 (20%), the same fraction as inG. The resulting
2 × 2 table now becomes nonsignificant. This is a competitive test (Ho,co), with the null
being that the fraction of differentially expressed genes in the test set is no greater than in
the control set. This is a natural comparison in many settings, as the levels of expression may
increase over a wide fraction of the genome in (say) diseased versus control individuals.
In this situation, the question of interest is whether genes in the control set are enriched for
differential expression. Conversely, if we restrict our attention to just the gene set (Ho,sc), the
expected number of false positives under the null is 5 (nα = 100 · 0.05), with the observed
value of 20 being highly significant (one can use either Fisher’s exact test or a binomial with
π = 0.05 and n = 100). Ebrhimpoor et al. (2020) showed that both of these nulls (Ho,sc, Ho,co)
are special cases of a more general null that they called simultaneous enrichment. Here the
null is that the fraction of significant differences in G, π(G), is ≤ c. Under the self-contained
null, c = 0 (π(G) = 0); while under competitive null c = π(G2), namely π(G) ≤ π(G c).

The structure of permutation tests change under these different nulls (Goeman and
Bühlmann 2007). A self-contained test permutes the phenotypic labels while holding the
vector of expression data for a single individual constant (often called subject sampling).
Conversely, a competitive test involves gene sampling. Here, the data vector for a given
individual consists of phenotypic values, expression data, and labels on which genes (tran-
scripts) are in gene-set G versus set G c. Permutation now involves keeping the phenotypic
and expression data intact, but shuffling the gene-set membership labels. For example, if
our original set consists of 10 genes, a permutation sample performs the analysis using the
same phenotypic and expression data, but the ten genes to be labeled over all individu-
als as being the case set (G) are randomly chosen from the sample of all genes. As noted
by a number of authors, gene-sample permutation assumes independence of expression
changes, which is often not the case. Further comments on subtle features of the nature of
the competitive null, and their permutation tests, are offered by Efron and Tibshirani (2007),
Gatti et al. (2010), Maciejewski (2013), and Debrabant (2017).

Gene Set Analysis of Expression Data: Next-generation Methods

Enrichment analysis (EA) represented the first generation of GSA methods for expression
data. As noted by Khatri et al. (2012), this early approach had a number of limitations. They
essentially treated each member in the class as having equal weight, and assumed that each
gene was independent of all other genes in the set. For many EA tests, each member is
simply a binary data point, counted as either present or absent in a given catergory.

Second-generation methods, which Khatri et al. refer to as functional class scoring
(FCS), assign weights to each gene in the set, such as their p value or some score statis-
tic based on their amount of differential expression. The problem of how to combine this
information, especially when the individual gene metrics are potentially correlated, is one
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Figure 21.5 A network is a collection of nodes (the elements A through H), which are
connected by edges, showing which elements interact with each other. For example, A directly
acts with B, F, and I. In a protein-protein interaction network, this graph implies that protein
A contacts proteins B, F, and I in the cell, while B contacts A and C, and so on. Appendix 2
examines the toplogy (shape and connectiveness) of networks in more detail.

that we have encountered before. In Chapter 20, we examined a variety of methods for ag-
gregating correlated SNP data from a single gene into a gene-specific statistic (gene-based
GWAS). All of these approaches (p-value combining approaches such as Fisher, GATES,
or rank-truncation; multiple regressions and Hotelling’s T ; penalized regressions such as
LASSO; random-effect variance component models, etc.) have been used to construct FCS
tests, where the statistics being combined are based on the expression data for each gene. The
discussion from Chapter 20 on hypothesis testing when gene-specific statistics are correlated
also applies to FCS methods. Permutation approaches are the gold-standard, but simula-
tion and large-sample approximations have been proposed (see Chapter 20 for details). As
with first-generation methods, null hypotheses can be framed as either self-contained or
competitive tests. Given the number of combinations of different single-gene expression
statistics, aggregating statistics over the gene set, and different null hypotheses, it is not
surprising that a massive number of gene-set methods have been proposed (Ackermann
and Strimmer 2009 examined over 250 different combinations of these elements, while Xie
et al. 2021 noted over 100 different published methods/programs).

One of the emerging fruits of the functional genomics revolution is a more detailed
understanding of cellular pathways and networks. In particular, we often have detailed
information about the topology (the structure of connections between elements; Appendix
2) of pathways and networks (such as the web of protein-protein interactions). EA and FCS
ignore this information when constructing pathway-summary statistics. Pathway topol-
ogy (PT) methods attempt to exploit this additional knowledge, and can be considered as
the third generation of GSA approaches (Khatri et al. 2012). For example, Pan (2008) gave
higher weights to nearby genes (closer links in the pathway/network topology). Similarly,
a network (such as a protein-protein interaction network; PPI) may not have the direction-
ality of a pathway, but still has a complex topology of interactions (e.g., Figure 21.5). Such
information can also be used in GSA. An early such example is Baranzini et al. (2009), who
found that certain subsets of the human PPI were enriched in individuals with multiple
sclerosis. An overview of these topology-informed methods is given by Mitrea et al. (2013).

We can also consider a fourth generation of methods, dynamical pathway approaches
(DPA), that use information from not only the shape (adjacency and connectivity of ele-
ments) but also the flux (rate of flow) of products over the pathway, such as the impact
analysis method of Drǎghici et al. (2007). These third- and fourth-generation approaches
forge connections between classical quantitative genetics and functional genomics.

Genome-wide Pathway Analysis (GWPA)

It was quickly realized that expression-based GSA approaches could be applied to GWAS
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datasets (K. Wang et al. 2007, 2010; Torkamani et al. 2008; Elbers et al. 2009; Hong et al. 2009;
Cantor et al. 2010; De la Cruz et al. 2010; Peng et al. 2010; Zhong et al. 2010), leading to the
notion of a genome-wide pathway analysis, or GWPA (Ramanan et al. 2012), also called
GWAS pathway analysis, GWASPA (Cantor et al. 2010). A GWPA represents the logical
extension of the basic unit of a GWAS from a SNP to a gene to a gene set. As with a gene-based
GWAS (Chapter 20), motivating factors for a GWPA are the potential of increased power
by combining weaker signals, reduced multiple-comparison burden (reduced complexity
by reducing the number of tests), greater replication based on pathways (rather than on
specific genes), and the hope for greater biological insight. Before proceeding, the reader
might find it useful to review the material from Chapter 20 on gene-based GWAS.

Chapter 20 examined two secondary analysis methods to mine hard-won SNP-based
GWAS data: gene-based GWAS and meta-analysis. GWPA represents a third class of data-
mining approaches, and can be also viewed as a meta-analysis where data (genes) from
within a single study is distilled into summary statistics over gene sets. A gene-based GWAS
can similarly be considered a within-study meta-analysis, combining SNPs into gene-based
units of analysis. Gene-based GWAS and GWPA from a single study can themselves be
placed in a meta-analysis framework to combine results over multiple studies. While a
GWPA can be very useful complement to SNP-based or gene-based GWAS, it is best con-
sidered as an exploratory analysis to gain additional insight and to guide future research
directions.

While the basic logic, and many of the analysis methods, from an expression-based
GSA extend to a GWPA, there are two complications, both based on extracting gene-specific
scores. Under an expression-based GSA, one has a single variable (mRNA level) for each
gene (ignoring alternatively spliced products). What is the corresponding GWPA metric for
a gene, which consists of data from a number (perhaps a large number) of SNPs? Specifically,
an investigator must decide (i) which SNPs are assigned to a specific gene, and (ii) how to
combine this SNP data into a gene-specific score. There a number of proposed approaches
for the latter issue that were examined in Chapter 20 (gene-based GWAS).

The question of which SNPs comprise a gene is less clear, but is usually accomplished
by considering a set of SNPs within some defined window around a coding sequence (akin
to considering only proximal SNPs when searching for local eSNPs). This set could be all
the SNPs in the window, or a trimmed set, such as removing pairs in very high LD, or by
extracting PCs (Chapter 20). This window-based approach can result in a single SNP being
assigned to multiple genes in a cluster, which can cause complications. An example of this
was highlighted by Sedeño-Cortés and Pavlidis (2014), who noted that Dixson et al. (2014)
assigned a single SNP to multiple members in a gene cluster, each of which had a similar GO
annotation, resulting in a GWPA false-positive. As with rare-allele GWAS methods (Chapter
20), power is improved by excluding SNPs with no apparent functional effect. However,
the question of which of SNPs are likely functional (especially in noncoding regions) is,
at best, poorly resolved (see the discussion above and in Chapter 20). Further, potential
control regions for a gene many occur at some distant from the coding sequence, such as
long-range trans-acting factors. These can potentially be handled in an eSNP framework,
using expression data for the target gene (e.g., Zhong et al. 2010).

