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Lecture	2:	Descriptive	statistics,	
normalizations	&	testing

What	do	we	need	to	know	about	
a	microbiome	to	understand	it?



7/9/18

2

Scope	of	Bioinformatics/Omics	data	standards

Scope-General Scope-Specific Description

Experiment 
description

Reporting (Minimum 
information)

Documentation for publication or 
data deposition

Data exchange & modeling
Communication between organizations 
and tools

Terminology
Ontologies and CV’s to describe experiments 
or data

Experiment 
execution

Physical standards Reference materials, spike-in controls
Data analysis & 
quality metrics

Analyze, compare, QA/QC experimental 
results

Existing	reporting	standards	for	Omics
Acronym Full name Domain Organization

CIMR
Core Information for Metabolomics

Metabolomics MSIReporting

MIAME
Minimum Information about a

Transcriptomics MGEDMicroarray Experiment

MIAPE
Minimum Information about a

Proteomics HUPO-PSIProteomics Experiment

MIGS-MIMS
Minimum Information about a

Genomics GSCGenome/Metagenome Sequence

MIMIx
Minimum Information about a

Proteomics HUPO-PSIMolecular Interaction eXperiment

MINIMESS
Minimal Metagenome Sequence

Metagenomics GSCAnalysis Standard

MINSEQE

Minimum Information about a Genomics, Transcriptomics

MGED
high-throughput Nucleotide (UHTS)
Sequencing Experiment

MISFISHIE

Minimum Information Specification

Transcriptomics MGED

For In Situ Hybridization and
Immunohistochemistry
Experiments
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MIxS
• The	GSC	family	of	
minimum	information	
standards	(checklists)	–
Minimum	Information	
about	any	(x)	Sequence	
(MIxS)
• MIGS	– genomes	
• MIMS	– metagenomes	
• MIMARKS	– marker	
genes
• 15	additional	
environmental	packages

The	minimum	information	about	a	genome	
sequence	(MIGS-MIMS)	specification

http://gensc.org
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What	does	the	number	of	sequences	
tell	us	about	the	physical	
characteristics	of	the	microbiomes?

From	sequences	to	OTU/ASV	table

Sequencing

Sample	1 Sample	2 ... Sample N

Abundances	of	each	
microbial	taxon	
in	each	of	the	
N	samples

8
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Number	of	reads	per	sample

9

barplot(sort(sample_sums(mb), decreasing = T), 
names.arg = NA, log="y")

Normalizing	OTU/ASV	tables	for	sequencing	
effort
Raw	Counts Proportions

Sample	1 ... Sample N

n11 n1N
n21 n2N
n31 n3N
n41 n4N
n51 n5N
n61 n6N
n71 n7N
n.1 n.1

pij =	nij/n.j

Sample	1 ... Sample N

p11 p1N
p21 p2N
p31 p3N
p41 p4N
p51 p5N
p61 p6N
p71 p7N
1 1

10
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Potential	problem	with	relative	abundance

April 28, 2015::NYUBiological Networks
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Total sum 
Normalization

   Absolute Abundance (1) 

Compositional Artifacts Mask Underlying Correlation

11

Negative	correlation	of	the	relative	
abundances
• The	proportions	are	negatively	correlated	by	design.
• If	one	(or	more)	OTUs/ASVs	were	to	increase	in	absolute	abundance,	
the	relative	abundances	of	all	others	will	decrease	to	accommodate	
the	additive	constraint.

12
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Compositional	data	analysis:	log	ratios

• Main	idea:	ratios	of	absolute	and	compositional	data	are	preserved

• log $%
$&
= log (%/*

(&/*
= log (%

(&
,

• Where	
• 𝑀 = 𝑡𝑜𝑡𝑎𝑙	𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦	𝑠𝑖𝑧𝑒
• i,	j	=	microbe

• More	details	is	Aitchison,	J.	(1986).	The	statistical	analysis	of	
compositional	data.

13

Other	normalizations

• Normalized	by	1	component,	nd
• 𝑦:; = log <%&

<=&
= log 𝑛:; − log 𝑛?;

• ndj >	0	for	all	d
• Assuming	the	true	abundance	of	d	is	the	same	across	all	samples	

• Normalized	by	geometric	mean	(centered)
• 𝑦:; = log	( <%&

A <B&,…,<E&
= log 𝑛:; − log	(𝑔 𝑛G;, … , 𝑛H; )

• 𝑔 𝑛G;, … , 𝑛H; = ∏ 𝑛:;H
:KG

G/H

• Note:	log[0]	->	-∞;	so	often	we	add	‘pseudo-counts’	before	these	
transformations.

