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Why mixture models?
There are two types of mixture models we will discuss: finite and infinite

Simple Examples and computer experiments

Supgose we want two eqtually likely components, we decompose the
generating process into steps:

Flip a fair coin.

= |f it comes up heads

e Generate a random number from a Normal with mean | and variance 0.25.

= |f it comes up tails

e Generate a random number from a Normal with mean 2 and variance 0.25.

;Ifhis is what the resulting histogram would look like if we did this 10,000
imes.



require(ggplot2)
coinflips=as.numeric(runif (10000)>0.5)

table(coinflips)

## coinflips
## [¢} 1

## 4972 5028

output=rep(0,10000)
sd1=0.5;sd2=0.5;meanl=1;mean2=3
for (i in 1:10000) {

if (coinflips[i]==0)

output[i]=rnorm(1l,meanl,sdl)

else

output[i]=rnorm(1l,mean2,sd2) }

group=coinflips+1
do=data. frame(output)

gplot (output,data=do,geom="histogram",£fill=I("red") ,binwidth=0.2,alpha=I(0.6))
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In fact we can write the density (the limiting curve that the histograms
tend to IooI%r]ikeS as y ( & 4



f&x) = % $1(x) + % P> (x)

where ¢, is the density of the Normal(y; = 1,62 = 0.25 ) and ¢, is the
density of the Normal(u, = 2,62 = 0.25).

xs=seq(-1,5,1length=1000)

dens2=0.5*dnorm(xs,mean=1,sd=0.5)+
0.5*dnorm(xs,mean=3,sd=0.5)

do=data.frame(xs,dens2)

gplot (xs,dens2,type='1l"',6col=I("blue"),data=do)
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IC|I'1 thjs case of course the mixture model wag extremelzl visible as the two
istributions don't overlap, };hls can acpgen#?vne have two very separate
ies of fis

populations, for instance difterent spe whose weights are very



different. However if many cases the separation is not so clear.

Challenge: Here is a histogram generated by t]yvo Normals with the same
variances, can you guess the two parametefs for these two Normals?

require (ggplot2)
set.seed(1233341)
coinflips=as.numeric(runif(1000)>0.5)

table(coinflips)

## coinflips
## o0 1

## 495 505

output=rep(0,1000)

sdl=sqrt(0.5)

sd2=sqrt (0.5)

meanl=1

mean2=2

for (i in 1:1000){
if (coinflips[i]==0)
output[i]=rnorm(1l,meanl,sdl)
else

output[i]=rnorm(1l,mean2,sd2)
}

group=coinflips+1

dat=data. frame (xx=output, yy=group)
ggplot (dat,aes(x=xx)) +

geom_histogram(data=dat,fill = "purple"”, alpha = 0.2)
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Here IS tThe ans er IT Vﬁ cmﬂr In re? the poInts that were generated rrom
the hefl s coin and blue the one from tails, we can see that the first
normal has a range of about

dat <- data.frame(xx=output,yy = group)
ggplot (dat,aes (x=xx)) +
geom_histogram(data=subset(dat,yy == 1),fill = "red", alpha = 0.2) +

geom_histogram(data=subset(dat,yy == 2),fill = "blue", alpha = 0.2)



dh

A

-2 0 2 4
XX

e e e TS B0 OBy ad piot showing the thrae iskagrams

count



ggplot (dat,aes (x=xx)) +

geom_histogram(data=dat,fill = "yellow", alpha = 0.4)+

geom_histogram(data=subset(dat,yy == 1),fill "red", alpha = 0.2) +

geom_histogram(data=subset(dat,yy == 2),fill = "darkblue", alpha = 0.2)
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Here we knew who had been generated from vﬁmiﬁh ﬁonaponenjc or the
[nlxture, o) Tn this information”is missing, we call the hidden variable a
atent variable.



