Lecture:
Mixture Models for Microbiome data

Lecture 3:
Mixture Models for Microbiome data

Outline:
- Sequencing thought experiment
- Mixture Models (tangent)
- (esp. Negative Binomial)
- Don’t Rarefy. Ever.

Differential Abundance

taxa

/ counts

samples

taxa

test null

Our motivating scientific question:
Which taxa have proportions that are
different between the sample classes?

Differential Abundance - analous to RNA-Seq
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Mortazavi, et al (2008). Mapping & quantifying ... transcriptomes by RNA-Seq. Nature Methods

4




Thought experiment for intuition building...

Model Uncertainty in NGS Count Data

True Species (or Gene) Proportion in Simulation

Proportion

ASV or SpeC|es or Gene

Model Uncertainty in NGS Count Data

One realization of the simulation (blue)

Proportion

ASV or SpeC|es or Gene

* Uncertainty depends

Model Uncertainty in NGS Count Data

* Repeat simulation

(resampling) many Number of Reads
times and different (Library Size)
library sizes 100

2000
(inversely) on number

of reads 30000

u |Il
N

Proportion

ASV or SpeC|es or Gene




Model Uncertainty in NGS Count Data

This simulation mirrors
technical sequencing
replicates well

Observed
_ Variance

It is well characterized as a

Poisson distribution
Number of Reads

(Library Size)
100

* e.g.Variance == Mean 100+

Useful for intuition: re-
sequencing from the same
biological material on the
same sequencer returns
count data that looks Poisson

10-

Mean Count

What about biological g b
replicates? How do you think

that would look in this plot?

Model Uncertainty in NGS Count Data

Est. Variance NGS Count Data

Real Data (Biological Replicates)
L)

1e+08 — . &

Variance

16405 — Observed

1e+02 — 4

4 -
~
~
o

L~ Poisson “technical variation”
Mean Count
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Model Uncertainty in NGS Count Data

Est. Variance NGS Count Data

The observed variance

; 2,,2
Variance = u;c5;j + ([),-(.sj u,

Model Uncertainty in NGS Count Data

Negative Binomial:
Est. Variance NGS Count Data

> E ] Poisson  QOverdispersion > E ]
among biological replicates Real Data (Biological Replicates) P Real Data (Biological Replicates)
exceeds the mean 1408 - ‘°' 16408 - ‘”
(sometimes by a lot). Variance oo Variance o
The amount it exceeds the
mean is usually still a strong -
1e+05 — 1e+05 —
smooth positive function of dispersion
. -~ -~
the mean, like the _ - _-
-~
One way to model this is 1e+02 1 4 1e+02 7 4
with the Negative Binomial /ﬁ - /(é -
distribution L~ Poisson “technical variation” L~ Poisson “technical variation”
Mean Count Mean Count
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Model Uncertainty in NGS Count Data

Negative Binomial

Variance = U;cSj + ¢,-(.sj?u,7;. Est. Variance NGS Count Data

Poisson  Overdispersion Real Data (Biological Replicates)

L)
1e+08 — Var .
ariance
* How do you fit this many o
parameters?
¢ Share information across 1e+05 — dlspe-r8|on

genes/features/ASVs in a joint
inference of f ~ phi(count)

* “fitting this curve is much 1g 0o -
easier than fitting a
thousand phis”

Poisson “technical variation”

Mean Count

Model Uncertainty in NGS Count Data

* Negative Binomial is an infinite mixture of Poisson R.V.

* Intuition: relevant when we have (almost) as many different
distributions (poisson means) as observations

* Borrow from RNA-Seq analysis implementations? (Yes)

Negative Binomial t-distribution
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Effect Size Effect Size

e McMurdie & Holmes (2014). Waste Not Want Not... PLoS Computational Biology
® Robinson, Oshlack (2010). A scaling normalization... RNA-Seq data. Genome Biology
® Anders, & Huber (2010). Differential expression ... sequence count data. Genome Biology
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Inefficient Normalization by “rarefying”

Inefficient Normalization by “rarefying”

rarefying = rarefaction
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Inefficient Normalization by “rarefying”

the original idea... .
rarefaction curves

Sanders 1968
non-parametric richness
estimate coverage
Normalize? - No. g

e o 0o o
[

Species

Sanders, H. L. (1968). Marine T T T T T T
benthic diversity: a comparative 0 50 100 150 200 250
study. American Naturalist Sample Size

Inefficient Normalization by “rarefying”

Library Sizes
1. Select a minimum library size Nimin (column sums)
7000
2. Discard libraries (samples) that are
smaller than N min N 5250
3500 -
3. Subsample the remaining libraries
without replacement such that 1750 -

they all have size N min

Hughes & Hellmann (2005) Methods in Enzymology

Gotelli, & Colwell (2001) Ecology Letters
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Inefficient Normalization by “rarefying”

Library Sizes

Select a minimum library size N min (column sums)

2. Discard libraries (samples) that are
smaller than Nimin

3. Subsample the remaining libraries
without replacement such that
they all have size N min

A B C D E

removed from dataset
Hughes & Hellmann (2005) Methods in Enzymology

Gotelli, & Colwell (2001) Ecology Letters

Issues with rarefying — Differential
Abundance

|.Rarefied counts worse sensitivity in every
analysis method we attempted.

