Lecture 2: Descriptive statistics, normalizations & testing

What do we need to know about a microbiome to understand it?

Scope-General	Scope-Specific	Description
	Reporting (Minimum information)	Documentation for publication or data deposition
Experiment description	Data exchange & modeling	Communication between organizations and tools
	Terminology	Ontologies and CV's to describe experiments or data
Experiment execution	Physical standards	Reference materials, spike-in controls
	Data analysis & quality metrics	Analyze, compare, QA/QC experimental results

Acronym	Full name	Domain	Organization
	Core Information for Metabolomics		
CIMR	Reporting	Metabolomics	MSI
	Minimum Information about a		
MIAME	Microarray Experiment	Transcriptomics	MGED
	Minimum Information about a		
MIAPE	Proteomics Experiment	Proteomics	HUPO-PSI
	Minimum Information about a		
MIGS-MIMS	Genome/Metagenome Sequence	Genomics	GSC
	Minimum Information about a		
MIMIx	Molecular Interaction eXperiment	Proteomics	HUPO-PSI
	Minimal Metagenome Sequence		
MINIMESS	Analysis Standard	Metagenomics	GSC
	Minimum Information about a	Genomics, Transcriptomics	
	high-throughput Nucleotide	(UHTS)	
MINSEQE	Sequencing Experiment		MGED
	Minimum Information Specification		
	For In Situ Hybridization and		
	Immunohistochemistry		
MISFISHIE	Experiments	Transcriptomics	MGED

MIxS

- The GSC family of minimum information standards (checklists) – Minimum Information about any (x) Sequence (MIxS)
- MIGS genomes
- MIMS metagenomes
- MIMARKS marker genes
- 15 additional environmental package

Species richness

- Suppose we observe a community that can contain up to k 'species'.
- The relative proportions of the species are P = {p₁, ..., p_k}.
- Richness is computed as
 R = 1(p₁) + 1(p₂) + ... + 1(p_k),
 where 1(.) is an indicator function, i.e. 1(x) = 1 if p_i≠0, and 0 otherwise.
- Higher R means greater diversity
- Very dependent upon depth of sampling and sensitive to presence of rare species

Rarefaction curves

- Note: rarefication as a means for normalization is from statistical standpoint a bad idea. Don't throw away information!
- Rarefaction curves are not the same!
- Useful to assess sensitivity of sample size to observed alpha-diversity estimates.
- Idea:
 - Let N_1 , ..., N_K be a set of numbers $N_i < N_{i+1}$;
 - Let $n^\prime_{\ ij}{}^{(k)}$ be abundance of taxon i in sample j subsampled to N_k total counts per sample;
 - Estimate average alpha diversity for each N_k over a several repeated subsamplings;
 - Plot the average alpha diversity as a function of sample size.

19

Shannon index

- Suppose we observe a community that can contain up to k 'species'.
- The relative proportions of the species are P = {p₁, ..., p_k}.
- Shannon index is related to the notion of information content from information theory. It roughly represents the amount of information that is available for the distribution of P.
- When $p_i = p_j$, for all i and j, then we have no information about which species a random draw will result in. As the inequality becomes more pronounced, we gain more information about the possible outcome of the draw. The Shannon index captures this property of the distribution.
- Shannon index is computed as
 S_k= - p₁log₂p₁ - p₂log₂p₂ - ... - p_klog₂p_k
 Note as p_i → 0, log₂p_i → -∞, we therefore define p_ilog₂p_i = 0.
- Higher S_k means higher diversity

24

0.5

Simpson index

- Suppose we observe a community that can contain up to k 'species'.
- The relative proportions of the species are P = {p₁, ..., p_k}.
- Simpson index is the probability of resampling the same specie on two consecutive draws with replacement.
- Suppose on the first draw we picked specie i, this event has probability p_i, hence the probability of drawing that species twice is p_i*p_i.
- Simpson index is thus computed as $D=1-(p_1^2+p_2^2+...+p_k^2)$
- D = 0 means no diversity (1 species is completely dominant)
- D = 1 means complete diversity

Hypotheses

- Are **precise** statements that are amenable to being proven false using data.
- *Null hypothesis*: a proposition that corresponds to default position. ("Nothing special is happening")
- Alternative hypothesis: a proposition that describes a non default outcome ("Something interesting is going on")
- The inference is obtained by rejecting the Null hypothesis. Null hypothesis can never be confirmed by the data, nor does it have to be!

