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Why mixture models?
There are two types of mixture models we will discuss: finite and infinite

Simple Examples and computer experiments
Suppose we want two equally likely components, we decompose the
generating process into steps:
Flip a fair coin.

If it comes up heads

Generate a random number from a Normal with mean 1 and variance 0.25.

If it comes up tails

Generate a random number from a Normal with mean 2 and variance 0.25.

This is what the resulting histogram would look like if we did this 10,000
times.



require(ggplot2)

coinflips=as.numeric(runif(10000)>0.5)

table(coinflips)

## coinflips

##    0    1 

## 4972 5028

output=rep(0,10000)

sd1=0.5;sd2=0.5;mean1=1;mean2=3

for (i in 1:10000){

  if (coinflips[i]==0)

  output[i]=rnorm(1,mean1,sd1)

  else

    output[i]=rnorm(1,mean2,sd2)  }

group=coinflips+1

do=data.frame(output)

qplot(output,data=do,geom="histogram",fill=I("red"),binwidth=0.2,alpha=I(0.6))



In fact we can write the density (the limiting curve that the histograms
tend to look like) as

f (x) = (x) + (x)
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where  is the density of the Normal( ) and  is the
density of the Normal( ).

xs=seq(-1,5,length=1000)

dens2=0.5*dnorm(xs,mean=1,sd=0.5)+

      0.5*dnorm(xs,mean=3,sd=0.5)

do=data.frame(xs,dens2)

qplot(xs,dens2,type='l',col=I("blue"),data=do)

f (x) = (x) + (x)
1
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ϕ1 = 1, = 0.25μ1 σ 2 ϕ2
= 2, = 0.25μ2 σ 2



In this case of course the mixture model was extremely visible as the two
distributions don’t overlap, this can happen if we have two very separate
populations, for instance different species of fish whose weights are very



different. However if many cases the separation is not so clear.
Challenge: Here is a histogram generated by two Normals with the same
variances, can you guess the two parameters for these two Normals?

require(ggplot2)

set.seed(1233341)

coinflips=as.numeric(runif(1000)>0.5)

table(coinflips)

## coinflips

##   0   1 

## 495 505

output=rep(0,1000)

sd1=sqrt(0.5)

sd2=sqrt(0.5)

mean1=1

mean2=2

for (i in 1:1000){

  if (coinflips[i]==0)

  output[i]=rnorm(1,mean1,sd1)

  else

    output[i]=rnorm(1,mean2,sd2)

}

group=coinflips+1

dat=data.frame(xx=output,yy=group)

ggplot(dat,aes(x=xx)) + 

    geom_histogram(data=dat,fill = "purple", alpha = 0.2)



Here is the answer: if we color in red the points that were generated from



Here is the answer: if we color in red the points that were generated from
the heads coin flip and blue the one from tails, we can see that the first
normal has a range of about

dat <- data.frame(xx=output,yy = group)

ggplot(dat,aes(x=xx)) + 

    geom_histogram(data=subset(dat,yy == 1),fill = "red", alpha = 0.2) +

    geom_histogram(data=subset(dat,yy == 2),fill = "blue", alpha = 0.2)



The overlapping points are going to be piled up on top of each other in
the final histogram, here is an overlayed plot showing the three histograms



ggplot(dat,aes(x=xx)) + 

    geom_histogram(data=dat,fill = "yellow", alpha = 0.4)+

    geom_histogram(data=subset(dat,yy == 1),fill = "red", alpha = 0.2) +

    geom_histogram(data=subset(dat,yy == 2),fill = "darkblue", alpha = 0.2)



Here we knew who had been generated from which component of the
mixture, often this information is missing, we call the hidden variable a
latent variable.



This book MacLachlan, (2004) provides a complete treatment of the
subject of finite mixtures.