14
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CLR:	Centered	Log-ratio	transformation

• 𝑐𝑙𝑟 𝑥 = log $
A($)

• 𝑔 𝑥 = 𝑥G𝑥N …𝑥OP

• Transformed	data	are	
unconstrained	in	N-1	dimensions

15

April 28, 2015::NYUBiological Networks

Compositional Data Analysis: Data 
Transformations

Aitchison, J. (1986). The 
statistical analysis of 
compositional data. London; 
New York: Chapman and Hall.

Centered Log-ratio:

Compositional data CLR transformed data

Transformed data are in an unconstrained (D-1)-Euclidean space

April 28, 2015::NYUBiological Networks

Compositional Data Analysis: Data 
Transformations

Aitchison, J. (1986). The 
statistical analysis of 
compositional data. London; 
New York: Chapman and Hall.

Centered Log-ratio:

Compositional data CLR transformed data

Transformed data are in an unconstrained (D-1)-Euclidean space

Why	is	microbiome	diversity	
important?	
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Describing	microbiome	community	is	alike	to	
taking	a	demographic	census

• How	many	professions	are	
represented?
• How	well	represented	are	the	
different	professions?
• Are	some	professions	more	
popular?

Town1 ... TownN

carpenter p11 p1N
banker p21 p2N
student p31 p3N
teacher p41 p4N
doctor p51 p5N
police p61 p6N
chef p71 p7N

1 1

17

Alpha	diversity	definition(s)

• Alpha	diversity	describes	the	diversity	of	a	single	community	
(specimen).
• In	statistical	terms,	it	is	a	scalar	statistic	computed	for	a	single	
observation	(column)	that	represents	the	diversity	of	that	
observation.
• There	are	many	statistics	that	can	describe	diversity:	e.g.	taxonomical	
richness,	evenness,	dominance,	etc.	

18
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Species	richness

• Suppose	we	observe	a	community	that	can	contain	up	to	k	‘species’.	
• The	relative	proportions	of	the	species	are	P	=	{p1,	…,	pk}.
• Richness	is	computed	as

R	=	1(p1)	+	1(p2)	+	…	+	1(pk) ,
where	1(.)	is	an	indicator	function,	i.e.	1(x)	=	1	if	pi≠0,	and	0	otherwise.

• Higher	R	means	greater	diversity
• Very	dependent	upon	depth	of	sampling	and	sensitive	to	presence	of	
rare	species

19

Rarefaction	curves

• Note:	rarefication	as	a	means	for	normalization	is	from	statistical	
standpoint	a	bad	idea.	Don’t	throw	away	information!
• Rarefaction	curves	are	not	the	same!
• Useful	to	assess	sensitivity	of	sample	size	to	observed	alpha-diversity	
estimates.
• Idea:	

• Let	N1,	…,	NK be	a	set	of	numbers	Ni <	Ni+1;
• Let	n’ij(k) be	abundance	of	taxon	i in	sample	j	subsampled	to	Nk total	counts	per	
sample;

• Estimate	average	alpha	diversity	for	each	Nk over	a	several	repeated	subsamplings;
• Plot	the	average	alpha	diversity	as	a	function	of	sample	size.

20



7/9/18

11

Rarefactions

Cho,	I.,	Meth,	BA.,	Nondorf,	L.,	Li,	K.,	Alekseyenko,	AV.,	Blaser,	MJ.	"Subtherapeutic antibiotics	alter	the	murine	colonic	microbiome
and	early	life	adiposity",	Nature	488,	621	-- 626	(30	August	2012). 21

Chao1	index

• Species	richness	index	is	often	too	sensitive	to	depth	of	sampling,
• Chao1	index	overcomes	this	problem	by	applying	a	correction