Because a GWPA involves two levels of data amalgamation—turning collections of
SNPs into a gene score and turning collections of gene scores into a set score—there are
two strategies for performing a GWPA: one-step versus two-step approaches. A one-step
approach simultaneously incorporates all of the chosen gene-set SNPs into a single analysis,
using the methods from Chapter 20 for combining results for multiple markers. In a two-
step analysis, one first generates summary statistics (such as p values) for each gene (e.g.,
gene-based GWAS), and then combines these scores over the set to obtain the gene-set-level
statistic. Which approach is used depends on both data availability and assumptions about
the underlying biology. Based on the nature of the gene set, a one-step approach is favored
when most of the signal comes from just a few SNPs. In the extreme, a phenotype could
be simply the product of one gene and be largely independent of the rest of the pathway.
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Similarly, when multiple sites within a gene contribute to trait variation, collapsing these
to a single gene score can lower power and skew the biological interpretation. Conversely,
when there are weak signals over multiple genes, then a two-step approach is favored.

In a two-step approach, one can mix and match analysis methods (developed for gene-
based GWAS), using one approach within genes and a second for combining the gene-
level statistics. For example, the GRASS (gene set ridge regression in association studies)
method of Chen et al. (2010) uses the LASSO (Example 20.4) to obtain gene-level statistics,
and then uses a p value combining method to obtain a gene-set score. The HYST (hybrid set-
based test) method of Li et al. (2012) uses GATES (extended Simes method; Equation 20.4f) to
compute gene-level scores and then combines these using a modification of Fisher’s method
to allow for correlation among genes. Many two-step methods use the Min-p approach for
each gene, namely just using the SNP with the smallest p value (i.e., the lead SNP). This has
both statistical and biological limitations. Clearly, the more tested SNPs within a gene, the
smaller the expected value of Min-p. This gene-size bias can be overcome by using standard
permutation methods of keeping the genotypes intact while shuffling phenotypic labels.
The biological concern is that if multiple sites in the focal gene are segregating causal alleles,
the full impact of the gene is not captured by only using the largest SNP effect.

As with expression-based GSA, an investigator must decide between a self-contained
hypothesis (none of the gene set elements have an impact on the trait) or a competitive
hypothesis (the gene set is not enriched for trait-impacting genes relative to the rest of the
genome). While one might consider the self-contained hypothesis to be more natural, de
Leeuw et al. (2016) strongly argued that the competitive hypothesis is often more appro-
priate. Their reasoning is that a highly polygenic trait has a large number of underlying
genes spread over the genome, so that any random set of genes has some chance of con-
taining causal loci. In this setting, the more natural question becomes whether there is an
overrepresentation of causal loci in the candidate set.

A final issue is the choice of members in a gene set. One entree into a potential pathway
could be through a SNP showing genome-wide significance in a standard GWAS. If such
a SNP can be assigned to a known gene, one could then test known associated pathways.
Given the ascertainment bias created by choosing a (genome-wide) significant SNP, the
entree gene should be removed from the gene set before proceeding. While it could simply be
left out of the gene set, due to potential correlated effects among pathway members, a cleaner
approach is to include it as a cofactor (as is often done in linkage-based QTL mapping to
remove the effect of the leading QTL; Chapter 18). A related issue is that candidate pathways
should only be considered when one (or more) of their associated SNPs show a nominal
level of significance in the original GWAS (Sedeño-Cortés and Pavlidis 2014), otherwise one
could simply search for trait-pathway associations until one is found by chance. Another
issue is the size of the tested gene set, as there is a bias towards larger gene sets being
more significant (Holmans 2010; K. Wang et al. 2010; Ramanan et al. 2012). As with many
concerns in GSA, this bias can be controlled by using permutation for hypothesis testing.
Lastly, beware of false-positives generated by a single SNP. The complex systems nature of
biological organisms dictates that components/products/intermediates from one pathway
can also be involved in several others. Hence, a SNP with genome-wide significance in a
GWAS that is involved in several (known) pathways might falsely generate signals in each,
when in reality the impact of the gene associated with the SNP on the focal trait is through
yet another, undiscovered, pathway.

As would be expected given our above brief comments, there is a massive literature
on GWPA methods, reviews of which can be found in Huang et al. (2008), Yu et al (2009),
Holmans (2010), K. Wang et al. (2010), Fridley and Biernacka (2011), Khatri et al. (2012),
Ramanan et al. (2012), Schaid et al. (2012), Maciejewski (2013), Mitrea et al. (2013), Tarca et
al. (2013), Mooney et al. (2014b), Newton and Wang (2015), de Leeuw et al. (2016), Tamayo
et al. (2016), and Xie et al. (2021). Given all of the possible analysis options in a GWPA, there
is a real risk of “method-shopping” to find the best p value. Investigators thus must be as
transparent as possible about the process of model selection that led to their final result.
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Some best practices for reporting GWPA results were suggested by Mooney et al. (2014a)
and Mooney and Wilmot (2015).

Given all of these options, how should one proceed with a GWPA given a candidate
gene set (or a small number of such sets)? A nice case study was given by Gui et al. (2011),
looking at Crohn’s disease. They examined seven different GWPA approaches, finding
that immune-response related pathways tended to be significant, but the number of other
detected pathways varied greatly depending on the approach used. Such a variance in
outcomes is not unexpected. There is no single omnibus test for trait-pathway associations,
as the power of detection is a function of the underlying trait architecture in a given pathway.
If some causal pathways mainly influence the trait via a few genes of modest to large effect,
while other causal pathways impact trait value through numerous genes of small effect, a
method detecting the first class of pathways may have low power for the second class, and
vice versa. To address this concern, Gui et al. recommended using several different methods,
ideally choosing from self- versus competitive-hypothesis methods, and methods that used
information from just a few SNPs in each gene (e.g., Min-p) and methods that incorporate
the effects over all of the SNPs (e.g., GRASS).

Describing the Structure of Networks (Systems Biology)

To close our discussion on the ongoing merger of quantitative genetics (QG) and functional
genomies, we note that phenotypes are the output of highly complex systems involving
a vast number of molecular intermediates that interact with each other and with their
environment. The lowest level of organization of such systems are the effects of individual
genes on a specified trait (GWAS). At the next level, these genes interact with each other
in simple pathways (moving from some starting input to a final product, e.g., a metabolic
pathway A → B → C → D). Pathway-based GWAS offers a very crude glimpses into
these interactions by asking if a set of GWAS hits is enriched for targets in a particular
pathway (or set of pathways). We can also examine regulatory (as opposed to a metabolic)
pathways, and probe some of their features by searching for regQTLs. Individual pathways
themselves are embedded into much more complex structures (networks), that, at some
level, likely encompass every molecular feature within a cell. The newly emerging field of
systems biology—an eclectic blend of concepts from physics, graph theory, cybernetics,
biochemistry, and molecular and cellular biology—attempts to model the organization,
evolution, and functional implications of these structures. Brief introductions to the field,
mainly focusing on the topology of biological networks, and its implications, are given by
Barabási and Oltvai (2004), Vidal et al. (2011), and Hu et al. (2016), while Civelek and Luisis
(2014) examines trait variation from a systems biology viewpoint.

As this chapter has highlighted, the machinery of quantitative genetics applies to any
object that shows variation, and this includes network structures. As briefly introduced in
Appendix 2, we can describe the static structure of a network with a matrix, M, which
describes how objects in a pathway (nodes, such as particular molecular features) are con-
nected by edges (Figures 21.5, A2.9, and A2.10). Edges could be directional (a arrow in-
dicating that one node influences another), or undirected (shown by a line such as in a
protein-protein interaction map, indicating which proteins contact each other in a cell). The
collection of nodes and their corresponding edges at any point in time is called the topology
of a network, and can obviously change over time. Vidal et al. (2011) has called this structure
the interactome, and its study edgetics.