Discovering the hidden class: EM
In the case of simple parametric components, we use a method called the
EM (Expectation-Maximization) algorithm to infer the value of the hidden
variable.
The Expectation-Maximization algorithm is a very popular iterative
procedure. We start with observations  and we augment the data with
an unobserved (latent) cluster variable , which says which group each
observation came.
We are interested in finding the values of  and the unknown parameters
of the underlying densities that make the observed data  the most likely.
We will use the notion of bivariate distribution here, we are going to look
at what the distribution of couples  which can be written:

Suppose we have a fair mixture of two normals with parameters 
,  and  are unknown, we suppose

for now, we know that the standard deviations of both distributions is 1.
For this bivariate distribution we can define a complete joint likelihood, we usually
work with its log

Marginal likelihood for the observed :

Intiatize the parameter  to any value 
E `expectation’ step:

(Y)
U

U
Y

(Y, U)

f (y, u|θ) = f (u|y, θ)f (y|θ)

θ = ( =?, =?, = 1, = 1)μ1 μ2 σ1 σ2 μ1 μ2

loglikeli(θ) = log f (y, u|θ)

y

marglike(θ; Y) = f (Y|θ) = f (y, u|θ)∑
u

θ θ ∗



Use group probabilities under the current model giving  that are
used to compute the expectation

M `maximization’ step:

Estimate distribution parameters by maximizing the log likelihood 
\ This gives a new .

Store cluster probabilities as instance weights .

Stop when improvement is negligible.

# EM algorithm manually, dat is the data

x <- dat

# initial values for parameters

pi1<-0.5; pi2<-0.5

mu1<--0.01 ;mu2<-0.01

sigma1<-sqrt(0.01) ; sigma2<-sqrt(0.02)

loglik<- rep(NA, 1000)

loglik[1]<-0

loglik[2]<-mysum(pi1*(log(pi1)+log(dnorm(dat,mu1,sigma1))))

          +mysum(pi2*(log(pi2)+log(dnorm(dat,mu2,sigma2))))

mysum <- function(x) {

  sum(x[is.finite(x)])

}

logdnorm <- function(x, mu, sigma) {

  mysum(sapply(x, function(x) {logdmvnorm(x, mu, sigma)}))  

}

tau1=0; tau2=0; k=2

p(y, u| )θ ∗

p(u|y, ) log(θ, y, u) = (θ, y, u) = Q(θ, )∑
u

θ∗ Eu|y,θ ∗ θ∗

Q(θ, )θ∗

θ ∗

p(u|y, )θ ∗



# loop

while(abs(loglik[k]-loglik[k-1]) >= 0.00001) {

  # E step

  tau1=pi1*dnorm(dat,mean=mu1,sd=sigma1)/

      (pi1*dnorm(x,mean=mu1,sd=sigma1)+pi2*dnorm(dat,mean=mu2,sd=sigma2))

  tau2=pi2*dnorm(dat,mean=mu2,sd=sigma2)/

      (pi1*dnorm(x,mean=mu1,sd=sigma1)+pi2*dnorm(dat,mean=mu2,sd=sigma2))

  tau1[is.na(tau1)] = 0.5

  tau2[is.na(tau2)] = 0.5

  # M step

  pi1=mysum(tau1)/length(dat)

  pi2=mysum(tau2)/length(dat)

  mu1=mysum(tau1*x)/mysum(tau1)

  mu2=mysum(tau2*x)/mysum(tau2)

  sigma1=mysum(tau1*(x-mu1)̂2)/mysum(tau1)

  sigma2=mysum(tau2*(x-mu2)̂2)/mysum(tau2)

  loglik[k+1]=mysum(tau1*(log(pi1)+logdnorm(x,mu1,sigma1)))+

              mysum(tau2*(log(pi2)+logdnorm(x,mu2,sigma2)))

  k=k+1

}

# compare

library(mixtools)

gm=normalmixEM(x,k=2,lambda=c(0.5,0.5),mu=c(-0.01,0.01),sigma=c(0.01,0.02))

gm$lambda

gm$mu

gm$sigma

gm$loglik

Mixture Modeling Examples for Regressions



The flexmix package allows to cluster and fit regressions to the data at the
same time. The standard M-step FLXMRglm() of FlexMix is an interface to R’s
generalized linear modelling facilities - glm() function.