SuiL]selggglf fri/lw%c%urlr?&%?re(szoo‘l) provides a complete treatment of the

Discovering the hidden class: EM

InM:h case of simple parametric components, \?/e use a methad called the
E pectation- aX|m|zat|on ) algorithm to infer the value of th h|dd n
varia

The Expectation-Maximization algorithm is a very popular iterative
procedure. We start with observations (Y) and we augment the data with

an unobserved (latent) cluster variable U, which says which group each
observation came.

We are interested in finding the values of U and the unknown parameters

of the underlying densities that make the observed data Y the most likely.
We will use the notion of bivariate distribution here, we are going to look
at what the distribution of s (Y, U) which can be written:

J O, ulf) = f(uly, O)f (vI6)

Suppose we have a fair mixture of two normals with parameters
= (uy =y, =201 =1,00 =1), u; and u, are unknown, we suppose
for now, we know that the standard deviations of both distributions is |.

For this bivariate distribution we can define a compete soint 1ikerinooa, We Usually
work with its log

loglikeli(0) = log f (v, ul®)

Marginal likelihood for the observed y:

marglike(6;Y) = f(Y10) = Zf(y, ul@)

Intiatize the parameter 6 to any value 6~

E “expectation’ step:



Use group probabilities under the current model giving p(y, ul@™) that are
used to compute the expectation

D pluly, 0%)1og (0, y, 1) = Euyp+ (0,7, u) = 00, 0%)

M “maximization’ step:

Estimate distribution parameters by maximizing the log likelihood Q(8, 8™)
\ This gives a new 6",

Store cluster probabilities as instance weights p(uly, 6%).

Stop when improvement is negligible.

# EM algorithm manually, dat is the data

x <- dat

# initial values for parameters

pil<-0.5; pi2<-0.5

mul<--0.01 ;mu2<-0.01

sigmal<-sqrt(0.01) ; sigma2<-sqrt(0.02)

loglik<- rep(NA, 1000)

loglik[1]<-0
loglik[2]<-mysum(pil*(log(pil)+log(dnorm(dat,mul,sigmal))))

+mysum(pi2* (log(pi2)+log(dnorm(dat,mu2,sigma2))))

mysum <- function(x) {
sum(x[is.finite(x)])
}
logdnorm <- function(x, mu, sigma) {
mysum(sapply(x, function(x) {logdmvnorm(x, mu, sigma)}))
}

taul=0; tau2=0; k=2



# loop
while(abs(loglik[k]-loglik[k-1]) >= 0.00001) {
# E step
taul=pil*dnorm(dat,mean=mul,sd=sigmal)/
(pil*dnorm(x,mean=mul,sd=sigmal)+pi2*dnorm(dat,mean=mu2,sd=sigma2))
tau2=pi2*dnorm(dat,mean=mu2,sd=sigma2)/
(pil*dnorm(x,mean=mul,sd=sigmal)+pi2*dnorm(dat,mean=mu2,sd=sigma2))

taul[is.na(taul)]

0.5

tau2[is.na(tau2)] 0.5

# M step

pil=mysum(taul)/length(dat)

pi2=mysum(tau2)/length(dat)

mul=mysum(taul*x)/mysum(taul)

mu2=mysum(tau2*x)/mysum(tau2)

sigmal=mysum(taul* (x-mul)”2)/mysum(taul)

sigma2=mysum(tau2* (x-mu2)"2)/mysum(tau2)

loglik[k+1]=mysum(taul* (log(pil)+logdnorm(x,mul,sigmal)))+
mysum(tau2* (log(pi2)+logdnorm(x,mu2,sigma2)))

k=k+1

# compare

library(mixtools)

gm=normalmixEM(x, k=2, lambda=c(0.5,0.5),mu=c(-0.01,0.01),sigma=c(0.01,0.02))
gm$lambda

gm$mu

gm$sigma

gm$loglik

Mixture Modeling Examples for Regressions



The flexmix _package aIIovi{i to cluster and fjt regressions to the data ﬁt’ the
same time. The stahdard M-step exran, Of FlexMix is an interface to R’s

generalized linear modelling facilities - i, function.