• 𝑅R = 𝑆TUV + (
XBY

NXY
),

• Where	𝑓G is	the	number	of	taxa	with	a	single	observation	(singletons),	
𝑓N is	the	number	of	taxa	with	exactly	two	observations.
• If	a	sample	contains	a	lot	of	singleton	taxa,	then	there	is	a	greater	
chance	that	this	sample	is	undersampled.
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Shannon	index
• Suppose	we	observe	a	community	that	can	contain	up	to	k	
‘species’.	
• The	relative	proportions	of	the	species	are	P	=	{p1,	…,	pk}.
• Shannon	index	is	related	to	the	notion	of	information	content	
from	information	theory.	It	roughly	represents	the	amount	of	
information	that	is	available	for	the	distribution	of	P.	
• When	pi =	pj,	for	all	i and	j,	then	we	have	no	information	about	
which	species	a	random	draw	will	result	in.	As	the	inequality	
becomes	more	pronounced,	we	gain	more	information	about	
the	possible	outcome	of	the	draw.	The	Shannon	index	captures	
this	property	of	the	distribution.	
• Shannon	index	is	computed	as

Sk=	– p1log2p1 – p2log2p2 – …	– pklog2pk
Note	as	pi	è0,	log2pi	è –∞,	we	therefore	define pilog2pi	=	0.

• Higher	Sk means	higher	diversity

23

From	Shannon	to	Evenness

• Shannon	index	for	a	community	of	k	species	has	a	maximum	at	log2k
• We	can	make	different	communities	more	comparable	if	we	
normalize	by	the	maximum
• Evenness	index	is	computed	as

Ek=Sk/log2k

• Ek=1	means	total	evenness

24
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Simpson	index

• Suppose	we	observe	a	community	that	can	contain	up	to	k	‘species’.	
• The	relative	proportions	of	the	species	are	P	=	{p1,	…,	pk}.
• Simpson	index	is	the	probability	of	resampling	the	same	specie	on	two	
consecutive	draws	with	replacement.
• Suppose	on	the	first	draw	we	picked	specie	i,	this	event	has	probability	pi,	
hence	the	probability	of	drawing	that	species	twice	is	pi*pi.
• Simpson	index	is	thus	computed	as

D=1	– (p12 +	p22 +	…	+	pk2)
• D	=	0	means	no	diversity	(1	species	is	completely	dominant)
• D	=	1	means	complete	diversity

25

Phylogenetic	Diversity	(Faith’s	D)

• Faith	(Biological	Conservation		
1992,	61,		1-10)	considered	the	
problem	of	selecting	species	for	
conservation	so	as	to	preserve	
diversity.

• Faith	defines	PD	(phylogenetic	
diversity)	as	the	sum	of	all	the	
branch	lengths.	PD	is	analogous	
to	total	information	in	the	tree.

• The	marginal	contribution	of	a	tip	
x	is	then	mini,j(Dx,i +	Dx,j – Di,j).	
Higher	value	suggest	a	greater	
impact	on	conservation.

26

Conservation evaluation and phylogenetic diversity 5 

The rationale for this formula is clarified using 
the example of  Fig. 2. The pairwise D values are 
represented by the arrows along the branches in 
the diagram. These branches show how the for- 
mula above provides a value equal to the gain in 
PD with the addition of x to the subset. Note that 
the value for the gain in phylogenetic diversity is 
based on complementarity (cf. Vane-Wright et al., 
1991), in that the contribution of  a given taxon to 
PD will depend on which other taxa are already in 
the subset. In practice, the taxon providing the 
largest G value might be added to the subset of  
reserved taxa. 

The same formula can be used to build up a 
subset of a required number of  taxa from scratch. 
Here, the building process would begin by taking 
those two taxa that have maximum distance, D, 
apart and then consecutively adding the taxon to 
the subset that maximises G. Such calculations 
would be useful, for example, in incrementally 
building up a set of  reserve areas such that phylo- 
genetic diversity is maximised at each step. 

Finally, the formula can be used to evaluate the 
PD of a pre-defined subset of  taxa. This option 
will be useful, for example, when a given reserve 
system is to be evaluated relative to the overall 
phylogenetic diversity for a number of  different 
groups of  taxa. An estimate of  the cladogram for 
each group of  related taxa is used to calculate the 
PD value corresponding to the particular subset of  
these taxa found in the reserve system. These PD 
values for individual cladograms would then be 
summed together for an overall phylogenetic di- 
versity score that could be compared to that for 

J 

Fig. 2. A hypothetical cladogram of four taxa. Taxa i and 
j are already in the reserve system, and the potential contri- 
bution of taxon x is to evaluated. The thickened arrows cor- 
respond to the path-length distances Dx.i, Dx.j, and Di. j. The 
amount that x adds to the total length of the minimum span- 
ning path (the phyiogenetic diversity, PD) can be calculated 
by adding together the lengths between x and i and x and j, 
subtracting the length between i and j, and dividing the result 

by 2. For further information see text. 

other nominated reserve systems. One requirement 
of this multiple-cladogram approach is that the 
branch lengths for the different cladograms be 
measured in comparable units. I will return to this 
strategy in the Discussion section below. 