As a simple example we use artificial data with two latent classes of size
100 each:



with  and prior class probabilities .
We can fit this model in R using the commands

library("flexmix")

data("NPreg")

m1 = flexmix(yn ~ x + I(x̂2), data = NPreg, k = 2)

m1

## 

## Call:

## flexmix(formula = yn ~ x + I(x̂2), data = NPreg, k = 2)

## 

## Cluster sizes:

##   1   2 

## 100 100 

## 

## convergence after 15 iterations

and get a first look at the estimated parameters of mixture component~1
by

parameters(m1, component = 1)

##                   Comp.1

## coef.(Intercept) -0.2098

## coef.x            4.8175

## coef.I(x̂2)       0.0362

## sigma             3.4760

and

Class 1 :

Class 2 :

y = 5x + ϵ
y = 15 + 10x − + ϵx2

ϵ ∼ N(0, 9) = = 0.5π 1 π2



parameters(m1, component = 2)

##                  Comp.2

## coef.(Intercept) 14.717

## coef.x            9.847

## coef.I(x̂2)      -0.968

## sigma             3.480

for component 2. The parameter estimates of both components are close
to the true values. A cross-tabulation of true classes and cluster
memberships can be obtained by

table(NPreg$class, clusters(m1))

##    

##      1  2

##   1 95  5

##   2  5 95

The summary method
summary(m1)

## 

## Call:

## flexmix(formula = yn ~ x + I(x̂2), data = NPreg, k = 2)

## 

##        prior size post>0 ratio

## Comp.1 0.494  100    145 0.690

## Comp.2 0.506  100    141 0.709

## 

## 'log Lik.' -643 (df=9)

## AIC: 1303   BIC: 1333

gives the estimated prior probabilities , the number of observations^
k



gives the estimated prior probabilities , the number of observations
assigned to the corresponding clusters, the number of observations where

 (with a default of ), and the ratio of the latter two
numbers. For well-seperated components, a large proportion of
observations with non-vanishing posteriors  should also be assigned to
the corresponding cluster, giving a ratio close to 1. For our example data
the ratios of both components are approximately 0.7, indicating the
overlap of the classes at the cross-section of line and parabola.

ggplot(NPreg,aes(x,yn)) +geom_point(aes(colour = as.factor(class),shape=as.factor(class)))

π̂ k

> δpnk δ = 10−4

pnk



Zero inflated models



We will see late how we can try to tease out these clusters and assign a
group to many of the observations without knowing the distributions, in
the nonparametric setting this is called clustering.

Infinite Mixtures
Sometimes mixtures can be useful without us having to find who came
from which distribution, this is especially the case when we have (almost)
as many different distributions as observations, let’s look at a case where
the total distribution can still be studied, even if we don’t know where
each member came from.
We decomposed the mixture model into a two step process, we extend
the description to cases where there could be many more components in
the model, suppose that instead of flipping a coin, we picked a ball from an
urn with the mean and variances written on it, if half the balls were
marked  and the other half  this
would actually be equivalent to our original mixture.
However this gives us much more freedom, all the balls could have
different parameter-numbers on them and these numbers could actually
be drawn at random from a special distribution. This is often called a
hierarchical model because it is a two step process where one step has to
be done before the next: generate the numbers on the `parameter balls’,
draw a ball, then draw a random number according to that parametric
distribution.
By using this generating mixture we can go as far as generating a new
parameter for all the picks from our distribution.
Infinite Mixture of Normals