The next level of resolution beyond topology would be the strength of the edges a
network, and the highest level of resolution would be the dynamics over the network (how
the edges change over time, both in terms of connectivity and strength). Very formally, one
has a matrix M(t) describing the network at some time t, and a vector m(t) whose elements
are the concentrations of various molecular features (again, at time t), and we wish to map
[M(t),m(t)] → [M(t + δt),m(t + δt)]. The full solution is an almost unthinkably complex
problem, but one can chip way it from two different directions. The first is top-down: Do
some basic features arise from such systems, largely independent of their component pieces?
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The answer is yes, and biological robustness (relative insensitivity to perturbations) might
be one such emergent propriety of the topology of biological networks (e.g., Barabási and
Oltvai 2004; Kitano 2004, 2007; Levy and Siegal 2008; Masel and Siegal 2009; Appendix 2).
The second direction is bottom-up, in that components of M (such as the probability at a
given node is connected to another specified one, and the strength of this connection) are
quantitative traits, and the machinery of QG can be used to probe some of their features, such
as the amount of pleiotropy and the nature of any underlying regQTLs. Finally, a growing
number of modelers are examining the implications for network structures for generating
QG features, such as epistasis and pleiotropy, e.g., Omholt et al. (2000), Ayroles and Zeng
(2008), Kliebenstein (2009), and Hu et al. (2011). Balancing the energy and enthusiasm
towards applying QG methods to pathway and network variation, Flint and Ideker (2019)
caution that“the difficulties in integrating network and genetic data are under appreciated,”
and run the risk of false positive finds often seen in the early days of small-sample GWAS.
It is clear that GWAS offers cautionary tales to bear in mind moving forward, the main
one being that large sample sizes are critical, and yet most of the current data on network
variation is based on very small samples.

WHAT DOES GENOMICS TELL US ABOUT TRAIT ARCHITECTURE?

Finally, we come to the two central questions in quantitative genetics: (i) what is na-
ture of molecular processes that translate genetic into phenotypic variation (the genotype-
phenotype map, GP), and (ii) how has evolution shaped both the nature of standing varia-
tion and the systems underlying the GP map. We start by reviewing the debate on whether
trait variation is mainly the result of common alleles of small effect or rare alleles of large
effect. This naturally leads to the missing heritability concern that was expressed in the
early days of GWAS, wherein genome-wide significant SNPs accounted for only a small
fraction of the heritability estimated using more classical approaches (e.g., Chapters 21–25,
31, and 32). When then briefly examine the architectures of a few classic traits before fin-
ishing with models that try to synthesize many of the results in above and from Chapters
17–20 into a framework for how quantitative variation is generated. Our treatment of many
of the technical population-genetic issues that arise here will be rather brief. Our second
volume both reviews the very rich theory of population genetics (WL Chapters 2-5 and 7-10)
and discusses population-genetic models of selection on quantitative genetics in detail (WL
Chapters 24–28), and so we refer to the reader to this material for a much deeper discussion.

Common versus Rare Alleles

An ongoing debate in quantitative genetics is whether the bulk of genetic variance is due to a
few alleles of large effect or many alleles of small effect (WL Chapter 28). This argument goes
back to the rediscovery of Mendel at the start of the 1900s, and the ensuing debate on whether
evolution was driven by mutation creating new alleles of large effect (the Mendelian view)
or by selection acting on small effect alleles over a large number of genes (the biometrician
viewpoint). As mentioned in Chapter 1, Fisher formed the field of quantitative genetics
by considering Mendelian segregation over a large number of factors. While this framing
merged key concepts from the Mendelians (genetics) and biometricians (modern statistics),
it did not really answer the question about which effect-size class was evolutionary more
important.

As a result, this debate continues to resurface in many forms (WL Chapters 24–28).
In the context of human disease, geneticists quickly separated rare diseases (population
frequencies of generally less than one in a thousand) from “common” diseases (those oc-
curring at higher frequencies), such as heart disease, diabetes, obesity, and various cancers.
Many rare diseases were found to be caused by rare alleles of large effect, often (but not
always) by disrupting protein structure (Botstein and Risch 2003). While it was slowly re-
alized that common diseases likely had an important polygenic component (e.g., Carter
1969), there was divergent opinion on their underlying genetic architecture. The common
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disease/common variant (CDCV) hypothesis (Lander 1996; Cargill et al. 1999; Chakravarti
1999) posited that “common” alleles (frequencies ≥ 1%–5%) of small effect underlie most
of the disease cases. Conversely, the common disease/rare variant hypothesis (CDRV)—
also called the heterogeneity hypothesis (Frayling et al. 1998; Bodmer 1999), rare variant
hypothesis (Bodmer and Bonilla 2008), or multiple rare variant hypothesis (Orozco et al.
2010)—posits that rare alleles underlie the disease. Under the rare variant model, disease
cases represent a massively heterogeneous collection of rare alleles, each of large effect. It
is worth stressing that this debate is much deeper than a simple academic exercise, as its
resolution has profound implications on the best strategies for isolating causal factors and
represents two very different scenarios for the age, and evolution, of causal alleles. Finally,
we stress that rare vs. common is, of course, a false dichotomy, as both sources contribute
variation to complex traits and diseases. The real question is what fraction of the variation
is accounted for by a given marker-frequency class (either tagged SNPs, or, more ideally,
causal sites). Overviews of many of the surrounding issues are discussed by Bodmer and
Bonilla (2008), Gorlov et al. (2008), and Schork et al. (2009).

Practical implications of this debate concern both mapping and functional characteri-
zation. Considering the latter first, large-effect alleles often result from disruptions in causal
gene products (altered protein or functional RNA sequences) or major disruptions in their
regulation. As such, they may offer rather direct signals of causal features. In contrast,
smaller effect alleles may represent much more subtle perturbations, such as small changes
in regulatory features, and may be rather uninformative about the biology underlying a
trait. Indeed, as we have seen, it is challenging to associate a significant SNP effect with a
particular gene. Thus, even if most variation is from common alleles, the most important sig-
nals for a biologist may reside in rare alleles (Momozawa and Mizukami 2012; Chakravarti
and Turner 2016; Faraone 2017; Ferraro et al. 2020; Hyman 2020).

As regards to mapping, the key implication of the these two competing hypotheses
follows from Example 20.1: the correlation, r2, between linked alleles rapidly diminishes as
their allele frequencies diverge. Hence, the typical marker scored on a SNP chip (usually with
a minor allele frequency ≥ 0.05) does not tag rare causal alleles, but easily tags common
causal alleles. Because rare alleles are hard to tag on SNP chips, they are often imputed
(Chapter 20). However, imputation accuracy is a function of the underlying LD, and the
quality (and especially size) of the reference population (at least ten copies of the allele must
be present; Chapter 20). Hence, the imputation quality for rare alleles is often very poor
(e.g., Example 21.15). Methods to accommodate rare alleles (Chapter 20) usually proceed
by aggregation of variants (e.g., an excess of rare alleles at candidate genes in cases). If the
CDCV model is correct, a high-powered GWAS should tag a very significant fraction of the
genetic variance of a trait. If the CDRV model is correct, GWAS would only capture a small
fraction of the trait variance, and rare alleles methods must be used.

Whether causal alleles are mainly rare or mainly common also has profound evolution-
ary implications, as the frequency of an allele is informative about its history (WL Chapters
2, 8–10). Generally speaking, a common allele is an old allele, while a rare allele is typically young.
This is certainly the case under pure drift (WL Equation 2.12), and also true under many
forms of selection (WL Chapter 5). Ancient alleles are thus likely no worse than very weakly
deleterious, while more deleterious alleles tend to be much younger, and much rarer. While
the odd allele or two can quickly rise to moderate frequency by positive selection (such
as the sickle cell mutation under a malarial environment), these tend to be exceptions to
common alleles being nearly neutral. Hence, the common vs. rare allele debate is also a
statement on the nature of selection on a random causal allele for a trait (Examples 21.12
and 21.13).