It is noteworthy that informative distance val- 
ues can be prepared even in the absence of  exact 
estimates of branch lengths, as when the exact 
length of  a terminal branch (corresponding to the 
number of uniquely derived features for the termi- 
nal taxon) is regarded as poorly known. Length 
estimates for terminal branches will often be 
poorly estimated in cladistic analyses because fea- 
tures unique to a single taxon are usually deleted 
from the analysis. In such cases, the branches may 
be assigned unit length, or lengths according to an 
assumption of equal rates of feature derivation in 
all lines of descent. 

When all branch length information is unknown 
or ignored, the lengths can all be assigned unit 
length so that phylogenetic diversity then depends 
only on the branching pattern on the cladogram, 
The PD value, for any subset of  taxa of size N, 
reduces to a simple function of  the number of  
different nodes on the cladogram that lie along the 
corresponding minimum spanning path: 

PD = (N - 1) + no. of  internal nodes 
(branching points) on the minimum 
spanning path. 

Thus, the best subset of  N taxa is the one that 
spans the greatest number of nodes on the clado- 
gram, and the best addition to a subset is the 
taxon adding the greatest number of nodes to the 
minimum spanning path. 

These different methods of  branch length as- 
signment are illustrated for the bumble bee (Api- 
dae) example discussed below. 

A computer  program 'PHYLOREP' ,  written in 
Fortran 77, for PD calculations is available from 
the author. 

EXAMPLES 

Bumble bees of the sibiricus group 

Vane-Wright et al. (1991) used a cladogram for 
species of  bumble bees in the sibiricus group of  
Bombus Latreille (Williams, in press) to demon- 
strate their method of  taxic diversity weighting. 
This sample was also used in the discussion by 
May (1990) to highlight differences between equal 
weighting to all species and taxic diversity weight- 
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Numbers	equivalent	diversity

• Often	it	is	convenient	to	talk	about	alpha	diversity	in	terms	of	
equivalent	units:
• How	many	equally	abundant	taxa	will	it	take	to	get	the	same	diversity	as	we	
see	in	a	given	community?

• For	richness	there	is	no	difference	in	statistic
• For	Shannon,	remember	that	log2k	is	the	maximum	which	is	attained	
when	all	species	are	equally	represented.	Hence	the	diversity	in	
equivalent	units	is	2Sk

• For	Simpson	the	equivalent	units	measure	of	diversity	is	1/(1-D)

27

How	to	compare	microbiomes?
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Motivating	example
Control
(water)

Tetracycline

Vancomycin

Tetracycline	+	
Vancomycin

Microbiota
from	fecal	
and	cecal
contents

Weaning Sacrifice

Hormone	levels
Fat	levels
Bone	mineral	content

Sub-Therapeutic	Antibiotic	Treatment	(STAT)

Cho,	I.,	Meth,	BA.,	Nondorf,	L.,	Li,	K.,	Alekseyenko,	AV.,	Blaser,	MJ.	“Subtherapeutic antibiotics	
alter	the	colonic	microbiome and	early	life	adiposity	in	mice”.	Nature.	2012	Aug	30;488(7413):621-6.

29

Penicillin

Questions
• Are	there	any	specific	taxa,	which	are	
associated	with	antibiotic	treatment?
• By	presence/absence	patterns
• By	relative	abundance

• Is	there	correlation	between	
abundance	of	any	taxa	and	metabolic	
phenotypes	(hormone	levels,	fat,	
bone)?

STAT

Microbiome

?

Microbiome

Phenotypes

?

30
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Hypotheses	

• Are	precise statements	that	are	amenable	to	being	proven	false	using	
data.
• Null	hypothesis:	a	proposition	that	corresponds	to	default	position.	
(“Nothing	special	is	happening”)
• Alternative	hypothesis:	a	proposition	that	describes	a	non	default	
outcome	(“Something	interesting is	going	on”)
• The	inference	is	obtained	by	rejecting	the	Null	hypothesis.	Null	
hypothesis	can	never	be	confirmed	by	the	data,	nor	does	it	have	to	
be!

