
Lecture:
Mixture Models for Microbiome data 
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Lecture 3:
Mixture Models for Microbiome data 

Outline:
- Sequencing thought experiment
- Mixture Models (tangent) 
- (esp. Negative Binomial)

- Don’t Rarefy. Ever. 
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Differential Abundance

taxa

samples taxa 
counts

test null

Our motivating scientific question:
Which taxa have proportions that are 
different between the sample classes?
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Differential Abundance - analous to RNA-Seq

Mortazavi, et al (2008). Mapping & quantifying … transcriptomes by RNA-Seq. Nature Methods

genes

samples

taxa

samples

RNA-Seq

taxa 
counts

gene 
counts
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Thought experiment for intuition building…
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True Species (or Gene) Proportion in Simulation

Proportion

Model Uncertainty in NGS Count Data

ASV or Species or Gene
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One realization of the simulation (blue)

Proportion

Model Uncertainty in NGS Count Data

ASV or Species or Gene
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• Repeat simulation 
(resampling) many 
times and different 
library sizes

• Uncertainty depends 
(inversely) on number 
of reads

100

2000

30000

Number of Reads
(Library Size)

Model Uncertainty in NGS Count Data

Proportion

ASV or Species or Gene
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Mean Count

100

2000

30000

Model Uncertainty in NGS Count Data

Observed 
Variance

• This simulation mirrors 
technical sequencing 
replicates well

• It is well characterized as a 
Poisson distribution

• e.g. Variance == Mean 

• Useful for intuition: re-
sequencing from the same 
biological material on the 
same sequencer returns 
count data that looks Poisson

• What about biological 
replicates? How do you think 
that would look in this plot?

Number of Reads
(Library Size)
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Model Uncertainty in NGS Count Data

• The observed variance 
among biological replicates 
exceeds the mean 
(sometimes by a lot).

• The amount it exceeds the 
mean is usually still a strong 
smooth positive function of 
the mean, like the light 
blue line

• One way to model this is 
with the Negative Binomial 
distribution
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Over-
dispersion

Poisson Overdispersion
Variance =

Model Uncertainty in NGS Count Data
Negative Binomial:
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• How do you fit this many 
parameters?

• Share information across 
genes/features/ASVs in a joint 
inference of f ~ phi(count)

• “fitting this curve is much 
easier than fitting a 
thousand phis”

Over-
dispersion

Poisson Overdispersion
Variance =

Model Uncertainty in NGS Count Data
Negative Binomial
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• Negative Binomial is an infinite mixture of Poisson R.V.

• Intuition: relevant when we have (almost) as many different 
distributions (poisson means) as observations

• Borrow from RNA-Seq analysis implementations? (Yes)

• McMurdie & Holmes (2014). Waste Not Want Not…  PLoS Computational Biology
• Robinson, Oshlack (2010). A scaling normalization… RNA-Seq data. Genome Biology
• Anders, & Huber (2010). Differential expression … sequence count data. Genome Biology

Independent Filtering. More effort is needed to optimize
Independent Filtering for differential abundance detection, and
rigorously define the theoretical basis and heuristics applicable to
microbiome data. Ideally a formal application of Independent
Filtering of OTUs would replace many of the current ad hoc
approaches that often include poor reproducibility, poor justifica-
tion, and the opportunity to introduce bias.

Some of the justification for the rarefying procedure has
originated from exploratory sample-wise comparisons of micro-
biomes for which it was observed that a larger library size also
results in additional observations of rare species, leading to a
library size dependent increase in estimates of both alpha- and
beta-diversity [24,69], especially UniFrac [70]. It should be
emphasized that this represents a failure of the implementation
of these methods to properly account for rare species and not
evidence that diversity depends on library size. Rarefying is far
from the optimal method for addressing rare species, even when
analysis is restricted solely to sample-wise comparisons. As we
demonstrate here, it is more data-efficient to model the noise and

address extra species using statistical normalization methods based
on variance stabilization and robustification/filtering. Though
beyond the scope of this work, a Bayesian approach to species
abundance estimation would allow the inclusion of pseudo-counts
from a Dirichlet prior that should also substantially increase
robustness to rare species.