Another interesting difference between loci harboring common versus rare alleles was
noted in several population genetic studies (Hartl and Campbell 1982; Slaktin and Rannala
1997; Reich and Lander 2001). These considered the degree of allelic identity at a causal
locus. This is the probability that two randomly drawn disease alleles from a locus are IBD,
the reciprocal of which has been called the effective number of alleles. For a population
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Figure 21.6 Left: The observed distribution of frequencies of lead SNPs tagging risk alleles
(RAF) for 17 common human diseases. Right: This distribution would be highly skewed
toward zero (becoming very L-shaped) if synthetic associations between a tag SNP and a
collection of rare variants is a common GWAS feature. (After Wray et al. 2011).

expansion following a bottleneck (such as modern humans), a locus whose total frequency of
disease alleles is very small shows considerable heterogeneity (very low identity between
risk alleles and thus a high effective number of such alleles), while a locus where risk
alleles are more common shows much less heterogeneity. For example, Pritchard and Cox
(2002) noted that a study of 424 Hemophilia B families found that most cases were caused
by distinct alleles: there were 167 distinct Hemophilia B mutations, the most frequent of
these only accounted for 5% of all mutations. Conversely the major ∆F508 allele of cystic
fibousus accounts for roughly 2/3 of all European CF-contain chromosomes. While there is
a predominant CF allele, rare alleles also occur, with roughly 270 different mutations seen
among 27,000 CF-harboring chromosomes. This heterogeneity difference between loci with
common versus rare alleles is a transient feature, reflecting past demography, but it is a signal
that can persist for hundreds of thousands of years until the numerous initial copies of the
common allele are slowly replaced by new mutations (Reich and Lander 2001). As noted by
McClellan and King (2010), the history of human bottlenecks leads to the seemly paradoxical
observation that “most human variation is ancient and shared, but most alleles are recent
and rare”. Namely, common (and older) alleles likely survived migration bottlenecks and
are therefore widely dispersed across human populations. Conversely, most alleles are rare
variants, often representing variants not present before the migrations out of Africa, and
thus are more regional. If most causal variants are common, they are likely widely shared
across human populations, but if they are rare, they may be very region-specific.

A hybrid model in the rare versus common debate was offered by Dickson et al. (2010).
Their synthetic association model (SA) postulated that a chromosomal segment tagged
by a common SNP might, by chance, have accumulated a number of rare variants, and, in
total, these could generate a detectable SNP marker effect. Given the very low expected r2

between a common and rare allele (Example 20.1), the resulting rare variants effects would
have to be rather substantial to generate a detectable maker effect. Orozco et al. (2010) noted
that such large-effect variants, if they exist, could be detected within pedigrees (as opposed
to a population sample) by standard linkage methods (Chapter 19). They suggested that the
lack of such detectable associations implies that synthetic associations are not a major source
of GWAS variance. An ever more direct line of evidence against SA was given by Wray et
al. (2011). Their simulations found that the frequency distribution for tagged SNP showing
the largest marker effect would be highly skewed toward zero if SA were common (Figure
21.6). This skew arises because a haplotype containing a SA of rare variants harbor several
“common” SNPs, with the largest signal being assigned to the least common of these (i.e.,
the common SNP with the lowest population frequency). This is simply a manifestation
of the fact that the largest r2 (and hence largest signal) occurs for the SNP with the least



292 CHAPTER 21

marker-causal SNP frequency mismatch (Example 20.1). As shown in Figure 21.6, a survey
of GWAS results for 17 common human diseases instead showed a distributed shifted
toward intermediate, rather than low-frequency, SNPs. Finally, simulations by Thornton et
al. (2013) showed that tagged markers tend to be in strong LD with only a single deleterious
mutation of large effect.

Example 21.12 As mentioned, the rare versus common debate is really about the nature of
the allelic spectrum for a given trait/disease: the joint distribution of the effect size (a) and
frequency (x) for causative alleles. The feature that connects a and x is the strength of selection
(s) on a given allele, which generates a population distribution, φ(x|s), of allele frequencies
as a function of the nature of selection. A largely unresolved issues is how the effect size a of a
new mutation impacts the nature of selection (s) it experiences. Selection could be generated
by a direct impact of the focal trait on fitness (such as the difference between early versus late
onset alleles) and/or by indirect pleiotropic effects on other fitness components. A common
assumption (e.g., WL Chapters 25 and 28) is that larger effect mutations are expected to have
more deleterious pleiotropic effects, resulting in stronger selection against them, generating
an inverse correlation between effect size and allele frequency. This is indeed a fairly common
observation across humans, maize, and yeast (e.g., Park et al. 2011; Simmons et al. 2014;
Wallace et al. 2014a; Zeng et al. 2018; Bloom et al. 2019; Glassberg et al. 2019; Schoech et al.
2019), but one must correct for Beavis effects that overestimate |a| values for rare allele (e.g.,
Iles 2008). This inverse relationship has important implications for the impact of rare variants.

To see this, consider the situation where the underlying causal alleles are entirely neutral.
In this setting, the effect size should be independent of allele frequency. The simplest model
for φ(x) under neutrality is the Watterson distribution (WL Equation 2.34b), which states that
the population frequency of sites with minor allele frequency x is proportion is [x(1− x)]−1.
The resulting additive variance contributed by a site with frequency x is thus expected to be

σ2
A(x) · φ(x) ∝ 2a2x(1− x) · [x(1− x)]−1 = constant (21.10a)

The resulting fraction of the total additive variance for a trait under this model from alleles of
frequency x ≤ p is thus p, implying that rare alleles (x ≤ 0.01) only account for one percent
of the total genetic variation. For rare alleles to have a much greater impact on the total
variance, a2 must increase as x decreases, and/or more rare alleles are present than predicted
under the Watterson model. Even for strictly neutral alleles, the latter is true in humans, as
the Watterson assumption is a long term stable population size, while populations passing
through bottlenecks and subsequent expansion display an excess of rare alleles (WL Chapter
2). Further, selection also inflates the number of rare alleles relative to Watterson. Are these
factors sufficient to create a prominent role for rare alleles? At least in humans, models suggest
that this is unlikely.

This was nicely illustrated by Zeng et al. (2018) and Schoech et al. (2019), who used a
two-component mixture model for the additive effect a of an allele by assuming (for SNP j),

p(aj |x) = δ0 · π0 + N(0, [2xj(1− xj)]Sσ2
a) · (1− π0) (21.10b)

where (1−π0) is the polygenicity, the fraction of all SNPs that impact a trait, the delta function
δ0 denotes a point mass at zero (a = 0 ), and S is a selection parameter. A value of S < 0
implies that average a2 values increase as x decreases (corresponding to negative selection
against alleles), while S = 0 corresponds to a neutral assumption of no correlation between
a2 and x. MCMC (Appendix 8) can be used to estimate the model parameters S, σ2

a, and π0,
an approach Zeng et al. called BayesS. Note that by rearranging Equation 2.3b,

E[a2 |x, a2 > 0] = σ2(a | a2 > 0) + (E[a | a2 > 0])2 = [ 2xj(1− xj)]Sσ2
a + 02 (21.10c)

showing that the variation associated with SNPs with an MAF of x is(
[ 2xj(1− xj)]Sσ2

a

)
· 2xj(1− xj) = [ 2xj(1− xj)]1+Sσ2

a (21.10d)
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Both Zeng et al. and Schoech et al. considered over two dozen, largely non-overlapping,
traits/diseases from the UK Biobank. Zeng et al. found that all but one of their traits had a
negative estimate of S (ranging from−0.609 to 0.012), 24 of which were significantly negative,
with a median S of−0.37. The polygenicity (1− π0) had a median value of 5.4% and ranged
from 0.6% to 14.0%. Schoech et al. obtained very similar results for S. Substituting these S
values into various population genetic models for φ(x|s) showed that no more than 10% of
the variance could be due to rare alleles (x ≤ 0.01).

A more recent study by Zeng et al. (2021) used a summary-statistic version (SBayesS) of
BayesS, and examined a much larger set of traits, finding almost all had significantly negative
estimates of S (with a median value of −0.6). They estimated that, on average across traits,
around 1% of the human genome are mutation targets (1 − π0 ' 0.01) for that trait, with a
mean selection coefficient for segregating variants of−0.0007. Relative to other traits, common
diseases showed a smaller mutational target size but stronger selection (π0 smaller, |S| larger).
More granularity can be applied to values of S by examining its value over different functional
classes of variants (i.e., different annotations), such as nonsynonymous mutations, methyla-
tion sites, etc. For example, Gazal et al. (2018), examining 27 traits (from the UK Biobank),
found an average value of S = −1.10 for nonsynonymous variants and S = −0.30 for other
variants.

A final complication in the effect size-MAF relationship is that causal alleles in regions
of lower LD (relative to the value expected given their MAF) tend to be both more recent and
to also have larger effects (Gazal et al. 2017). Again, this is expected if most trait alleles are
under weak negative selection. We examine this, and other, complications further in Chapter
32 in a deeper discussion of estimation, and interpretation, of SNP heritability (the fraction of
variation accounted for my SNP effects).