31

Example	of	hypotheses
• General	question:	Are	any	taxa associated	with	
antibiotic	treatment?

• Univariate hypothesis	question:	Is	taxon T	
associated	with	antibiotic	treatment?

• Null	hypothesis:	abundance	of	taxon T	follow	the	
same	distribution	in	treated	and	control	groups.

• Alternative	hypothesis	1:	abundance	of	taxon T	
follow	distribution	of	different	form	in	the	two	
groups.

• Alternative	hypothesis	2:	abundance	of	taxon	T	
follow	the	same	form	of	distribution	but	with	
different	mean/median	between	groups.

• Alternative	hypothesis	3:	abundance	of	taxon	T	
follow	the	same	form	of	distribution	but	with	
different	variance	between	groups.

STAT Microbiome
(many	taxa)

?

STAT Taxon	T
?

−4 −2 0 2 4 −4 −2 0 2 4

−4 −2 0 2 4 −4 −2 0 2 4

−4 −2 0 2 4 −4 −2 0 2 4

32
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Flow	of	statistical	inference	under	hypothesis	
testing
• Define	a	test	statistic	that	evaluates	evidence	against	the	Null	Hypothesis;

• What	is	a	good	statistic	to	compare	the	averages	of	two	samples:	x1,	…,	xN and	y1,	
…,	yM?	What	is	the	null	hypothesis	here?

• Determine	the	distribution	of	the	test	statistic	under	the	Null	Hypothesis;
• Options	here:

• Asymptotic	properties	of	the	statistic;
• Monte	Carlo	simulations:	bootstrap,	permutation,	…

• How	would	the	distribution	of	statistic	above	look	like	under	the	Null?
• Calculate	the	test	statistic	value	in	the	observed	data;
• Compare	the	observed	test	statistic	to	the	distribution	of	the	statistic,	
when	the	null	hypothesis	is	true.
• If	the	probability	of	observing	a	statistic	as	extreme	or	more	is	small	enough	
(P<0.05?),	reject	the	null	hypothesis.

P-values
• If	the	Null	Hypothesis	was	in	fact	true	a	statistic, used	to	perform	
the	test,	would	follow	a	certain	distribution:	the	null	distribution.

• P-value	is	the	tail	probability	under	the	null	distribution.

−3 −2 −1 0 1 2 3

0
.0

0
.1

0
.2

0
.3

0
.4

Two−tail p−value

statistic

d
e
n
s
it
y

−3 −2 −1 0 1 2 3

0
.0

0
.1

0
.2

0
.3

0
.4

One−tail p−value
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d
e
n
s
it
y
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Distribution	of	OTU/ASV	abundance	data

• Justifiable	distribution	assumptions	often	allow	for	better	statistical	tests.
• Properties	of	OTU/ASV	abundance	data:

• Correlated:	Sums	to	1,	hence	to	increase	something,	something	else	has	to	decrease
• Variable	across	subjects

• Can	possibly	be	modeled	through	compound	Dirichlet-Multinomial	
distribution	(we	will	talk	about	this	distribution	later	in	the	course).	
Marginal	univariate	(Beta-binomial)	tests	have	to	be	described.
• When	distribution	specific	tests	are	not	available,	we	have	to	rely	on	non-
parametric	(distribution	free)	tests,	possibly	at	the	cost	of	decreasing	the	
power	of	the	tests.

35

Some	practical	statistical	tests	to	
try	with	your	microbiomes…
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Chi	Squared	test	for	taxon	incidence
• Raw	Counts

Sample	1 ... Sample N

n11 n1N
n21 n2N
n31 n3N
n41 n4N
n51 n5N
n61 n6N
n71 n7N
n.1 n.1

• Incidence	table
Sample	1 ... Sample N

111 11N
121 12N
131 13N
141 14N
151 15N
161 16N
171 17N

1ij = {
1,  if nij > 0

0,  otherwise
37

Chi	Squared	test	for	taxon	incidence
• We	focus	on	a	single	taxon
• Suppose	the	observations	of	the	taxon	
come	from	two	groups	(e.g.	control	vs.	
STAT)
• Question:	Is	the	frequency	of	
occurrence	of	this	taxon	in	two	groups	
different?
• Null	hypothesis:	the	frequency	is	the	
same.
• Significant	Chi	Square	test	indicates	a	
difference	in	the	rate	of	occurrence	of	
the	taxon.
• In	R:	chisq.test

Tax Lab

1	or	0 Control

… …

1	or	0 STAT

Control STAT

Present n11 n21 n2.