2. Rarefied counts also worse specificity (high FPs)
® No accounting for overdispersion

® Added noise from subsampling step
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Issues with rarefying — clustering

® Loss of Power:

|. Microbiome samples that cannot be classified
because they were discarded (< N, nin)-

2. Samples that are poorly distinguishable because of
the discarded fraction of the original library.

e Arbitrary threshold:
I. Choice clearly affects performance

2. Optimum value, *NL, min, can’t be known in practice

Transition: Lab

Negative Binomial mixture model for
differential abundance multiple testing
using DESeq2, etc.
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Differential Abundance

taxa

/ counts

samples

taxa

test null

Scientific Question:
Which taxa have proportions that are
different between the sample classes?

Hypothesis Tests - reminder

A hypothesis is a precise disprovable statement.

“Null hypothesis” - the default position.“Nothing special”

Alternative/Rejection: Evidence disagrees with the Null

Null hypothesis cannot be confirmed by the data.
Scientific Question:

Which taxa have proportions that are
different between the sample classes?

Null Hypothesis:
The proportions of a taxa in the two
sample classes are the same
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Hypothesis Tests - some examples

test R function

Multiple Testing

In “Big Data”, we often want to test many hypotheses in one batch.
p-values are distributed uniformly when null hypothesis is true

® The expected number of rejections by chance is m*«
t-test t.test
- . P-val der Null hypothesis with 100 trial
Mann-Whitney U-test wilcox.test . values under U ypothesis wi rais
correlation test cor.test 0.4
Chi-Square test chisq.test 03~ rejected
) . g O FALSE
Neg-Binom Wald test  DESeq2: :nbinomWaldTest o2 % © TRUE
0.1-
| §338 835,888 88888
060 0.‘25 0.150 O.‘75 1 bO
p
There are obviously a lot more available in R... m = 100
alpha = 0.05
E(FP) = 5
25 26

Inefficient Normalization by “rarefying”

® Modern sequencing creates libraries of unequal sizes
e FEarly analyses focused on library-wise distances:
paradigm: rarefy - UniFrac - PCoA - Write Paper

® This approach has “leaked” into formal settings, still
quite a bit of inertia to maintain the practice

Inefficient Normalization by “rarefying”

the original idea... .
rarefaction curves

® Sanders 1968
® non-parametric richness &
® estimate coverage . -
o Normalize? - No. E
% s
@
Sanders, H. L. (1968). Marine ° l . l w w
benthic diversity: a comparative 0 50 100 150 200 250
study. American Naturalist Sample Size
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Inefficient Normalization by “rarefying”

1. Select a minimum library size Nimin

2. Discard libraries (samples) that are
smaller than Nimin

3. Subsample the remaining libraries
without replacement such that
they all have size Nimin

Hughes & Hellmann (2005) Methods in Enzymology

Gotelli, & Colwell (2001) Ecology Letters

Library Sizes
(column sums)

7000 -

5250

3500

1750 g

2. Discard libraries (samples) that are

3. Subsample the remaining libraries

Inefficient Normalization by “rarefying”

Library Sizes

1. Select a minimum library size Nimin (column sums)

smaller than Nimin

without replacement such that
they all have size N min

A B C D E

removed from dataset
Hughes & Hellmann (2005) Methods in Enzymology

Gotelli, & Colwell (2001) Ecology Letters
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samples . . . .
2l 1 = Differential Abundance - Simulation
[} 4 20 L. S.um rows for each 28 Number Samples per Class: —— 3 —— 5 —— 10 ization Method: —e— —aA— Rarefied —#— Proportion
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3
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% — » |
Repeat for each environ- 205 ¢ ! [ A ik
ment, number of sam- 4. Perform differential @02+ Jlzdr=— |
1
5

ples, effect size, and
median library size.

abundance tests,
evaluate performance.