Example 21.13 There is a very detailed, and highly technical, literature from evolutionary
genetics on the maintenance of quantitative genetic variation (reviewed in WL Chapter 28),
and a largely independent corresponding literature that focuses on polygenic risk variants
for human diseases (e.g., Pritchard 2001; Pritchard and Cox 2002; Di Rienzo and Hudson
2005; Peng and Kimmel 2007; Eyre-Walker 2010; Maher et al. 2013; Simons et al. 2014, 2018;
O’Connor et al. 2019). While mathematically impressive, most of these models are very fragile,
in that apparently trivial changes in assumptions can yield quantitatively different predictions.
In particular, the choice of modeling how pleiotropy generates correlations between effect size
(a) and selection (s) has profound implications. An excellent overview of these issues is given
by Johnson and Barton (2005), with a more GWAS-focused review by Sella and Barton (2019),
and much more detailed discussion in WL Chapter 28.

One common modeling assumption for maintenance of variation is stabilizing selection
on our focal trait (fitness declines as one moves away from some optimal value; WL Chap-
ters 5, 16, 29, 30) countered by mutation. If, on a per-locus basis, the strength of selection is
weak relative to mutation (the Gaussian assumption), the resulting equilibrium distribution
of allelic effect sizes is normal, with many small-effect alleles occurring at intermediate fre-
quencies (the common variant model). Conversely, if selection is strong relative to mutation
(the house-of-cards assumption), we recover the rare variant model, as the resulting distri-
bution is leptokurtic (Chapter 2), with rare alleles of large effects (see WL Table 28.2 for other
differences between these models).

As mentioned, when pleiotropy occurs (the variant impacting our focal trait also influ-
ences others), the expected outcomes become very model dependent. Simons et al. (2018)
developed a model allowing for extensive pleiotropy, wherein a variant impacting a focal trait
(with effect a1) also influences a number of other traits (i.e., generates a vector (a1, · · · , an) of
effects for the n traits it impacts), with the vector of trait values under multivariate stabilizing
selection. In this setting, deviation from the optimal value in any direction reduces fitness
(WL Chapters 29 and 30), with surfaces of equal fitness satisfying s =

∑
a2

i /Vs (where Vs

is the strength of stabilizing selection). Using this assumption, they made a very clever use
of Fisher’s geometric model for adaptation (WL Chapter 27) to obtain a distribution of effect
sizes (a1) at the focal trait for a mutation with a given selection coefficient, which for a large
effective number of traits (ne > 10) is approximately normal, with a1 | s ∼ N(0, sVs/ne).
Applying their model to height and BMI data, they estimated that the fraction of variation
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arising from alleles of detectable effect sizes is much greater for height (50% of the total varia-
tion in height should be detectable using current GWAS sizes) than for BMI (only 15% of the
variance should be detectable). Further, they estimated that the total mutation rate for height
variants was around five times that for BMI variants.

Distribution of Allelic Effect Sizes

While theoretical models (Examples 21.12 and 21.13) make predictions about the distribu-
tion of allelic effect sizes, what do the data say? A number of approaches have been used
to estimate the effect-size distribution, starting with either a single exponential or gamma
distribution (Otto and Jones 2000; Hayes and Goddard 2001; Weller et al. 2005), and mov-
ing to mixture distributions, typically based on weighted sums of of normals (Chapter 16).
As detailed in Chapters 31 and 32, the use of mixtures traces back to attempts by animal
breeders to use marker data to predict breeding value (Meuwissen et al. 2001). The basic
data used are typically (but not always) GWAS summary statistics, such as the slope β of
the gene-dosage regression (Equation 20.1a) or its logistic regression counterpart (Equation
20.3b), which is essentially an estimate of the allele effect a. One then fits the observed
values of β with a mixture model. For example, the BayesR method of fits a point mass
at zero (δ0) and then three normals with increasingly smaller variances (Erbe et al. 2012),
corresponding to allelic classes with increasingly smaller effects,

p(aj) = π0δ0 + π1N(0, σ2
g · 10−2) + π2N(0, σ2

g · 10−3) + π3N(0, σ2
g · 10−4) (21.11a)

Under this model, a fraction π0 of all SNPs have no effect, so that π = (1 − π0) is the
polygenicity. The πi and the variance parameter σ2

g can be estimated by either ML (Appendix
4) or MCMC (Appendix 8). Holland et al. (2020) coined the term discoverability for the effect
size variance (essentially, the expected power of detecting variants drawn from that size
class), with effects being drawn from the last normal in Equation 21.11a having the lowest
discoverability. Note that Equation 21.11a, unlike the models given by Equation 21.10, does
not condition the effect size on allele frequency. This is because it effectively assumes the
Watterson distribution, so that the expected contribution to the variance from alleles with
MAF x is independent of x (Equation 21.10a). We return to this assumption in Chapters 31
and 32.

Moser et al. (2015) applied BayesR to seven of the diseases studied in the WTCCC
(Chapter 20): bipolar disorder (BD), coronary artery disease (CAD), Crohn’s (CD), hyper-
tension (HT), type 1 and 2 diabetes (T1D, T2D), and rheumatoid arthritis (RA). With the
exception of T1D, the other six diseases had an estimate of over 60% of their total vari-
ance due to alleles drawn from the smallest-effect size (π4, corresponding to a variance of
σ2

g · 10−4), with four of these diseases having over 75% due to this class: CD (94%), HT
(88%), CAD (84%) and T2D (78%). The estimates for T1D were roughly 25% of its variance
due to alleles drawn from this category, while almost 72% of the variance was attributed to
the largest effect group (π2, variance of σ2

g · 10−2).
Similar mixture models have been examined by Thompson et al. (2015), Zhang et al.

(2018), Holland et al. (2020), and O’Connor (2021). All concluded that traits are massively
polygenic (normally with at least tens of thousands of estimated causal sites), and that
GWAS sample sizes in the hundreds of thousands to millions are required to capture the
bulk of the heritability. For example, Zhang et al. used a model with point mass at zero, and
then either one or two normals (respectively, their M2 and M3 models),

aj ∼ π0δ0 + π1N(0, σ2
1) + π2N(0, σ2

2) (21.11b)

with the M2 model not including the last term. M3 generally performed better, and was used
to estimate the effect-size distribution for 32 traits. They found that most of the variance
was due to small-effect alleles, with the required GWAS sample size to capture 80% of
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the heritability ranging from a few hundred thousand to several million. O’Connor (2021)
noted that the range of effect size between the 10th and 90th percentiles was around a 100-
fold difference, and around 600-fold between the 5th and 95th percentiles. Based on these
estimates, genetic architectures are massively polygenic, with a vast range of effect sizes.

Example 21.14 O’Connor et al. (2019) noted that the measure π = (1− π0) for polygenicity
is a bit misleading, and a more general metric would be how even effects are distributed over
causal loci (essentially, an effective number of causal sites). They noted that schizophrenia is
underpinned by thousands of small-effect common variants, while Niemi et al. (2018) found
that rare severe neurodevelopmental disorders, which are largely expected to be monogenic
(cause by rare, highly deleterious mutations), still have around 8% of their variance explained
by common alleles of very small effect. Polygenicity as measured by the fraction (π) of SNPs
with an impact on the trait would be roughly the same in both these settings, and yet clearly
their architecture are very different (polygenetic for schizophrenia; Mendelian, with variable
penetrance, for neurodevelopmental disorders). O’Connor suggested that a better polygenic-
ity measure is the evenness of effect sizes over the causal sites, which would be high with
schizophrenia and very low (dominated by a few loci) with neurodevelopmental disorders.

The contribution of allelic effect to the variance scales as β2, and the variance of these
variance effects scales as β4. If M SNPs (trimmed for independence) are scored, the expected
number that are causal is Mπ, where we will now refer to π as the polygenicity fraction,
while O’Connor metric for the effective number of causal SNPs is

Me = M
3
κ4

, where κ4 =
E[β4]

(E[β2])2
(21.12)

where κ4 is the scaled kurtosis of the β and equals three when β follows a normal distribution
(Chapter 2). We denote Equation 21.12 as the polygenicity kurtosis. Note that only a fraction
π of the β are different from zero, and if these effects follow a normal distribution, then
3M/κ4 ' πM , the same number of causal SNPs predicted using the polygenicity fraction.
O’Connor et al. developed an extension of LD regression (Chapters 20 and 32), stratified LD
fourth moment regression (S-LD4M), to estimate Me.