NPreg$yn
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A5 a sinwle example we use artificial data with two latent classes of size
100 each:



Class1: y=5x+¢€
Class2 : y= 15+ 10x —x* + ¢

with € ~ N(0,9) and prior class probabilities 71 = 7, = 0.5.
We can fit this model in R using the commands

library("flexmix")
data("NPreg")
ml = flexmix(yn ~ x + I(x"2), data = NPreg, k = 2)

ml

#4#

## call:

## flexmix(formula = yn ~ x + I(x"2), data = NPreg, k = 2)
##

## Cluster sizes:

## 1 2
## 100 100
##

## convergence after 15 iterations
gnd get a first look at the estimated parameters of mixture component~|
Y
parameters(ml, component = 1)

## Comp.1

## coef.(Intercept) -0.2098

## coef.x 4.8175
## coef.I(x"2) 0.0362
## sigma 3.4760

and



parameters(ml, component = 2)

## Comp.2

## coef. (Intercept) 14.717

## coef.x 9.847
## coef.I(x"2) -0.968
## sigma 3.480

for component 2. The parameter estim?tes of Foth compg@nents are close
to the trye values, A c oss-tet?glatlon of true classes and cluster
memberships can be obtaine

table(NPreg$class, clusters(ml))

##
## 1 2
## 195 5

## 2 5095

The summary method

summary (ml)

##

## call:

## flexmix(formula = yn ~ x + I(x"2), data = NPreg, k = 2)
##

## prior size post>0 ratio

## Comp.1l 0.494 100 145 0.690

## Comp.2 0.506 100 141 0.709

##

## 'log Lik.' -643 (df=9)

## AIC: 1303 BIC: 1333



gives the estimated prior probabilities 7k, the number of observations
assigned to the corresponding clusters, the number of observations where
Pk > O (with a default of 6 = 1077), and the ratio of the latter two

numbers. For well-seperated components, a large proportion of
observations with non-vanishing posteriors p,; should also be assigned to

the corresponding cluster, giving a ratio close to |. For our example data
B bothe S i 0.70, indicating the

the ratios,o o1ih components are approximately
C

overlap of the classes at the cross-section of line’and parabola.

ggplot (NPreg,aes(x,yn)) +geom_point(aes(colour = as.factor(class),shape=as.factor(class)))
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fzero = ﬂ]{o}(y) + (1 - ﬂ)fcount (y)

We will see late how we can try to tease o t these cl ste s and assign a

group to many of the observations \(wé nowing t istributions, in
onparametric setting this is called c usterlng

Infinite Mixtures

ometlme |xtures can be useful without us having to find who al
rom wh f? |str|b tlon this is esp C|a Iy the case when we have f ost)
as manty ferent |str| utloPsBas o ations, tfet S é) nlg at a case w ere
the total |str ution can still be stu , even i on’t know where

eac member came from.

ecomposed the mixture m del into a% o step process we extend
the es rlp ion to ca?]es wher'e ?re could be
o

the model, suppose that mstead flipping a comany Ditked > ba?r}?grtr? .':1?1
urn with the ean andavar'lances Wrtten n it, if hah?tﬁe baIIs were
marked (u; = = 0.1) and the other half (4; = 2,62 =0.1) this

would actually be equivalent to our original mixture.

lpwever thlsnglves us mgch more freedom, all the ba s could Pc?
dlf rent parame er-num ers on them and these_ln ers cou tually
be drawn at ran ?m from a special distributi his i |s often cal e
|er rchlgal model because it |s a two ste rTJlbbocess where one step asl
n% efore tEe next: generate th ers on the arameter
gratwba t::1II then draw a rahdom number | according to thit parametric
istribution.

By using this generatin iXture we can as far as gsenerating a new
Jrameter fof all the o) cks from our distrbution. - &

Infinite Mixture of Normals



theta=-0.1

mu=0.15

sigma=0.43

#Choose some Wis
W=rexp(10000,1)
#Choose some Normals

output=rnorm(10000, theta+mu*W, sigma*W)

dat = data.frame(xx=output)
# hist(output,30)
ggplot (dat,aes(x=xx)) +

geom_histogram(data=subset(dat),fill = "red", alpha = 0.4,binwidth = 0.5)
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This is actuall?' a rather useful mixture, it tu Crns OEt such )%ure has a
name and well known properties, it is called the Laplace distribution of
errors.