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
Effect Size
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Differential Abundance - Simulation — False Positive Rates

Issues with rarefying — Differential

DESeq DESeq2 edgeR \ mefagenomeSaq mi
RENNN Abundance
05- I E w
1 _ | g d T | |.Rarefied counts worse sensitivity in every
=+ = SRS ' analysis method we attempted.
°*1 - g *E;:m 2. Rarefied counts also worse specificity (high FPs)
e g ===l == ® No accounting for overdispersion
051 I L1 Bz ® Added noise from subsampling step
e i = ] A1 w1 .
e N I N I N B B
33 34
Issues with rarefying — clustering
¢ Loss of Power:
|. Microbiome samples that cannot be classified End for now...
because they were discarded (< N, nin)-
2. Samples that are poorly distinguishable because of
the discarded fraction of the original library.
¢ Arbitrary threshold:
I. Choice clearly affects performance
2. Optimum value, “NL,min, can’t be known in practice
35 36




Further details
performance degradation of
clustering results by rarefying...

Inefficient Normalization by “rarefying”

® Modern sequencing creates libraries of unequal sizes
® FEarly analyses focused on library-wise distances:
paradigm: rarefy - UniFrac - PCoA - Write Paper

® This approach has “leaked” into formal settings, still
quite a bit of inertia to maintain the practice
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Inefficient Normalization by “rarefying”

the original idea... :
rarefaction curves

® Sanders 1968
® non-parametric richness -
® estimate coverage s —
o Normalize? - No. 5
7

Species

Sanders, H. L. (1968). Marine T T T T T
benthic diversity: a comparative 0 50 100 150 200 250

study. American Naturalist Sample Size

L.

Inefficient Normalization by “rarefying”

Library Sizes
Select a minimum library size N min (column sums)
7000
2. Discard libraries (samples) that are
smaller than NLmin N 5250
3500
3. Subsample the remaining libraries
without replacement such that 1750
they all have size Nimin 0 . - [ |
A B C D E

Hughes & Hellmann (2005) Methods in Enzymology

Gotelli, & Colwell (2001) Ecology Letters
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samples
. . . . [} ] 34 1 15 50
Inefficient Normalization by “rarefyin : . g 4l | 4 LSmmowshrach o
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Irrerentia 5l 2o 1 6 2| 36
@) —_— =
1| 85 3 o 89
H H 161 6 13 180
N ' . Library Sizes Abundance 61 ol 13 o
1. Select a minimum library size Nimin (column sums) Environment
S H I H 2. Sample from
I I I lu atl on samples multinomial.
o . o 38| 10| 6| 12| 15| 14| 26| 9
2. Discard libraries (samples) that are 33 ol il al 3l 3
[%2)
smaller than N min 31510 1]13] o] 824 6
O 47 21 7| 39| 23| 17| 42| 23
o ) ) 98| 48| 11| 70| 49| 36/108| 36 3. Multiply
3. Subsample the remaining libraries 25 12] 3]20114] 8] 23113 randomly
. ¢ selected
without replacement such that S50 Ti00 T 501 15| 14l 26| 5| OTUS within
R . | test class by
they all have size Ny min 1313 0|11} 4| 3/13| 7| effectsize.
Sl1s/ 10 1 13} 9| 824 6
'C_) 470 210 70 390, 23| 17| 42| 23
98| 48| 11 7OE 49| 36108 36
removed from dataset 25| 12| 3] 20} 14| 8| 23] 13
Hughes & Hellmann (2005) Methods in Enzymology test null \
Repeat for each environ-

Gotelli, & Colwell (2001) Ecology Letters ment, number of sam- 4. Perform differential
ples,.effe.ct size, f':\nd abundance tests,
median library size. evaluate performance.
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Differential Abundance - Simulation Differential Abundance - Simulation — False Positive Rates
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Issues with rarefying — Differential
Abundance

|.Rarefied counts worse sensitivity in every
analysis method we attempted.

2.Rarefied counts also worse specificity (high FPs)
® No accounting for overdispersion

® Added noise from subsampling step

Issues with rarefying — clustering

® Loss of Power:

|. Microbiome samples that cannot be classified
because they were discarded (< N, nin)-

2. Samples that are poorly distinguishable because of
the discarded fraction of the original library.

e Arbitrary threshold:
I. Choice clearly affects performance

2. Optimum value, “NL, min, can’t be known in practice
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Tangent: Mixture Models

Technical details in:
mixture-model-Holmes-mathy-details.pdf

Finite Mixture Model

Example: Finite mixture of two
normals

Flip a fair coin.
If it comes up heads

Generate a random number from a Normal
with mean 1 and variance 0.25. R: ‘rnorm’
function.

count

If it comes up tails

Generate a random number from a Normal
with mean 2 and variance 0.25.

This is what the resulting histogram
would look like if we did this 1~ "0
times.

output

flx) = % h1(x) + %1/)2(4‘)
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Finite Mixture Model

Example: Finite mixture of two
normals

However in many cases the
separation is not so clear.

count

Challenge: Here is a histogram
generated by two Normals with the
same variances.