Applying their estimator to 33 traits (with an average GWAS sample size of 360,000), they
found that Me based on just considering common SNPs (MAF > 5%) had effective number
of causal sites ranging from 500 to 30,000 (with a median value around 3000). When low
frequency SNPs (MAF from 0.5% to 5%) were used, the estimated Me values were about 25%
of the common Me values. For example, height had around 3600 effective causal sites for
common alleles and 800 effective sites for low-frequency alleles. Hence, common alleles had
a more even distribution of effect sizes that low-frequency alleles.

Genetic Architectures and “Missing” Heritability

The decade following the first GWAS was period of both considerable excitement and
a good deal of consternation. Despite billions having been spent globally on extensive
GWAS studies and the corresponding development of genomic resources, most detected
hits were of small effect, largely in noncoding regions, and accounted for only a tiny fraction
of the trait heritability. This angst culminated with the highly cited paper of Manolio et
al. (2009) on the problem of missing heritability not detected by the GWAS studies of
the time. For example, human height has a highly repeatable heritability estimate (from
resemblance between relatives) of around 0.7–0.8, and despite over 40 significant GWAS
hits for height (in 2009), these accounted for only about 5% of the phenotypic variance
(a little over 7% of the expected heritability). As Manolio et al. summarized, this was the
standard observation over a number of diseases and traits, raising the question of what
generated this gap between GWAS-based and relative-based estimates of heritability (the
former often called the SNP heritability; Chapter 32). More formally, the gap was between
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the additive variance estimated from SNP effects,
∑

a2
i pi(1 − pi) (the sum being taken

over all significant SNPs, which can be modified for LD), and value of σ2
A estimated from

standard relative-based designs (Chapters 22–31).
Proposed explanations for this gap fell into three, not necessarily exclusive, categories.

First, this was simply an issue of power with the GWAS designs at the time. Second, there
were genetic features not fully captured by a GWAS, such as the effects of CNV, epigenetics,
and perhaps other, yet to be discovered, phenomena. The final explanation was that the
GWAS results were indeed correct, with the gap arising because relative-based estimates of
h2 were systematically (and dramatically) inflated. A number of different viewpoints were
offered on these various resolutions (e.g., Eichler et al. 2010), generating a considerable
number of papers, some thoughtful, some speculative, and some rather ignorant of basic
features of quantitative genetics.

As we have hinted throughout this chapter, it now appears that the correct resolution
is lack of power. Before developing this point, we first discuss overestimation of h2 by
relative-based methods, which has some grain of truth. As detailed in Chapter 7, estima-
tion of the additive variance follows by partitioning the phenotypic covariance for given a
pair of relatives in various sources of genetic variation (Equation 7.12) plus for any shared
environmental effects. When relatives can only share (at most) single IBD alleles, the shared
genetic variance is dominated by σ2

A, with potentially much smaller contributions for ad-
ditive epistatic sources (e.g., σ2

AA, σ2
AAA, etc.). For relatives that can share two alleles IBD

(e.g., full sibs, monozygotic twins), dominance (and dominance epistatic terms) can also
enter into the genetic correlation. Zuk et al. (2012) correctly noted that if these nonadditive
terms were sufficiently large, relative-based estimates of h2 can be significantly inflated.
However, these nonadditive genetic components (i.e., those other than σ2

A) are generally
expected to contribute very little to the resemblance between relatives for two reason. First,
the coefficients on nonadditive variance terms are much less than the coefficient on the
additive variance (Equation 7.12). Second, and perhaps more fundamentally, in most segre-
gating natural populations, the nonadditive variance components themselves are expected
to be much smaller than the additive variance. This is simply a consequence of most genetic
variation loading onto the additive component when the minor allele is uncommon (Hill et
al. 2008; Hill 2010; Mäki-Tanila and Hill 2014). As the Watterson distribution shows, this is
expected to be the case in natural populations. For example, Zhu et al. (2015) found that SNP-
based estimates of dominance variance were small over a set of 80 human traits, and did
not contribute to much of the missing heritability. Similar results were obtained by Hivert
et al. (2021) using 70 traits and a sample size of over 250,000 (an average SNP heritability
for additive effects of 0.208 and an average value of 0.001 for dominance). The exception
to additive variation overpowering other terms is in segregating populations formed by
line crosses, where segregating alleles frequencies (by construction) are 0.5 (Examples 21.16
and 21.17), resulting in more of any underlying nonadditivity mapping into nonadditive
variance components.

Relative-based estimates of the additive variance can also be inflated by shared envi-
ronmental effects among close relatives. Two different approaches can be used to estimate
additive variation while minimizing any impact from common environments: use extended
pedigrees so that shared environmental effects are likely more diffuse than within a single
family (Chapters 31 and 32) or exploit the variation in IBD sharing among the same set
of relatives caused by Mendelian segregation (realized versus pedigree kinship; Example
8.2, Chapters 8 and 32). A pair of sibs that, by chance, shares more IBD alleles should be
more similar than another pair that, also by chance, shares a smaller fraction of IBD alleles,
with a regression of their squared difference on amount of sharing estimating the additive
variance. This approach was developed for sib pairs by Visscher et al. (2006) and extended
to general sets of relatives by Young et al. (2018). By contrasting IBD differences between
sibs (or more general relatives) in the same family (kinship), shared environmental effects
are controlled. Both of these approaches have been applied to human traits. Zaitlen et al.
(2013), in an analysis of 23 traits in an large Icelandic sample (38,000) with deep pedigrees,
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found find that h2 estimates based on close relatives (parent-offspring, sibs) were somewhat
inflated relative to estimates based on more distant relatives (and hence less likely to share
environmental features). For most traits, the inflation was modest (about 15% for height),
so that while it does slightly close the gab between GWAS and relative estimates, a very
substantial difference remains. Similar results (relative-based estimates of σ2

A were slightly
to modestly inflated) were seem when estimates of additive variance based on within family
segregation were compared to more traditional estimates (Young et al. 2018; Young 2019;
Kemper et al. 2021).

The second explanation for missing heritability—namely, features not captured by a
GWAS—is both speculative and increasingly less viable as ever-larger GWAS have closed
much of the heritability gap (Example 21.15). However, there is still debate on what is
causing the lack of power: common alleles with increasingly smaller effects, or increasingly
rarer alleles of large effect. As GWAS sample sizes increases, ever smaller additive variances,
r22p(1− p)a2, associated with a marker can be detected, where r2 is the LD with the tagged
marker and p the causal allele frequency. For a rare allele, this is∼ r22a2p when the marker
is scored directly and ∼ r2

imp(r
2 2a2p) when the marker is first imputed (where r2

imp is the
correlation between the actual marker allele and its imputed value). For a common allele, the
additive variance tagged by a marker approaches a2/4. This arises as the MAF approaches
0.5, in which case r2 likely approaches one as most common SNPs are well tagged. For a rare
causal allele r2 (with a common marker SNP) is still expected to be small, being a decreasing
function of the causal allele frequency (Example 20.1). It is this expected small value of r2

that motivated the synthetic association model, as only a tiny fraction of the true variance
of large-effect, but rare, alleles would be captured by common SNPs (underestimating their
contribution by 1/r2). This would be a 10-fold effect for r2 = 0.1 (which would still be a
relatively high correlation LD for a rare allele). However, as we have detailed, the data do
not support this model (e.g., Figure 21.6).

What impact might whole genome sequencing (WGS) have on the search for missing
heritability? The answer depends on whether the heritability gap is due to common alleles
of very small effect or very rare alleles of large effect. The impact of WGS is to improve the
accuracy of tagging, namely increasing r2 to one. Common causal alleles are either already
captured directly, or tagged with very high accuracy by other common alleles in high LD,
so that WGS is unlikely to increase tagging efficiency (Caballero et al. 2015). In this case,
only increased sample size (rather than scoring more markers) can generate the increase in
power needed to detect common alleles of very small effect.

Rare alleles are a potentially different matter. If rare alleles are accurately captured with
high efficiency by imputation from the scored SNPs (r2

imp ' 1), then WGS, by itself, does
not really improve power. However, if very rare alleles are poorly imputed, for example
by residing in regions of low LD, then WGS results in a significant increase in power. This
was indeed seen for height (Wainschtein et al. 2022; Example 21.15). One caution is that the
use of very rare alleles introduces the potential for subtle biases. In particular, as Chapter
20 stressed, corrections for population structure are critical, especially when searching for
very small allelic effects in a very large GWAS. Most such corrections are based on common
(and thus older) alleles, with the population structure for rare (and thus younger) alleles
being potentially rather different. For example, individuals sharing a very rare allele are
likely to have shared a recent relative, and thus the potential of sharing a recent common
environment (Young 2019).