Instead of using the mean and the vgria,nc,e to summarize it, we should use
the median and the mean absolute deviation as they have better

properties.
Looking at all the gene expression values from a Microarray, one gets a

Histograr

700

distribution like this: = W
which is a very nice example of a Laplace distribution.

Promoter Lengths
Histogram of the 5,735 Saccharomyces cerevisiae promoters used in this study.
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Note:Laplace knew a[lread that the ﬁrror distribution th%t has the
Iéacat,lgn parameter the médian and the scale parameter the mad has
ensity:

1
fry) = 2% exp[—ly — 0l/¢], $>0

This is a §ood example where looking atc'The generative process we can
see why the variance and mean are linked.
The expectation and variance of an AL(0, i, 6) are

EY)=0+pandvar(Y) = 6% + u°

Note the variance is not independent of the mean unless 4 = 0 — the case

of the sKmmetric Lflplace Distribution. This is a feature of the distribution
that makes it useful.

In practical sjtuations, when looking at gene expression in microarray
taxa counts in ?.%SRNA studies, wé wilPsee that the vari nces deperi ‘on
the mean, we will need models that can acomodate for this problem

Laplace’s First Error Distribution
Useful representation:

Y =X - Z, X ~ Exp(l), Z ~ N(,1)

A mixture of Normals whose scale parameters vary from an exponential.

E%rm}gﬁ?oieggggiggnire of different length and so have varying

Here is an example of what one can do with such a model:

Example of use: Parametric Bootstrap for Power

Simulations

It is yery usefyl when we want to design an experiment to know how_well
f16eeect diffe dterent siz he otk

it wi ect rgnces of rent si ef, often calle ect size. Fir
that, we generate data under various null hypotheses that have as many



features similar to the original data:
= Same error distribution (form and moments), with all the different

sources of error incorporated into the study.

=  Vary some underlying tuning parameters, sample sizes or number

of repetitions, numbers of reads,....

Pretend that the data come from a parametric family F'y.

Replace in the generation of 'new’ data, the unknown parameters by Fg.

Now we can generate 3 whole set of simulated d?,?a to find the power of
our analyses at various levels of sample size and effect size.

Power simulation for Microarrays

Model, after renormalization, and eventual variance stabilization.

Mje = M€ + /€Ly, Zi ~ N(0,)

Genes are k, k = 1....n . Estimate the parameters, covariance matrix,

medians, mebdlian absolute deviations. This model is added onto the
variance stabilization model.

One r’Ray w%nt. to chanée the covariance matrix to adjust for the
hypotheses being tested.

Plug th ese IntO a.n Assymetric Multivariate Laplace generator .

Wehcan,com are the number of genes chosen with the parametric model
with a given Covariance structure-as the one we get with the data.

The Poisson Gamma Mixture Model

ount data are often messier than simple Poisson and Binomial
istgibutions serve as buiféing 1f)locks for more sopﬁisticated models called
mixtures.

What’s a Poisson-Gamma mixture model used for?



Overdispersion (in Ecology)

Simplest Mixture Model for Counts

Different evolutionary mutation rates

Throughout Bioinformatics and Bayesian Statistics

Abundance data

Gamma Distribution: two parameters (shape and
scale)

‘7htt //en W|k|ped|a org/ I7|/Gamma distribution

E /en ja.or IZ gamma istribution ,klg mma

tt Tlen:wi |pe éa .org /W| mma_distri utlon eta
|strl£)ut| n, istribution is used t (Ecertaln continuous
variables, owever the ranc?om variables that have a ?rﬂ a dhstrlbutlon
can take on any positive values J'plcal quantltles that follow

distribution aré waiting times and survival times.