Can you guess the two parameters for
these two Normals?

fo) = % h(x) + % o (x)

Finite Mixture Model

Here we knew the answer

(the source every data point)

In practice, this information is usually
missing, and we call it a latent variable

count

Discovering the hidden class: EM

For simple parametric components,

can use EM (Expectation-

Maximization) algorithm to infer the ‘

value of the hidden variable. xx

flo) = % h(x) + % $ha(x)
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Expectation Maximization (EM)

Very popular iterative procedure
Lots of implementations. E.g. FlexMix

http://cran.r-project.org/web/views/Cluster.html

http://cran.r-project.org/web/packages/flexmix/index.html

Delay
100

I. First, initialize © to some random values.
2.Compute best value for U.

3. Use the just-computed values of U £
to compute a better estimate for 6.
Parameters associated with a particular

70

value of U only use data points whose ol e
associated latent variable has that value. AL
4. Iterate steps 2 and 3 until convergence  * A

40
1 2 3 4 5

http://en.wikipedia.org/wiki/Expectation—maximization_algorithm

Duration
3

Infinite Mixture Model

Sometimes mixtures can be useful without us having to find
who came from which distribution.

This is especially the case when we have (almost) as many
different distributions as observations.

In some cases the total distribution can still be studied,
even if we don’t know the source of each component
distribution.

e.g. Gamma-Poisson a.k.a. Negative Binomial

I.  Generate a whole set of Poisson parameters: 1, 12, ... 49y
from a Gamma(2,3) distribution.

2.  Generate a set of Poisson(4;) random variables.
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Infinite Mixture Model - N.B.

Generative Description:
I.  Generate a whole set of Poisson parameters: 11, 42, . .. A9y
from a Gamma(2,3) distribution.

2.  Generate a set of Poisson(4;) random variables.
Summarized Mathematically:
2,,2
UicSj + ¢ icSj Ui,

Poisson

variance:
Overdispersion

Negative Binomial is useful for modeling:
e Qverdispersion (in Ecology)
Simplest Mixture Model for Counts
Different evolutionary mutation rates
Throughout Bioinformatics and Bayesian Statistics
Abundance data

Summary of Mixture Models

Finite Mixture Models
Mixture of Normals with different means and variances.

Mixtures of multivariate Normals with different means and covariance
matrices

Decomposing the mixtures using the EM algorithm.

Common Infinite Mixture Models

Gamma-Poisson (Negative Binomial) for read counts
Dirichlet-Multinomial (Birthday problem and the Bayesian setting).

53 54
samples

. . 15/ 15/ 161y 0 0| 0 0O . . . N .

Microbiome s o < 2 o o o o wicobomecom Microbiome Clustering - Simulation
5| 10| 148| 158 o o o o —datafrom the Global—
. !

Clusterin g of of of s2fzee] 7 20 FPatemsduien ormteston o [~ sy | er o] o] | e o] s
S.m a . n 0 0 Oi 14 9/ 33| 251 Bray - Curtis Euclidean PoissonDist top - MSD UniFrac -u UniFrac -w

| UI tlo Ocean Feces 1.0

1. Sum rows. A multinomial for each sample class.

191 o! 2. Deterministic mixing. 19

Ic m1 1 57
163 0 Mix AmultmomlAals in 163 48

% precise proportion.
E 173 0 173 51
(@) 0 | 357 Amount added is 12 357
0 | 899 library size / effect size 30 899
0 307 10 307

Ocean Feces

samples
158 56 214| 39 47§ 4/ 11 11, 5
124| 54(212| 29| 40f 3| 10 7 8 6
129| 46 216 33 421 4| 13| 7| 3

»
o)
= T
O 11, 3| 14 3| 1} 39| 95 63 29| 37

/ Ocean Feces

3. Sample from these

multinomials.

4. Perform clustering,

evaluate accuracy.

Repeat for each effect

0.8 —

0.8 =

0.6 =

Accuracy

° o

> ®

1 1
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{ size and media ect Size
9 1 15 1 21 29| 84| 51| 14| 29| .. .
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Accuracy

Microbiome Clustering - Simulation
Performance Depends on Ny,

Distance Method: —e— Bray-Curtis —&— PoissonDist —#— top-MSD —— UniFrac-u —#— UniFrac-w

o ES=1.15 ES=1.25 ES=15
0.8
10
0.8 = |
I
1.0
0.8 — 1 N
0.6 —% #/'\,\.
i B—
1.0
0.8 = %. N‘ \
0.6 = ,/i\'—‘\
— —
U U T T T i i T T T U T i T T
0.0 0.1 02 03 04 00 0.1 0.2 03 04 00 0.1 0.2 03 04

Library Size Minimum Quantile

=1y
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