Human height is one of the best studies traits, and offers considerable insight (and
history) into the missing heritability debate. As Example 21.15 highlights, the bulk of the
initial missing heritability was due to common alleles of small effect, but very recent whole-
genome sequence data finds that a substantial proportion is also due to very rare alleles of
large effect in low-LD with common SNPs.

Example 21.15 Human height is truly the ultimate quantitative trait. Galton’s work on the
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resemblance in height between parents and their adult offspring (Galton 1886; Figure 1.1) was
instrumental to Fisher’s 1918 founding of quantitative genetics. Height has been the subject
of a number of ever-larger GWAS projects, and the history of these studies nicely tracks the
journey from the beginning of the GWAS era, to navigation through the rough seas of missing
heritability, and into the whole genome sequencing (WGS) era.

While the most widely quoted figure for the heritability of height is 0.8, Yang et al. (2015)
suggested that this is a slightly inflated estimate due to shared environmental effects among
relatives (typically parent-offspring or sibs). They noted that Hemani et al. (2013) obtained an
estimate of h2 ' 0.7 based on IBD variance between pairs of sibs. This matches the estimate
of 0.7 by Zaitlen et al. (2013) using extended pedigrees. A more recent study by Kemper et al.
(2021) also obtained an IBD-sharing-based estimate of around 0.7 using full sibs, but a larger
estimate (0.8) using a more general set of relatives. Hence, in the following discussion we will
use the 0.7 value as a lower bound for the h2 that must be explained by markers.

Gudbjartsson et al. (2008) examined 40,000 individuals (mostly of European descent)
and discovered 27 genomic regions containing one or more variants associated with height.
The estimated effect sizes ranged from 0.3 to 0.6 cm and together explained around 4% of
the phenotypic variance in height (6% of h2, assuming a value of 0.7). By two years later,
Lango Allen et al. (2010) had detected almost 200 loci achieving genome-wide significance
in a sample of 180,000, which accounted for around 14% of the heritability. One obvious
source of missing heritability was the exclusion of markers with nontrivial effects, but which
had effect sizes too small to meet the stringent genome-wide significance threshold. Lango
Allen examined this issue by considering SNPs that were of nominal, but not genome-wide,
significance. When included, the fraction of explained heritability rose to 23%. Four years
later, Wood et al. (2014) had found 700 variants with genome-wide significance in a sample of
253,000, accounting for 20% of the heritability. Removing the restriction to SNPs of genome-
wide significance, the most strongly associated 2000, 3700, and 9500 SNPs accounted for 26%,
30%, and 36% of the heritability. Yengo et al. (2018) examined a meta-analysis with close to
700,000 individuals, finding 3300 independent marker effects that accounted for roughly 35%
of the heritability. Extrapolating from estimates of the effect-size distribution, Zhang et al.
(2018) predicted that a sample of over a million would be required to account for 80% of the
heritability. How good was this prediction? Yengo et al. (2022) extended their meta-analysis to
over 5.4 million individuals, largely European, but with other ancestries as well. They found
that 12,000 independent common SNPs (located in 7200 distinct genomic regions, ranging
from 70 to 700kb, covering around 20% of the genome) accounted for 40% of the phenotypic
variance (' 60% of h2), falling far short of the expected value projected from estimates of
the effect size distribution. Over 30% of these regions were more than 50 kb away from any
known genes.

The clear trend is that the expected number of detected sites increases with sample size,
with the roughly 135-fold sample size increase from 2008 to 2022 resulting in a roughly 120-fold
increase in genome-wide significant markers, a 270-fold increase in the number of genomic
regions, and a ten-fold increase in the amount of heritability assigned to markers. In the words
of Yengo et al. (2018), “increasing GWAS sample sizes continues to deliver.” However, Yengo
et al. (2022) suggested that GWAS saturation for common alleles may have been reached, as
they predict most newly discovered variants will be restricted to the 7200 genomic regions
found in their 5.4 million GWAS meta-analysis. Holland et al. (2020) estimated the number
of causal sites as roughly 95,000 (based on estimates of π), with a similar estimate by Boyle
et al. (2017a). Because these studies used common SNPs as markers, these effects are, in large
part, due to common causal alleles, and thus of relatively modest effects. As noted in Example
21.14, O’Connor et al. (2019) suggested that a better estimate of the polygenicity is the effective
number of sites (the more equal the effect size distribution, the larger the effective number).
They estimated that height had 3600 effective causal sites for common alleles (MAF > 0.05) and
800 effective sites for low-frequency alleles (MAF of 0.005 to 0.05). They offered no estimate
for very rare alleles (MAF < 0.005).

An alternative to assigning effect sizes to individual markers (fixed effects modeling) is
to treat allelic effects as random and estimate the total amount of variation they explain. Using
common markers, Yang et al. (2010b, 2011b, 2015) applied this approach to samples of 4000
and 44,000, with the marker variance accounting for 62% and 80% of the heritability. Hence,
the variance component approach is more powerful for detecting missing heritability, as it
includes information from all markers, not just those declared significant by some criteria.
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However, note that the 12,000 variants of Yengo et al. (2022) accounted for over 85% of this
common-SNP based estimate of h2. An especially interesting observation was made by Yang
et al. (2011b), who noted that the length of a chromosome was very highly correlated with
the amount of variation explained by markers on that chromosome (a similar observation
was seen for schizophrenia by Lee et al. 2012). Hence, height-associated markers are, to a
first approximation, randomly and uniformly, scattered throughout the genome. However,
the more recent analysis of Yengo et al. (2022) found that, while widely scattered, only about
20% of the genome contained regions haboring height variants. Loh et al. (2015b) similarly
inferred that over 70% of 1-MB genomic regions in humans harbor at least one causal site for
schizophrenia risk.

The variance component approach can also be used with WGS data. Wainschtein et al.
(2022) estimated the SNP-associated variance in a sample of 25,500 fully sequenced individu-
als, considering all SNP alleles present in at least five copies in the sample (a MAF of 0.0001,
∼ 900,000 SNPs). Following Yang et al. (2015), they used a variance component model (VC)
and estimated a SNP-based heritability of 0.48 (68% if h2 = 0.7). They then used this same set
of SNPs to impute rare alleles, with the heritability estimate using this enlarged set (common
plus imputed SNPs) ranging from 0.50 to 0.56 (depending on the imputation model). Thus,
including imputed alleles resulted in a slight improved of the amount of explained variation.
They then use WGS for directly score rare alleles, and the resulting heritability estimate im-
proved significantly to 0.7. Most of the improvement came from very rare variants (0.0001 <
MAF < 0.001) that were in low LD with common SNPs, and hence with very low imputation
accuracy. Thus, while common variants of small effects recover about 2/3 of the relative-based
heritability, very rare variants account for the majority of the remaining difference.

Example 21.16 A very interesting, and somewhat different, perspective on missing heri-
tability is offered from the sibship analysis of segregating yeast crosses (which serves as a
good representative for any line-cross QTL experiment). Example 21.1 discussed the genetic
architecture of yeast eQTLs, while physiological traits (colony growth size under different
environmental features) have also been examined (e.g., Ehrenreich et al. 2010; Bloom et al.
2013, 2019) and we focus on the latter. Bloom et al. (2013) examined 46 growth-related traits in
just over 1000 haploid segregant lines from a cross between a laboratory and a vineyard strain.
Taking this collection of lines (sibs) as our population, the additive variation within this sibship
can be estimated using the variation in IBD sharing among sibs (Chapters 8 and 32). Bloom et
al. used this approach to estimate narrow-sense heritability values. Broad-sense heritability
can be estimated from the between-line variance (Chapter 24), with the difference between
the two heritabilities being a measure of the impact of any nonadditive variance (these would
only be additive epistastic terms, because the lines are haploid). They then mapped QTLs and
examined the fraction of the narrow sense heritability they recovered, which ranged over traits
from 72% to 100%, with a median value of 88%. By considering ever-larger subsets of the lines,
they showed that this fraction increased with the number of lines (the analog to accounting
for more of the missing heritability by increasing a GWAS sample size). They also found that
nonadditive variance was significant, with the difference between narrow and broad sense
heritability ranging from essentially zero to roughly 50%, depending on the trait. Two-locus
epistasis (e.g., A×A) explained only a tiny fraction of this difference.