I;c is often uEed in Baz'eflan inference to model he variability of the
oisson or Exponential parameters (conjugate amly%

This is not unrelated to why we use it for mixture modeling.
Let’s explore it by simulation and examples:

require(ggplot2)

nr=10000

set.seed(20130607)

outg=rgamma (nr,shape=2,scale=3)

#

p=gplot (outg,geom="histogram" ,binwidth=1)

p


http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Gamma_distribution
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require (MASS)

## avoid spurious accuracy

op = options(digits = 3)

set.seed(123)

x = rgamma (100, shape = 5, rate = 0.1)

fitdistr(x, "gamma")

## shape rate
## 6.4870 0.1365

## (0.8946) (0.0196)

## now do this directly with more control.

fitdistr(x, dgamma, list(shape = 1, rate =

0.1), lower =

0.001)

## shape rate
## 6.4869 0.1365

## (0.8944) (0.0196)

require(ggplot2)
pts=seq(0,max(outg),0.5)
outf=dgamma (pts,shape=3,scale=2)
p=gplot (pts,outf,geom="1line")

p+ theme_ bw(10)
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We are éoing to use this type of variability for the variation in our Poisson
parameters.



Gamma mixture of Poissons: a hierarchical model

This is a two step process:

|.  Generate a whole set of Poisson parameters: 11, 1>, ... 499
from a Gamma(2,3) distribution.

2.  Generate a set of Poisson(4;) random variables.

ng=90

set.seed(1001015)

lambdas=rgamma (ng, shape=2,scale=3)

####Rate is usually the second it is 1/scale

veco=rep(0,ng)

for (j in (1:ng)){
veco[j]=rpois(1l,lambda=lambdas([j]) }

require(vecd)

goodnb=goodfit (veco, "nbinomial")

goodnb



##

## Observed and fitted values for nbinomial distribution
## with parameters estimated by "ML’

##

## count observed fitted

## 0 10 7.673
## 1 6 9.895
## 2 12 10.191
## 3 9 9.613
## 4 9 8.652
## 5 6 7.562
## 6 6 6.479
## 7 6 5.471
## 8 6 4.568
## 9 3 3.782
## 10 2 3.109
## 11 2 2.542
## 12 2 2.067
## 13 2 1.675
## 14 3 1.352
## 15 3 1.088
## 16 1 0.873
## 17 2 0.699

minmiat Stands for the Negative Binomial and is another distribution for

cgunt data. In general it is u_s? o model the number of trials until we
obtain a success in a Binomial (p) experiment.

rnegbin ¢y dnegbin ¢ pnegbin are the Corresponding fU nCtionS.
Fitting a Negative Binomial with cicaice. :



set.seed(123)
x4 = rnegbin(500, mu = 5, theta = 4)

fitdistr(x4, "Negative Binomial")

## size mu
## 4.216 4.945

## (0.504) (0.147)

The Mathematical explanation
The Negative Binomial probability distribution function

r+k—1

dnbinom(k, size = r, prob = p) = < '

)pr(l - p)

This can be interpreted as the probability of waiting to have k failures until
the rth success occurs. Success having probability p

Does it have a Negative Binomial distribution?

We can compate the theoretical fit of the Negative Binomial with the data
using a rootogram.

summary (goodnb)

##

##  Goodness-of-fit test for nbinomial distribution
##

## X~2 df P(> X"2)

## Likelihood Ratio 15.2 15 0.435

goodnb$par



## $size

## [1] 1.67
##

## S$prob

## [1] 0.23

table(veco)

## veco

## 0o 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17

## 10 612 9 9 6 6 6 6 3 2 2 2 2 3 3

1

2




sgrt(Frequency)

0123456789101 M21314151617

Number of Occurrences



cts=0:11
out=dnbinom(cts,size=4,p=0.5)
dfnb=data. frame (counts=cts, freqs=out)

ggplot (data=dfnb, aes(x=counts, y=freqs)) + geom_bar(stat="identity",fill="#DD8888")
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Gamma Mixture of Poissons: the densities
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Theoretically taking a mixture of Poisson(u) variables where
u ~ Gamma(a = k, p) .