Our results have substantial implications for past and future
microbiome analyses, particularly regarding the interpretation of
differential abundance. Most microbiome studies utilizing high-
throughput DNA sequencing to acquire culture-independent
counts of species/OTUs have used either proportions or rarefied
counts to address widely varying library sizes. Left alone, both of
these approaches suffer from a failure to address overdispersion
among biological replicates, with rarefied counts also suffering
from a loss of power, and proportions failing to account for
heteroscedasticity. Previous reports of differential abundance
based on rarefied counts or proportions bear a strong risk of bias
toward false positives, and may warrant re-evaluation. Current
and future investigations into microbial differential abundance

Figure 6. Performance of differential abundance detection with and without rarefying. Performance summarized here by the ‘‘Area Under
the Curve’’ (AUC) metric of a Receiver Operator Curve (ROC) [59] (vertical axis). Briefly, the AUC value varies from 0.5 (random) to 1.0 (perfect),
incorporating both sensitivity and specificity. The horizontal axis indicates the effect size, shown as the actual multiplication factor applied to OTU
counts in the test class to simulate a differential abundance. Each curve traces the respective normalization method’s mean performance of that
panel, with a vertical bar indicating a standard deviation in performance across all replicates and microbiome templates. The right-hand side of the
panel rows indicates the median library size, ~NNL, while the darkness of line shading indicates the number of samples per simulated experiment. Color
shade and shape indicate the normalization method. See Methods section for the definitions of each normalization and testing method. For all
methods, detection among multiple tests was defined using a False Discovery Rate (Benjamini-Hochberg [52]) significance threshold of 0.05.
doi:10.1371/journal.pcbi.1003531.g006

Rarefying Microbiome Data Is Inadmissible
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Negative Binomial t-distribution

A.U.C.

Effect Size Effect Size

Model Uncertainty in NGS Count Data
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Inefficient Normalization by “rarefying”
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rarefying ≠ rarefaction

Inefficient Normalization by “rarefying”

16



the original idea…
rarefaction curves

• Sanders 1968
• non-parametric richness
• estimate coverage
• Normalize? - No.

Sanders, H. L. (1968). Marine 
benthic diversity: a comparative 
study. American Naturalist

Inefficient Normalization by “rarefying”
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Gotelli, & Colwell (2001) Ecology Letters

Hughes & Hellmann (2005) Methods in Enzymology

1. Select a minimum library size NL,min


2. Discard libraries (samples) that are 
smaller than NL,min


3. Subsample the remaining libraries 
without replacement such that 
they all have size NL,min

Library Sizes 
(column sums)
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Inefficient Normalization by “rarefying”
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Gotelli, & Colwell (2001) Ecology Letters

Hughes & Hellmann (2005) Methods in Enzymology
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(column sums)
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1. Select a minimum library size NL,min


2. Discard libraries (samples) that are 
smaller than NL,min


3. Subsample the remaining libraries 
without replacement such that 
they all have size NL,min

Inefficient Normalization by “rarefying”
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1.Rarefied counts worse sensitivity in every 
analysis method we attempted.

2.Rarefied counts also worse specificity (high FPs) 

•No accounting for overdispersion

•Added noise from subsampling step

Issues with rarefying — Differential 
Abundance

20



Issues with rarefying — clustering

• Loss of Power:

1. Microbiome samples that cannot be classified 
because they were discarded (< NL,min).

2. Samples that are poorly distinguishable because of 
the discarded fraction of the original library. 

• Arbitrary threshold:

1. Choice clearly affects performance

2. Optimum value, *NL, min, can’t be known in practice
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Transition:   Lab

Negative Binomial mixture model for 
differential abundance multiple testing
using DESeq2, etc.

22

Differential Abundance

taxa

samples taxa 
counts

test null

Scientific Question:
Which taxa have proportions that are 
different between the sample classes?
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Hypothesis Tests - reminder

• A hypothesis is a precise disprovable statement.

• “Null hypothesis” - the default position. “Nothing special”

• Alternative/Rejection: Evidence disagrees with the Null

• Null hypothesis cannot be confirmed by the data.