= π (y) + (1 − π) (y)fzero I{0} fcount

( = 1, = 0.1)μ1 σ 2 ( = 2, = 0.1)μ1 σ 2



theta=-0.1

mu=0.15

sigma=0.43

#Choose some Wis

W=rexp(10000,1)

#Choose some Normals

output=rnorm(10000,theta+mu*W,sigma*W)

dat = data.frame(xx=output)

# hist(output,30)

ggplot(dat,aes(x=xx)) + 

    geom_histogram(data=subset(dat),fill = "red", alpha = 0.4,binwidth = 0.5) 



This is actually a rather useful mixture, it turns out such a mixture has a
name and well known properties, it is called the Laplace distribution of
errors.



Instead of using the mean and the variance to summarize it, we should use
the median and the mean absolute deviation as they have better
properties.
Looking at all the gene expression values from a Microarray, one gets a

distribution like this: 
which is a very nice example of a Laplace distribution.
Promoter Lengths

Note:Laplace knew already that the error distribution that has the



Note:Laplace knew already that the error distribution that has the
location parameter the median and the scale parameter the mad has
density:

This is a good example where looking at the generative process we can
see why the variance and mean are linked.
The expectation and variance of an AL  are

Note the variance is not independent of the mean unless  – the case
of the symmetric Laplace Distribution. This is a feature of the distribution
that makes it useful.
In practical situations, when looking at gene expression in microarrays,
taxa counts in 16sRNA studies, we will see that the variances depend on
the mean, we will need models that can acomodate for this problem.

Laplace’s First Error Distribution
Useful representation:

A mixture of Normals whose scale parameters vary from an exponential.
The probe sequences are of different length and so have varying
hybridization precisions.
Here is an example of what one can do with such a model:
Example of use: Parametric Bootstrap for Power
Simulations
It is very useful when we want to design an experiment to know how well
it will detect differences of different sizes, often called the effect size. Fir
that, we generate data under various null hypotheses that have as many

(y) = exp[−|y − θ|/ϕ], ϕ > 0fY
1

2ϕ

(θ, μ, σ)

E(Y) = θ + μ and var(Y) = +σ 2 μ2

μ = 0

Y = ⋅ Z, X ∼ Exp(1), Z ∼ N(0, 1)X‾‾√



features similar to the original data:

Same error distribution (form and moments), with all the different
sources of error incorporated into the study.

Vary some underlying tuning parameters, sample sizes or number
of repetitions, numbers of reads,….

Pretend that the data come from a parametric family .

Replace in the generation of `new’ data, the unknown parameters by .

Now we can generate a whole set of simulated data to find the power of
our analyses at various levels of sample size and effect size.

Power simulation for Microarrays

Model, after renormalization, and eventual variance stabilization.

Genes are . Estimate the parameters, covariance matrix,
medians, median absolute deviations. This model is added onto the
variance stabilization model.
One may want to change the covariance matrix to adjust for the
hypotheses being tested.
Plug these into an Assymetric Multivariate Laplace generator.
We can compare the number of genes chosen with the parametric model
with a given covariance structure as the one we get with the data.

The Poisson Gamma Mixture Model
Count data are often messier than simple Poisson and Binomial
distributions serve as building blocks for more sophisticated models called
mixtures.
What’s a Poisson-Gamma mixture model used for?

F θ

F
θ̂

= + , ∼  (0, Σ)mjk mkϵk ϵk‾‾√ Z kj Z kj

k, k = 1....n



Overdispersion (in Ecology)

Simplest Mixture Model for Counts

Different evolutionary mutation rates

Throughout Bioinformatics and Bayesian Statistics

Abundance data

Gamma Distribution: two parameters (shape and
scale)