The final distribution is the result of a two step process: \ - |. Generate a
Gamma(a, ) distributed number, call it z from density
a
ﬂ a—1 —pz

dgamma(z, a, p) = e

T(@)

\ - 2. Generate a number from the Poisson(z) distribution with parameter
z, call it y.

et

y!

dpois(y, A = z) =

If z only took on integer numbers from 0 to 10 then we would write
PY=y)=PY =ylz=0)P(z=0)+PY =ylz=1P(z=1)

...+ P(Y = ylz = 10)P(z = 10)

It’s noé q?ite that simEIe and we have to write it out as an integral sum
instead of a discrete sum.

Gamma-Poisson is Negative Binomial
We call the distribution of Y the marginal and it is given by
¢ bz ze

b
P(Y =y) = /dgamma(z, a, b)dpois(y, 2)dz = / FAler 2 gy
I'(a) y!

Remembering that ['(a) = (a — 1)!



bu
_ _ y+a—1 —z(b+1)
P(Y=y)= @ =Dl /Z e dz

Now we use that the integral

I
/Zr—le—WZdZ — (l")
w'
SO

Py — _ (y+a-1)! b _(y+a-1 b aq
F=0="0"000 G+ PG+ 1) _< y >(b+1)( -

y
b+1)

giving the negative binomial with size parameter a and probability of

success 1"

Example of use: Gamma Exponential Noise Models (used for PCR)
We will see another exam u a Gamm to generate a mixture, but
T o R RO L S e e

this time error mo Aa sécond |str|bi1t nis
57 onentla Wlt meter generate amma. (See link Gamma-
o)

ti
o?)en |a nc I| nl m n v/pmc/artlcles/PMC3 137271/) useful to model
|se |n experlment 3

Read Noise Modeling

Negative Binomial :hierarchical mixture for reads

In blologlcal con exts such as RNA-seq all;\d mic I count daﬁbthe

ative binomijal distribution arises as a hjerarc |ca mlxture of Poisson
% utlons UH'IIS is due to '91 fact that |# we had technical replicates with

ﬁl € same rea counts, we wou % d see OISSOI’I variation It a glven mean.

wever, the variation among biological replicates and librarySize
dlf?f erences both introduce aCIngtIOH%SOUI’C%S o varlablllty v

To address this, we take the raeans of the Poisson variables to be random
variables themselves having a Gamma distribution with (hyper)parameters

shape r and scale p/(1 — p). We first generate a random mean, 4, for the


http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137271/

Poisson from the Gamma, and then a random variable, &, from the Poisson(4).
The marginal distribution is:

Variance Stabilization

Take for instance different Poisson variables with mean 4;. Their variances

are all different if the y; are different. However, if the square root

transf?rmatlon is applied to each of the variables, then the transformed
variables will have pprOX|mate y constant variance.

More generg Ily, choosing a fformatlon that makes the variance

con tant\;v by usin r series expflnswn ca Ied the delta

met T\ not the comp lete deve opm nt of variance
stabilization in the cor%,(h ext of m| tures but Bohn interested reader t
the sitandard texts in eoretlc statlstlcs S as an one of the orlglna
articles on variance stabilization

Anscombe shovl(fd that there ar éeveral transformations th?t stabilize the
variance of t egative |nom|aT epending on the values o

parameters m and r, where r = 4+ sometimes called the of the Negative

Binomial. For large m and constant m¢, the transformation

inh™! l( > -
Sin —_— - — 1
\' 75

gives a constant variance around %. Whereas for m large and % not
substantially increasing, the following simpler transformation is preferable

.I>|u.) ool w

log(x + ch)

Modeling read counts



If we have technical replicates with the same number of reads s;, we
expect to see Poisson variation with mean y = s;u;, for each gene or taxa
or locus i whose incidence proportion we denote by u;.

Thus the number of reads for the sample j and taxa i would be
K;; ~ Poisson (sju;)

We use the notationeﬂ convention that lower cgse,letters deéignate fj)i)ed
or observed values whereas upper case letters designate randSm variables.