Flow of statistical inference under hypothesis testing

- Define a test statistic that evaluates evidence against the Null Hypothesis;
 - What is a good statistic to compare the averages of two samples: x1, ..., xN and y1, ..., yM? What is the null hypothesis here?
- Determine the distribution of the test statistic under the Null Hypothesis;
 - Options here:
 - Asymptotic properties of the statistic;
 - Monte Carlo simulations: bootstrap, permutation, ...
 - How would the distribution of statistic above look like under the Null?
- Calculate the test statistic value in the observed data;
- Compare the observed test statistic to the distribution of the statistic, when the null hypothesis is true.
 - If the probability of observing a statistic as extreme or more is small enough (P<0.05?), reject the null hypothesis.

- If the Null Hypothesis was in fact true a *statistic,* used to perform the test, would follow a certain distribution: the *null distribution*.
- P-value is the tail probability under the null distribution.

Connection with predic	Clivity				
	Sample 1 Sa	mnle 2 R	anks 1 Ra	nks 7	
 Mann-Whitney U-statistic calculation: 	0 135	2 680	8	1	
 Convert the observations to ranks 	-0.907	1.078	18	2	
 Compute the sum of ranks in each sample, B, and B 	-0.801	0.080	16	9	
• $U_1 = R_1 - n_1(n_1 + 1)/2$	0.452	0.493	6	5	
• $U_2 = R_2 - n_2(n_2 + 1)/2$	-0.523	0.010	15	11	
• $U = \min(U_1, U_2)$	0.075	-0.322	10	13	
• One can show that U statistic is	1.038	-0.370	3	14	
equivalent to AUC. AUC = $U/(n_1 n_2)$	-1.140	0.633	19	4	
• ALIC area under receiver operator	-2.308	-0.020	20	12	
characteristic (ROC) curve, measures how	-0.808	0.368	17	7	
well we can distinguish one sample from	Ra	nk Sums	132	78	
another. AUC = 0.5 means predictivity no	U		77	23	
better than random, AUC = 1.0 perfect	Us	statistic	23		
predictivity.	AU	IC	0.77	0.23	

Kruskal-Wallis one-way analysis of variance (more than two samples/groups)

• Assumptions:

- Independent observations that follow distribution with the same shape and scale
- Observations can be ordered with respect to each other
- Null hypothesis: The location (median) of all the groups is the same.
- Alternative hypothesis: Location for at least one group is different from location of at least one other group
- Example: Is the abundance of a taxon different in STAT/control over 3 sampled time points?
- In R: kruskal.test

Model Uncertainty in NGS Count Data

FWER: Family-wise error rate

	# not- rejected	# rejected	Total
# true null hypotheses	U	V	m ₀
# non-true null hypotheses	т	S	m-m ₀
Total	m-R	R	m

FWER control methods adjust the significance of each individual test to ensure overall significance at given α .

FWER result in more stringent tests.

- Suppose we perform m tests (e.g. m taxa are tested for association with antibiotic treatment)
- The number of true null hypotheses is unknown m₀
- V is false positive rate (Type I error)
- T is false negative rate (Type II error)
- We observe R, but S, T, U, V are unobserved
- FWER = $Pr(V \ge 1)$

Example: Bonferroni correction

- To ensure overall significance at a given α , one performs each individual test at $\alpha' = \alpha/m$
- Very stringent, results in loss of power (increase in Type II error)

FDR: false discovery rate Modifies the idea of controlling Total rejected rejected Type I error, to instead control the # true null rate at which type I errors do occur U v m_0 hypotheses FDR is the expected value of V/R # non-true null Т S m-m₀ hypotheses Methods for FDR control • Benjamini–Hochberg Total m-R R m • Assumes tests are independent • Benjamini-Hochberg-Yekutieli Assumes that tests are uniformly correlated: Positively correlated: if one test has low p-value, other tests are *more* likely to also be significant Negatively correlated: if one test has low p-value, other tests are *less* likely to be significant 48

FDR in R

- FDR is implemented in R as a p-value adjustment procedure.
- Input: p-values for a set of univariate tests
- Output: p-values that are adjusted to FDR
- E.g. 0.05 adjusted p-value means that expected rate of false positives is 0.05 for tests significant at that adjusted level
- •p.adjust
 - Methods:
 - method = 'fdr': Benjamini-Hochberg
 - method = 'BY': Benjamini-Hochberg-Yekutieli