%http://en.wikipedia.org/wiki/Gamma_distribution
(http://en.wikipedia.org/wiki/Gamma_distribution) wikigamma
(http://en.wikipedia.org/wiki/Gamma_distribution) Like the Beta
distribution, the Gamma distribution is used to model certain continuous
variables, however the random variables that have a Gamma distribution
can take on any positive values, typical quantities that follow this
distribution are waiting times and survival times.
It is often used in Bayesian inference to model the variability of the
Poisson or Exponential parameters (conjugate family).
This is not unrelated to why we use it for mixture modeling.
Let’s explore it by simulation and examples:

require(ggplot2)

nr=10000

set.seed(20130607)

outg=rgamma(nr,shape=2,scale=3)

#

p=qplot(outg,geom="histogram",binwidth=1)

p

http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Gamma_distribution


Note on fitting distributions:



require(MASS)

## avoid spurious accuracy

op = options(digits = 3)

set.seed(123)

x = rgamma(100, shape = 5, rate = 0.1)

fitdistr(x, "gamma")

##    shape     rate 

##   6.4870   0.1365 

##  (0.8946) (0.0196)

## now do this directly with more control.

fitdistr(x, dgamma, list(shape = 1, rate = 0.1), lower = 0.001)

##    shape     rate 

##   6.4869   0.1365 

##  (0.8944) (0.0196)

require(ggplot2)

pts=seq(0,max(outg),0.5)

outf=dgamma(pts,shape=3,scale=2)

p=qplot(pts,outf,geom="line")

p+ theme_bw(10)



We are going to use this type of variability for the variation in our Poisson
parameters.



Gamma mixture of Poissons: a hierarchical model

This is a two step process:

1. Generate a whole set of Poisson parameters: 
from a Gamma(2,3) distribution.

2. Generate a set of Poisson( ) random variables.

ng=90

set.seed(1001015)

lambdas=rgamma(ng,shape=2,scale=3)

####Rate is usually the second it is 1/scale

veco=rep(0,ng)

for (j in (1:ng)){

  veco[j]=rpois(1,lambda=lambdas[j]) }

require(vcd)

goodnb=goodfit(veco,"nbinomial")

goodnb  

, , . . .λ1 λ2 λ90

λi



## 

## Observed and fitted values for nbinomial distribution

## with parameters estimated by ̀ML' 

## 

##  count observed fitted

##      0       10  7.673

##      1        6  9.895

##      2       12 10.191

##      3        9  9.613

##      4        9  8.652

##      5        6  7.562

##      6        6  6.479

##      7        6  5.471

##      8        6  4.568

##      9        3  3.782

##     10        2  3.109

##     11        2  2.542

##     12        2  2.067

##     13        2  1.675

##     14        3  1.352

##     15        3  1.088

##     16        1  0.873

##     17        2  0.699

nbinomial stands for the Negative Binomial and is another distribution for
count data. In general it is used to model the number of trials until we
obtain a success in a Binomial (p) experiment.
rnegbin, dnegbin, pnegbin are the corresponding functions.
Fitting a Negative Binomial with fitdistr:



set.seed(123)

x4 = rnegbin(500, mu = 5, theta = 4)

fitdistr(x4, "Negative Binomial")

##    size     mu  

##   4.216   4.945 

##  (0.504) (0.147)

The Mathematical explanation
The Negative Binomial probability distribution function

This can be interpreted as the probability of waiting to have k failures until
the rth success occurs. Success having probability 

Does it have a Negative Binomial distribution?
We can compate the theoretical fit of the Negative Binomial with the data
using a rootogram.

summary(goodnb)

## 

##   Goodness-of-fit test for nbinomial distribution

## 

##                   X̂2 df P(> X̂2)

## Likelihood Ratio 15.2 15    0.435

goodnb$par

dnbinom(k, size = r, prob = p) = ( ) (1 − p
r + k − 1

k
pr )k

p



## $size

## [1] 1.67

## 

## $prob

## [1] 0.23

table(veco)

## veco

##  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 

## 10  6 12  9  9  6  6  6  6  3  2  2  2  2  3  3  1  2





cts=0:11

out=dnbinom(cts,size=4,p=0.5)

dfnb=data.frame(counts=cts,freqs=out)

ggplot(data=dfnb, aes(x=counts, y=freqs)) + geom_bar(stat="identity",fill="#DD8888")



Gamma Mixture of Poissons: the densities



Theoretically taking a mixture of Poisson( ) variables where 
.