For biological replicates within the same group — such as treatment or
control groups or the same environments — the proportions u; will be
variable between samples.

A flexible mode| that works well for this variability is the Gamma
distribution, as it has two parameters and can be adapted to many
distributional shapes.

Call the two parameters r; and 12; . So that U;; the proportion of taxa i
in sample j is distributed according to Gamma(r;, ll_)—;).

Thus we obtain that the read counts K;; have a Poisson-Gamma mixture
of different Poisson variables. As shown above we can use the Negative
Binomial with parameters (m = u;s;) and ¢; as a satisfactory model of the
variability.

The counts for the gene/taxa i and sample j in condition ¢ having a

Negative Binomial distribution with m. = u;.s; and ¢;. so that the
variance is written

2,2
UicSj + gb,-csj u..

We can estimate the parameters u;. and ¢,;. from the data.

Random Effects



This alPrF“? tion of 3 hierarchical mixture model is equivalent to the
random effects models used in the classical context of analysis of variance.

Applications
Mixtgres occur nf?turally ecause of heterogeneous data, an experiment

may be run by different’labs, use differing technologies.

Th ften differing bindi ities in different parts of th
genome, PCR biases carf occur when different operators lse different
protocols.

The most common problems invo_IKce differ_Fnt distributions because both
e

the means and the variances are different. This requires variance

stabilization to do statistical testing.

Mixture models can often lead us to be able to use datg
are a?tual[!t_used in what is often known as a gengr_fzh_ze
m |

tran ion applied in microarray variance“sta
arLd, Nﬁ-seﬂ nol:rzﬁ'\aﬁi?a ion tFnat wgwill s'gugy i th' in chapter gnd
which asio proves us & in the normalization’of next generation reads in
microbial ecology and Chip-SEQ analysis .

Overexpressed genes

Mainstay in multiple testing when trying to find relevant genes in
microarray ang 1iil?\lA-seq tgranscriptImegc studies &

Jm =pofy + (L =po)f,

Here there are two distributions, usually not Normals, one for the
unexpressed genes (f,) and one for the expressed genes f,. An ideal
situation is when the histogram is bimodal.

Small Note: There is mathematical reason....

It is actually not a mystery wh ixtures are so ubiquitous, there is eyen a
t?\eorem tIIXat says that if the drder in which the observations are made
doesn’t matter, then they are from a mixture....

If we don’t know much about the noise but we know that the order in
which we collect the data doesn’t matter, that is called exchangeability:

}:ransformations
o§arlfthmlc ,

A zing transformagions
e

D(X1,X2,X3,...,X,) = DX 1), Xz2)s X23)s -+ s Xz(n))



For pi any permutation of size n.

If the random variables (X, X», X3, ...,X,) are independent then

n
PX1 = x1,X2 = x2,X3 = x3, ..., Xy = x) = [ | PX1 = x0)P(X2 = 2)P(X3 = x3) ... |
i=1

commutativity of multiplication gives us exchangeability.
The converse is not true, but conditional independence through mixing.
Binary Data Example:

p(1,1,0,0,0,1,0,0) = p(1,0,1,0,0,0,0, 1)

Exchangeable but not independent: Polya’s urn and the restaurant.

tefan lauritzen Lect
fh'?tgl?//vayvu.zsﬁgts.gg(.ggiI</~steffen/teaching/grad/deﬁnetti.pdf)

Wrapup about Mixture Models

Finite Mixture Models
» Mixture of Normals with different means and variances.

» Mixtures of multivariate Normals with different means and covariance

matrices (we’ll study next week).

= Decomposing the mixtures using the EM algorithm.
Common Infinite Mixture Models

= Mixtures of Normals (often with a hierarchical model on the variances).

= Beta-Binomial Mixtures (the p in the Binomial is generated according to
a Beta(a,b) distribution.


http://www.stats.ox.ac.uk/~steffen/teaching/grad/definetti.pdf

= Gamma-Poisson for read counts.
= Gamma-Exponential for PCR.

= Dirichlet-Multinomial (Birthday problem and the Bayesian setting).