Null Hypothesis:
The proportions of a taxa in the two 
sample classes are the same

Scientific Question:
Which taxa have proportions that are 
different between the sample classes?

24



Hypothesis Tests - some examples

test R function
t-test t.test
Mann-Whitney U-test wilcox.test
correlation test cor.test
Chi-Square test chisq.test
Neg-Binom Wald test DESeq2::nbinomWaldTest

There are obviously a lot more available in R… 
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Multiple Testing
• In “Big Data”, we often want to test many hypotheses in one batch.
• p-values are distributed uniformly when null hypothesis is true
• The expected number of rejections by chance is m*α 
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• Modern sequencing creates libraries of unequal sizes

• Early analyses focused on library-wise distances:

paradigm:   rarefy - UniFrac - PCoA - Write Paper

• This approach has “leaked” into formal settings, still 
quite a bit of inertia to maintain the practice

Inefficient Normalization by “rarefying”
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the original idea…
rarefaction curves

• Sanders 1968
• non-parametric richness
• estimate coverage
• Normalize? - No.

Sanders, H. L. (1968). Marine 
benthic diversity: a comparative 
study. American Naturalist

Inefficient Normalization by “rarefying”

28



Gotelli, & Colwell (2001) Ecology Letters

Hughes & Hellmann (2005) Methods in Enzymology

1. Select a minimum library size NL,min


2. Discard libraries (samples) that are 
smaller than NL,min


3. Subsample the remaining libraries 
without replacement such that 
they all have size NL,min

Library Sizes 
(column sums)

0

1750

3500

5250

7000

A B C D E

N

Inefficient Normalization by “rarefying”
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Gotelli, & Colwell (2001) Ecology Letters

Hughes & Hellmann (2005) Methods in Enzymology
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(column sums)
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2. Discard libraries (samples) that are 
smaller than NL,min


3. Subsample the remaining libraries 
without replacement such that 
they all have size NL,min

Inefficient Normalization by “rarefying”
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Differential 
Abundance 
Simulation
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O
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Ocean Feces

1. Sum rows. A multinomial for each sample class.

2. Deterministic mixing. 
Mix multinomials in 
precise proportion.

Ocean Feces

Microbiome Clustering Simulation
samples

O
TU

s

Environment

O
TU

s

1. Sum rows for each 
environment.

2. Sample from 
multinomial.

Differential Abundance Simulation

3. Multiply 
randomly 

selected 
OTUs within 
test class by 

effect size.

4. Perform differential 
abundance tests, 

evaluate performance.

O
TU

s

samples

Simulated Ocean Simulated Feces

3. Sample from these 
multinomials.

4. Perform clustering, 
evaluate accuracy.

BA

Microbiome count 
data from the Global 

Patterns dataset

Repeat for each effect 
size and media 
library size.

Repeat for each environ-
ment, number of sam-
ples, effect size, and 
median library size.

Amount added is 
library size / effect size
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Differential Abundance - Simulation

DESeq2 − nbinomWaldTest DESeq − nbinomTest edgeR − exactTest metagenomeSeq − fitZig two sided Welch t−test
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Differential Abundance - Simulation — False Positive Rates

33

1.Rarefied counts worse sensitivity in every 
analysis method we attempted.

2.Rarefied counts also worse specificity (high FPs) 

•No accounting for overdispersion

•Added noise from subsampling step

Issues with rarefying — Differential 
Abundance

34

Issues with rarefying — clustering

• Loss of Power:

1. Microbiome samples that cannot be classified 
because they were discarded (< NL,min).

2. Samples that are poorly distinguishable because of 
the discarded fraction of the original library. 

• Arbitrary threshold:

1. Choice clearly affects performance

2. Optimum value, *NL, min, can’t be known in practice
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End for now…
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Further details
performance degradation of 
clustering results by rarefying…
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• Modern sequencing creates libraries of unequal sizes

• Early analyses focused on library-wise distances:

paradigm:   rarefy - UniFrac - PCoA - Write Paper

• This approach has “leaked” into formal settings, still 
quite a bit of inertia to maintain the practice

Inefficient Normalization by “rarefying”
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the original idea…
rarefaction curves

• Sanders 1968
• non-parametric richness
• estimate coverage
• Normalize? - No.