The final distribution is the result of a two step process: \ - 1. Generate a
Gamma  distributed number, call it  from density

\ - 2. Generate a number from the Poisson( ) distribution with parameter 
, call it .

If  only took on integer numbers from 0 to 10 then we would write

It’s not quite that simple and we have to write it out as an integral sum
instead of a discrete sum.

Gamma-Poisson is Negative Binomial

We call the distribution of  the marginal and it is given by

Remembering that 

μ
μ ∼ Gamma(α = k, β)

(α, β) z

dgamma(z, α, β) =
β α

Γ(α)
zα−1e−βz

z
z y

dpois(y, λ = z) =
zye−z

y!

z

P(Y = y) = P(Y = y|z = 0)P(z = 0) + P(Y = y|z = 1)P(z = 1)

… + P(Y = y|z = 10)P(z = 10)

Y

P(Y = y) = ∫ dgamma(z, a, b)dpois(y, z)dz = ∫ dz
ba

Γ(a)
za−1e−bz zye−z

y!

Γ(a) = (a − 1)!

P(Y = y) = ∫ dz
ba

y+a−1 −z(b+1)



Now we use that the integral

so

giving the negative binomial with size parameter  and probability of
success .

Example of use: Gamma Exponential Noise Models (used for PCR)

We will see another example of using a Gamma to generate a mixture, but
this time for the error model for PCR where the second distribution is
exponential with the parameter generated by a Gamma. (See link Gamma-
Exponential Noise Models
(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137271/) useful to model
noise in PCR experiments.)

Read Noise Modeling
Negative Binomial :hierarchical mixture for reads

In biological contexts such as RNA-seq and microbial count data the
negative binomial distribution arises as a hierarchical mixture of Poisson
distributions. This is due to the fact that if we had technical replicates with
the same read counts, we would see Poisson variation with a given mean.
However, the variation among biological replicates and library size
differences both introduce additional sources of variability.

To address this, we take the means of the Poisson variables to be random
variables themselves having a Gamma distribution with (hyper)parameters
shape  and scale . We first generate a random mean, , for the

P(Y = y) = ∫ dz
ba

(a − 1)!y!
zy+a−1e−z(b+1)

∫ dz =zr−1 e−wz Γ(r)
wr

P(Y = y) = = ( )( (1 −
(y + a − 1)!
(a − 1)!y!

ba

(b + 1 (b + 1)a )y
y + a − 1

y
b

b + 1
)a b

b + 1
)y

a
b

b+1

r p/(1 − p) λ

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137271/


Poisson from the Gamma, and then a random variable, , from the Poisson( ).
The marginal distribution is:

Variance Stabilization

Take for instance different Poisson variables with mean . Their variances
are all different if the  are different. However, if the square root
transformation is applied to each of the variables, then the transformed
variables will have approximately constant variance.
More generally, choosing a transformation that makes the variance
constant is done by using a Taylor series expansion, called the delta
method. We will not give the complete development of variance
stabilization in the context of mixtures but point the interested reader to
the standard texts in Theoretical statistics such as and one of the original
articles on variance stabilization.
Anscombe showed that there are several transformations that stabilize the
variance of the Negative Binomial depending on the values of the
parameters  and , where , sometimes called the of the Negative

Binomial. For large  and constant , the transformation

gives a constant variance around . Whereas for  large and  not
substantially increasing, the following simpler transformation is preferable

Modeling read counts

k λ

μi
μi

m r r = 1
ϕ

m mϕ

sinh−1 ( − )
1
ϕ

1
2

x + 3
8

−1
ϕ

3
4

‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾

⎷


1
4 m 1

ϕ

log(x + )
1

2ϕ



If we have technical replicates with the same number of reads , we
expect to see Poisson variation with mean , for each gene or taxa
or locus  whose incidence proportion we denote by .