By construction, there are no rare alleles in the collection of segregating lines, as all have
expected frequency 1/2. Bloom et al. (2019) expanded this study by considering multiple
crosses, namely 14,000 segregants from all pair-wise crosses between 16 diverse lines (so that
the rarest allele frequency is expected to be around 6% in the resulting synthetic population).
Again, detected QTLs accounted for the vast major of the estimated narrow-sense heritability
(median value of 68%). However, Bloom et al. noted that rare alleles (those alleles segregating
in the lines, but found at frequencies < 0.01 in a 1000-isolate reference collection) accounted
for a disproportionate amount of the additive variance. Such alleles were about 28% of all
variants, but their median total contribution the additive variance was 52%. Note that this
does not necessarily provide support for rare alleles having a large impact in a standard
GWAS, as their frequencies were artificially high due to the population construction, but does
indicate that rare alleles tend to have much larger effects.
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Example 21.17 While much of our focus on massive GWAS studies, rightly so, has been on
those from human genetics, there is also an impressive list of results from maize (Buckler et
al. 2009; Brown et al. 2011; Kump et al. 2011; Poland et al. 2011; Tian et al. 2011; Wallace et
al. 2014a, 2014b; Xiao et al. 2016, 2017). Wild maize lines have LD that typically decays in
under 2kb, offering much higher mapping resolution than in humans. This feature, coupled
with the NAM line collection (Chapter 18), makes maize a powerful system for fine mapping.
The NAM lines are a set of 200 RILs from each cross of 25 maize lines (globally sampled) to
a common parent (B73), capturing the variation present over these 26 diverse lines (Figure
18.12). The resulting set of 5000 inbred lines can be highly replicated, offering a considerable
increase in power (estimating the phenotypic value of a genotype by the average over a series
of clones versus from a single observation for an outbred individual). A typical NAM GWAS
design scored nearly a million plants in four different growing locations over two years (8
environments). Traits examined include flowering time, leaf architecture, pathogen resistance,
and inflorescence features (male tassels and female ears). Ignoring inflorescence traits, most
traits were dominated by additive alleles of small effect with little detectable epistasis, with
most (> 80%) of the additive variance captured by SNPs. G x E was observed, but the variance
it accounted for was much less than the variance from additive effects. Allelic heterogeneity
was common, with alleles replicated over some, but not all, families, and different variants
segregating at the same genomic location over the collection of families (often with oppo-
site effects with respect on the B73 reference allele). Detected QTL were sometime enriched
for known candidate genes, but most QTL do not appear to be associated with any known
candidates (loci at which major-effect alleles have been detected). The genetic architecture of
inflorescence traits was bit different from the other traits in that they tended to have much
larger effects, with ear effects being larger than tassel effects. Pleiotropic loci were detected
that controlled both ear and tassel elongation, again with the ear effects being larger. Brown et
al. (2011) suggested that this architectural difference for ears resulted from recent selection on
ear morphology during domestication, favoring fixation of large-effect alleles (WL Chapter
27).

Beyond the Infinitesimal Model

The emerging view of quantitative trait variation is that it is massively polygenic, with
the average variance attributable to any causal site being very small, and with a range
of allelic-effect sizes spanning several orders of magnitude. This pattern is similar to, but
subtly different from, Fisher’s infinitesimal model, in which a very large number of loci,
each of very small effect, underlies trait variation (WL Chapter 24). While allelic effect sizes
do not follow the infinitesimal model, the behavior of the variance components associated
with the underlying sites is much closer to Fisher’s characterization. The small range in the
per-site variances (relative to the much larger range of underlying allelic-effect sizes) is a
result of the inverse correlation between effect size and allele frequency. This association,
best considered as more of a trend than an absolute rule, appears to be at least partly driven
by larger-effect alleles generally being more deleterious than smaller-effect ones.

While we may have some mild clarity on the evolutionary underpinning of trait varia-
tion, two apparently perplexing observations pose deep questions for its underlying molec-
ular basis. The first is the massive number of causal sites. For example, estimates of the
number of sites impacting height are up to three times the total number of protein coding
genes in the human genome (Example 21.15). Second, almost all variation appears to map
to noncoding regions. How can we account for these observations? Clearly, a central issue
in the modeling of quantitative variation is the role of gene regulation.

The early days of molecular genetics saw a transition from a focus on simple prokaryotic
gene switches (such as the lac operon in E. coli or the cro-c1 switch in phage λ) to more
elaborate models for eukaryotes where gene regulation was set within a far wider net of
players (e.g., Britten and Davidson 1969). As high throughput functional genomics tools
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became available, it seemed that most features in a cell were connected to one another.
Cellular networks are typically structured as domains (or modules) of highly interconnected
players, separated from other such domains by a few tenuous, but none the less present,
connections. More formally, many biological networks appear to be small world (Appendix
2), meaning that one can connect any two nodes (or more generally, local hubs organizing
subnetworks) via a very small number of steps. Further, as we have seen, there are layers
of regulatory elements that can act in much more complex, and far subtler, ways than those
envisaged in the early days of simple gene switches with just a few discrete components
and sites of action. Thus, it became apparent that trait variation is largely determined by
the actions of very complex regulatory networks (e.g., Chakravarti and Turner 2016). One
interesting complication to this network view of quantitative variation was noted by He
(2017): the structure of biological networks (being small world and scale free; Appendix
2) can generate considerable homeostasis. Hence, networks are both sufficiently robust to
perturbations, but also loose enough to allow a certain amount of variation to leak through.

It is against this backdrop that Pritchard and colleagues (Boyle et al. 2017a, 2017b; Liu
et al. 2019) proposed their omnigenic model (omni = all). Their tenet that “the connected-
network aspect of the omnigenic model is a parsimonious model that can potentially explain
the major observations” was simply a codification of the widespread belief that one must
understand networks in order to understand quantitative variation. Their key innovation
was to consider the network generating trait variation as consisting of a limited number
of core genes, modified (in trans) by a much larger set of peripheral genes that have very
slight individual, but very strong collective, regulatory impacts on the core genes. Under
this model, any gene that shows regulatory variation in a tissue that impacts the focal trait
can potentially have a small, but nontrivial, effect (hence the term “omni”).

While initially a bit nebulous as to what exactly corresponded to a core gene, a more
formal definition based on the concept of mediation was proposed by Boyle et al. (2017b) and
Liu et al. (2019). Core genes directly impact the trait (for example, by coding for QTT), while
peripheral genes impact the regulation of these traits via mediation. Hence, conditional on
core genotypes and expression levels, a trait is not further impacted by the genotypes or
transcripts at any peripheral gene. However, as remarked by Liu et al., “it is important to
note that our definition of core genes is a simplification of a more complex reality,” who
further noted that the real operational key to the omnigenic model is that “trait heritability
is mainly driven by peripheral genes that trans-regulate core genes.” Under this model,
most large-effect (and therefore rare) variants are from the core genes, being either strong
cis acting sites (such as eSNPS and sSNPS) or structural variants, while the more numerous
(and of smaller effect) common allele sites almost entirely associated with the peripheral
gene set. This view was slightly modified by Liu et al. (2019) who noted that a master
regulator peripheral gene (co-regulating a number of the core genes) could have a large
effect via the summation of a number of small effects over each impacted gene. A more
detailed look at the impact of core genes was offered by Sinnott-Armstrong et al. (2021),
who examined the genetic architectures of three traits (urate, IGF-1, and testosterone) whose
major pathway components are fairly well defined. While they found that the lead SNPs
were highly concentrated in core genes, only 10-20% of SNP-based h2 was due to variants
in core pathway components. Estimates of the total number of causal sites ranged between
4000 (testosterone) and 12,000 (urate).

Boyle et al. (2017a) hypothesized that the omnigenic model offered a useful search strat-
egy to better characterize quantitative variation, by focusing on detecting variants in the core
genes. They suggested whole exome sequencing in an attempt to detect rare, but function-
ally informative, mutations in these genes. Such variants, for the most part, would identify
at least some of the core genes, which may provide useful biological insight. However, Wray
et al. (2018) noted that a key component in GWAS-based functional characterization is al-
ways sample size, and that the every-increasing sample sizes of GWAS can both detect rare
alleles while also furthering our understanding of sites with small effects. They suggested
a better use of resources is to simply increase GWAS sample sizes in general, rather than
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amplifying a specific class of sites (e.g., whole exome sequencing).
As discussion about the omnigenic model highlights, the next generation of quantita-

tive genetics methodology will heavy focus on biological networks. Some of the machinery
offered in this chapter will no doubt be massively extended in the near future to provide
biological, computational, and analytic tools to continue exploration of these structures.