Sanders, H. L. (1968). Marine 
benthic diversity: a comparative 
study. American Naturalist

Inefficient Normalization by “rarefying”
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Gotelli, & Colwell (2001) Ecology Letters

Hughes & Hellmann (2005) Methods in Enzymology

1. Select a minimum library size NL,min


2. Discard libraries (samples) that are 
smaller than NL,min


3. Subsample the remaining libraries 
without replacement such that 
they all have size NL,min

Library Sizes 
(column sums)
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Inefficient Normalization by “rarefying”
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Gotelli, & Colwell (2001) Ecology Letters

Hughes & Hellmann (2005) Methods in Enzymology

Library Sizes 
(column sums)
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1. Select a minimum library size NL,min


2. Discard libraries (samples) that are 
smaller than NL,min


3. Subsample the remaining libraries 
without replacement such that 
they all have size NL,min

Inefficient Normalization by “rarefying”
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Differential 
Abundance 
Simulation
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25 12 3 20 14 8 23 13
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Ocean Feces

1. Sum rows. A multinomial for each sample class.

2. Deterministic mixing. 
Mix multinomials in 
precise proportion.

Ocean Feces

Microbiome Clustering Simulation
samples

O
TU

s

Environment

O
TU

s

1. Sum rows for each 
environment.

2. Sample from 
multinomial.

Differential Abundance Simulation

3. Multiply 
randomly 

selected 
OTUs within 
test class by 

effect size.

4. Perform differential 
abundance tests, 

evaluate performance.

O
TU

s

samples

Simulated Ocean Simulated Feces

3. Sample from these 
multinomials.

4. Perform clustering, 
evaluate accuracy.

BA

Microbiome count 
data from the Global 

Patterns dataset

Repeat for each effect 
size and media 
library size.

Repeat for each environ-
ment, number of sam-
ples, effect size, and 
median library size.

Amount added is 
library size / effect size
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Differential Abundance - Simulation

DESeq2 − nbinomWaldTest DESeq − nbinomTest edgeR − exactTest metagenomeSeq − fitZig two sided Welch t−test
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Differential Abundance - Simulation — False Positive Rates

44



1.Rarefied counts worse sensitivity in every 
analysis method we attempted.

2.Rarefied counts also worse specificity (high FPs) 

•No accounting for overdispersion

•Added noise from subsampling step

Issues with rarefying — Differential 
Abundance
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Issues with rarefying — clustering

• Loss of Power:

1. Microbiome samples that cannot be classified 
because they were discarded (< NL,min).

2. Samples that are poorly distinguishable because of 
the discarded fraction of the original library. 

• Arbitrary threshold:

1. Choice clearly affects performance

2. Optimum value, *NL, min, can’t be known in practice
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Tangent: Mixture Models

Technical details in: 
mixture-model-Holmes-mathy-details.pdf
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Example: Finite mixture of two 
normals
Flip a fair coin.
If it comes up heads
Generate a random number from a Normal 
with mean 1 and variance 0.25. R: `rnorm` 
function.

If it comes up tails
Generate a random number from a Normal 
with mean 2 and variance 0.25.

This is what the resulting histogram 
would look like if we did this 10,000 
times.

Finite Mixture Model

48



Example: Finite mixture of two 
normals
However in many cases the 
separation is not so clear.
Challenge: Here is a histogram 
generated by two Normals with the 
same variances. 
Can you guess the two parameters for 
these two Normals?

Finite Mixture Model
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Here we knew the answer
(the source every data point)

In practice, this information is usually 
missing, and we call it a latent variable

Discovering the hidden class: EM
For simple parametric components, 
can  use EM (Expectation-
Maximization) algorithm to infer the 
value of the hidden variable.