Thus the number of reads for the sample  and taxa  would be

We use the notational convention that lower case letters designate fixed
or observed values whereas upper case letters designate random variables.
For biological replicates within the same group – such as treatment or
control groups or the same environments – the proportions  will be
variable between samples.
A flexible model that works well for this variability is the Gamma
distribution, as it has two parameters and can be adapted to many
distributional shapes.
Call the two parameters  and . So that  the proportion of taxa 

in sample  is distributed according to Gamma .

Thus we obtain that the read counts  have a Poisson-Gamma mixture
of different Poisson variables. As shown above we can use the Negative
Binomial with parameters  and  as a satisfactory model of the
variability.
The counts for the gene/taxa  and sample  in condition  having a
Negative Binomial distribution with  and  so that the
variance is written

We can estimate the parameters  and  from the data.

Random Effects

sj

μ = sj ui

i ui

j i

∼  Poisson ( )K ij sj ui

ui

ri
pi

1−pi
U ij i

j ( , )ri
pi

1−pi

K ij

(m = )uisj ϕi

i j c
=mc uicsj ϕic

+ .uicsj ϕics2
j u2

ic

uic ϕic



This application of a hierarchical mixture model is equivalent to the
random effects models used in the classical context of analysis of variance.
Applications
Mixtures occur naturally because of heterogeneous data, an experiment
may be run by different labs, use differing technologies.
There are often differing binding propensities in different parts of the
genome, PCR biases can occur when different operators use different
protocols.
The most common problems involve different distributions because both
the means and the variances are different. This requires variance
stabilization to do statistical testing.
Mixture models can often lead us to be able to use data transformations
are actually used in what is often known as a generalized logarithmic
transformation applied in microarray variance stabilizing transformations
and RNA-seq normalization that we will study in depth in chapter 7 and
which also proves useful in the normalization of next generation reads in
microbial ecology and Chip-SEQ analysis .
Overexpressed genes
Mainstay in multiple testing when trying to find relevant genes in
microarray and RNA-seq transcriptomic studies

Here there are two distributions, usually not Normals, one for the
unexpressed genes ( ) and one for the expressed genes . An ideal
situation is when the histogram is bimodal.
Small Note: There is mathematical reason….
It is actually not a mystery why mixtures are so ubiquitous, there is even a
theorem that says that if the order in which the observations are made
doesn’t matter, then they are from a mixture….
If we don’t know much about the noise but we know that the order in
which we collect the data doesn’t matter, that is called exchangeability:
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For  any permutation of size .

If the random variables  are independent then

commutativity of multiplication gives us exchangeability.
The converse is not true, but conditional independence through mixing.
Binary Data Example:

Exchangeable but not independent: Polya’s urn and the restaurant.
Stefan Lauritzen Lecture
(http://www.stats.ox.ac.uk/~steffen/teaching/grad/definetti.pdf)

Wrapup about Mixture Models
Finite Mixture Models

Mixture of Normals with different means and variances.

Mixtures of multivariate Normals with different means and covariance
matrices (we’ll study next week).

Decomposing the mixtures using the EM algorithm.

Common Infinite Mixture Models

Mixtures of Normals (often with a hierarchical model on the variances).

Beta-Binomial Mixtures (the p in the Binomial is generated according to
a Beta(a,b) distribution.
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p(1, 1, 0, 0, 0, 1, 0, 0) = p(1, 0, 1, 0, 0, 0, 0, 1)

http://www.stats.ox.ac.uk/~steffen/teaching/grad/definetti.pdf


Gamma-Poisson for read counts.

Gamma-Exponential for PCR.

Dirichlet-Multinomial (Birthday problem and the Bayesian setting).