Absent n12 n22 n1.

n.1 n.2 N

38
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Mann-Whitney	U	or	Wilcoxon rank-sum	two-sample	test

• Assumptions:
• Independent	observations
• Observations	can	be	ordered	with	respect	to	each	other

• Null	hypothesis:	The	distribution	in	two	samples	is	the	same.	If	one	
randomly	draws	one	observation	from	each	sample	X,	Y;	then	Pr(X>Y)	=	
Pr(Y>X)
• Two-sided	alternative	hypothesis:	Pr(X>Y)	≠	Pr(Y>X)
• Interpretation:	for	continuous	observations,	significant	tests	indicate	
change	in	the	median
• Example:	Is	the	abundance	of	a	taxon different	between	STAT	and	Control?
• In	R:	wilcox.test

39

Connection	with	predictivity

• Mann-Whitney	U-statistic	calculation:
• Convert	the	observations	to	ranks
• Compute	the	sum	of	ranks	in	each	sample,	
R1 and	R2

• U1 =	R1 – n1(n1 +	1)/2
• U2 =	R2 – n2(n2 +	1)/2
• U	=	min(U1,	U2)

• One	can	show	that	U	statistic	is	
equivalent	to	AUC.	AUC	=	U/(n1 n2)

• AUC,	area	under	receiver	operator	
characteristic	(ROC)	curve,	measures	how	
well	we	can	distinguish	one	sample	from	
another.	AUC	=	0.5	means	predictivity	no	
better	than	random,	AUC	=	1.0	perfect	
predictivity.

Sample	1 Sample	2 Ranks	1 Ranks	2
0.135 2.680 8 1
-0.907 1.078 18 2
-0.801 0.080 16 9
0.452 0.493 6 5
-0.523 0.010 15 11
0.075 -0.322 10 13
1.038 -0.370 3 14
-1.140 0.633 19 4
-2.308 -0.020 20 12
-0.808 0.368 17 7

Rank	Sums 132 78
U 77 23
U	statistic 23
AUC 0.77 0.23

40
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Kruskal-Wallis	one-way	analysis	of	variance	(more	than	two	
samples/groups)

• Assumptions:
• Independent	observations	that	follow	distribution	with	the	same	shape	and	
scale

• Observations	can	be	ordered	with	respect	to	each	other
• Null	hypothesis:	The	location	(median)	of	all	the	groups	is	the	same.
• Alternative	hypothesis:	Location	for	at	least	one	group	is	different	
from	location	of	at	least	one	other	group
• Example:	Is	the	abundance	of	a	taxon	different	in	STAT/control	over	3	
sampled	time	points?
• In	R:	kruskal.test

41

Correlation	coefficients,	rank	correlations
• Linear	correlation	
coefficient	(Pearson)	
assumes	linear	
dependence	between	two	
variables
• Rank	correlation	
coefficient	measure	the	
extent	of	monotonicity
between	two	variables
• Null	hypothesis	for	
correlation	testing:	
correlation	coefficient	is	
equal	to	0.
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Pearson	correlation	coefficient:	0.66	(not	
significant,	p=0.15)

Diaconis,	P.	(1988),	Group	Representations	in	Probability	and	Statistics,	Lecture	Notes-Monograph	
Series,	Hayward,	CA:	Institute	of	Mathematical	Statistics,	ISBN	0-940600-14-5 42
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Rank	correlation	coefficients

• Spearman’s	ρ:	Rank	correlation	measure	defined	as	the	Pearson	
correlation	of	the	two	variables	after	conversion	to	ranks
• Kendall’s	τ:	Rank	correlation	measure	based	on	counting	concordant	
pairs.	[(x1,y1)	and	(x2,y2)	are	concordant	if	x1>x2 when	y1>y2]
• Example:	Is	there	correlation	between	any	given	two	taxa?	Is	there	
correlation	between	a	given	metabolic	variable	and	a	given	taxon?
• In	R:	
• cor.test(x, y, method=‘spearman’) 
• cor.test(x, y, method=‘kendall’)
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Problems	with	testing	many	hypotheses	
simultaneously
• We	have	many	OTUs/ASVs/taxa	that	we	would	like	to	apply	the	test	to.
• If	the	test	is	applied	at	specified	significance	level	(probability	of	falsely	
rejecting	the	null,	when	it	is	true),	we	cannot	guarantee	that	combined	result	
is	at	the	significance	level	originally	specified.
• Since	p-values	are	distributed	uniformly	if	the	null	hypothesis	is	true,	the	
expected	number	of	rejections	by	mere	chance	m*α
• How	do	we	control	significance	for	multiple	tests?