Finite Mixture Model
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Very popular iterative procedure

Lots of implementations. E.g. FlexMix

http://cran.r-project.org/web/views/Cluster.html

http://cran.r-project.org/web/packages/flexmix/index.html

Expectation Maximization (EM)

http://en.wikipedia.org/wiki/Expectation–maximization_algorithm

1. First, initialize θ to some random values.
2.Compute best value for U.
3. Use the just-computed values of U
to compute a better estimate for θ. 
Parameters associated with a particular 
value of U only use data points whose 
associated latent variable has that value.
4. Iterate steps 2 and 3 until convergence
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Infinite Mixture Model
Sometimes mixtures can be useful without us having to find 
who came from which distribution. 
This is especially the case when we have (almost) as many 
different distributions as observations.
In some cases the total distribution can still be studied, 
even if we don’t know the source of each component 
distribution.

e.g. Gamma-Poisson a.k.a. Negative Binomial
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Infinite Mixture Model - N.B.
Generative Description:

Negative Binomial is useful for modeling:
• Overdispersion (in Ecology)
• Simplest Mixture Model for Counts
• Different evolutionary mutation rates
• Throughout Bioinformatics and Bayesian Statistics
• Abundance data

Summarized Mathematically:

variance:
Poisson Overdispersion
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Finite Mixture Models
Mixture of Normals with different means and variances.
Mixtures of multivariate Normals with different means and covariance 
matrices
Decomposing the mixtures using the EM algorithm.

Common Infinite Mixture Models
Gamma-Poisson (Negative Binomial) for read counts 
Dirichlet-Multinomial (Birthday problem and the Bayesian setting).

Summary of Mixture Models
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Microbiome 
Clustering 
Simulation

samples

O
TU

s

test null

O
TU

s

191
163
173
12
30
10

57
48
51
357
899
307

191
163
173
0
0
0

0
0
0

357
899
307

15 15 161 0 0 0 0

87 4 72 0 0 0 0

10 148 15 0 0 0 0

0 0 0 82 244 7 24

0 0 0 354 452 92 1

0 0 0 14 9 33 251

samples

O
TU

s

Ocean Feces

O
TU

s

Ocean Feces

1. Sum rows. A multinomial for each sample class.

2. Deterministic mixing. 
Mix multinomials in 
precise proportion.

Ocean Feces

Microbiome Clustering Simulation
samples

O
TU

s

Environment

O
TU

s

1. Sum rows for each 
environment.

2. Sample from 
multinomial.

Differential Abundance Simulation

3. Multiply 
randomly 

selected 
OTUs within 
test class by 

effect size.

4. Perform differential 
abundance tests, 

evaluate performance.

158 56 214 39 47 4 11 11 5 3

124 54 212 29 40 3 10 7 8 6

129 46 216 33 42 4 13 7 3 6

11 3 14 3 1 39 95 63 29 37

19 7 34 7 0 88 237 137 73 86

9 1 15 1 2 29 84 51 14 29

O
TU

s

samples

Simulated Ocean Simulated Feces

3. Sample from these 
multinomials.

4. Perform clustering, 
evaluate accuracy.

BA

Microbiome count 
data from the Global 

Patterns dataset

Repeat for each effect 
size and media 
library size.

Repeat for each environ-
ment, number of sam-
ples, effect size, and 
median library size.

Amount added is 
library size / effect size
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Microbiome Clustering - Simulation

Bray −Curtis Euclidean PoissonDist top −MSD UniFrac − u UniFrac −w
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56



Performance Depends on ÑL
Microbiome Clustering - Simulation

ES = 1.15 ES = 1.25 ES = 1.5

●
● ●

●
●

●
●

● ●
●

●
●

●

●

● ● ●

● ● ●

●

● ●
●

● ●
●

●

● ●
●

●
●

● ●

●

●

●
●

●
●

●

●
●

● ●
●

●

●

●

●
●

●
●

●

●

●

●

●

● ● ●

●

● ●

● ●
●

●

●

●
● ●

●

●

●

●

●
●

●
●

●

●

●

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

N ~
L
=

1000
N ~

L
=

2000
N ~

L
=

5000
N ~

L
=

10000

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
Library Size Minimum Quantile

Ac
cu

ra
cy

Distance Method: ● Bray−Curtis PoissonDist top−MSD UniFrac−u UniFrac−w
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