44

Multiple Testing
• In “Big Data”, we often want to test many hypotheses in one batch.
• p-values are distributed uniformly when null hypothesis is true
• The expected number of rejections by chance is m*α 
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Poisson-only Count Simulation• Uncertainty 
Depends on 
Library Size True Species (or Gene) Proportion in Simulation

Proportion

Species or Gene

Model Uncertainty in NGS Count Data
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FWER:	Family-wise	error	rate
#	not-
rejected

#
rejected

Total

#	true	null	
hypotheses U V m0

#	non-true	
null	
hypotheses

T S m-m0

Total m-R R m

• Suppose	we	perform	m tests	(e.g.	
m taxa are	tested	for	association	
with	antibiotic	treatment)
• The	number	of	true	null	
hypotheses	is	unknown	m0

• V	is	false	positive	rate	(Type	I	error)
• T	is	false	negative	rate	(Type	II	
error)
• We	observe	R,	but	S,	T,	U,	V	are	
unobserved
• FWER	=	Pr(V≥1)

FWER	control	methods	adjust	the	
significance	of	each	individual	test	
to	ensure	overall	significance	at	
given	α.
FWER	result	in	more	stringent	
tests. 46
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Example:	Bonferroni correction

• To	ensure	overall	significance	at	a	given	α,	one	performs	each	
individual	test	at	α’	=	α/m
• Very	stringent,	results	in	loss	of	power	(increase	in	Type	II	error)
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FDR:	false	discovery	rate
• Modifies	the	idea	of	controlling	
Type	I	error,	to	instead	control	the	
rate	at	which	type	I	errors	do	occur
• FDR	is	the	expected	value	of	V/R
• Methods	for	FDR	control

• Benjamini–Hochberg
• Assumes	tests	are	independent

• Benjamini–Hochberg–Yekutieli
• Assumes	that	tests	are	uniformly	

correlated:
• Positively	correlated:	if	one	test	has	low	

p-value,	other	tests	are	more	likely	to	
also	be	significant

• Negatively	correlated:	if	one	test	has	
low	p-value,	other	tests	are	less likely	to	
be	significant

#	not-
rejected

#
rejected

Total

#	true	null	
hypotheses U V m0

#	non-true	
null	
hypotheses

T S m-m0

Total m-R R m
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FDR	in	R

• FDR	is	implemented	in	R	as	a	p-value	adjustment	procedure.
• Input:	p-values	for	a	set	of	univariate tests
• Output:	p-values	that	are	adjusted	to	FDR
• E.g.	0.05	adjusted	p-value	means	that	expected	rate	of	false	positives	
is	0.05	for	tests	significant	at	that	adjusted	level
• p.adjust
• Methods:

• method = ‘fdr’: Benjamini-Hochberg	
• method = ‘BY’: Benjamini-Hochberg-Yekutieli
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Filtering:	reducing	the	number	of	tests
• We	can	improve	the	overall	power	of	the	tests	by	
performing	less	simultaneous	tests.
• Eliminate	“uninteresting”	taxa,	e.g.	a	taxon	does	not	have	
deep	taxonomic	resolution.
• Eliminate	taxa	that	show	low	variability.	These	are	not	
changing	much	overall	thus	are	not	likely	to	be	different	
across	factor	levels.
• Eliminate	taxa	with	low	abundance.	These	are	usually	not	
measured	very	well	and	are	likely	to	have	little	biological	
significance	anyway.
• Note:	A	care	needs	to	be	taken	with	filtering	procedures	
so	as	not	to	introduce	selection	bias,	which	will	invalidate	
multiple	comparison	assumptions.	A	safe	practice	is	for	
filtering	to	be	blind	towards	the	factor	you	would	like	to	
test.
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