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Lecture 2: Descriptive statistics,
normalizations & testing

What do we need to know about
a microbiome to understand it?
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Scope of Bioinformatics/Omics data standards

Scope-General Scope-Specific

Description

Reporting (Minimum

Documentation for publication or

information) data deposition
Experiment Communication between organizations
description Data exchange & modeling and tools
Ontologies and CV’s to describe experiments
Terminology or data

Experiment Physical standards

execution Data analysis &
quality metrics

Reference materials, spike-in controls

Analyze, compare, QA/QC experimental
results

Existing reporting standards for Omics

Acronym Full name Domain Organization
Core Information for Metabolomics
CIMR Reporting Metabolomics MSI
Minimum Information about a
MIAME Microarray Experiment Transcriptomics MGED
Minimum Information about a
MIAPE Proteomics Experiment Proteomics HUPO-PSI
Minimum Information about a
MIGS-MIMS Genome/Metagenome Sequence Genomics GSC
Minimum Information about a
MIMIx Molecular Interaction eXperiment Proteomics HUPO-PSI
Minimal Metagenome Sequence
MINIMESS  Analysis Standard Metagenomics GSC
Minimum Information about a Genomics, Transcriptomics
high-throughput Nucleotide (UHTS)
MINSEQE Sequencing Experiment MGED
Minimum Information Specification
For In Situ Hybridization and
Immunohistochemistry
MISFISHIE  Experiments Transcriptomics MGED
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MIXS

* The GSC family of
minimum information
standards (checklists) —
Minimum Information
about any (x) Sequence
(MIxS)

* MIGS — genomes
* MIMS — metagenomes

* MIMARKS — marker
genes

* 15 additional
environmental package

Specification New
R MIGS MIMS || MIMARKS .
P checklists
hectists | [Pl o)) [moemm] [ ] [ ] [ cermemms ]

collection date, envir al package, envir [blome).
Shared o (feature), (msaterial),
geographic locatson (country and for sea, reglon),
descriptors gu-‘v‘.qahv(vlm ation (Ratitede and longitude), investigation type,
project name, sequencng method, submitted to INSDC
assembly, estimated size,
Checklist finishing strategy,
speclﬁc 1solation and growth cundv@n. target gene
number of replicons, ploldy,
descriptors propagation,
reference for blomaterial

Appllcable Air Microbial mat/biefilm

environmental Host-associated Miscellaneous natural or artificial enviromment
packagcs Human-associated Plant-assocised

Human-oral Sediment
(measurements Humsan-gut Soil
and Human-skin Wastewater/sludge
observations) Human-vaginal Water

The minimum information about a genome
seqguence (MIGS-MIMS) specification

History  View source  Discussion  Page

genomic
WSS = STANDA consortium

[ About the GSC | Projects | Resources | Wiki Pages | Toolbox | Personal tools |
MIGS/MIMS

MIGS/MIMS Minimum Information about a (Meta)Genome Sequence

On this page:

o 1 The MIGS/MIMS v4.0 checklist as a spreadsheet

* 2 Compliance wi th MIGS/MIMS/MIMARKS
© 2.1 GCDML
© 2.2 Adopters
© 2.3 Requesting Help with Compliance
* 3 MIGS Change Requests
4 MIGS History
© 4.1 Introduction
© 4.2 Working Group
© 4.3 MIGS Change Log
© 4.4 Case Studies

http://gensc.org
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Sample Data

Example

2012.AD1.T1.A
2012.AD1.T1.B
2012.AD1.T1.C
2012.AD.T1.D
2012.AD1T2.A
2012.AD1.T2.B
2012.AD1.T2.C
2012.AD1T2.D
2012.AD2.T1.A
2012.AD2.T1.B
2012.AD2.T1.C
2012.AD2.T1.D
2012.AD2.T2.A
2012.AD2.T2.B
2012.AD2.T2.C
2012.AD2.T2.D
2012.AD03.AT1

2012.AD03.B.T1
2012.AD03.C.T1
2012.AD03.D.T1
2012.AD03.AT2
2012.AD03.B.T2
2012.AD03.C.T2
2012.AD03.D.T2
2012.AD05.T1.A
2012.AD05.T1.B
2012.AD05.T1.C
2012.AD05.T1.D
2012.AD04.AT1
2012.AD04.B.T1
2012.CO1T1A

2012.CO1.T1.B

2012.CO1T1.C

2012.CO1.T1.D

2012.CO1T2.A
2012.CO1.12.B
2012.CO1T2.C
2012.CO1.12.D
2012.CO02T1.A
2012.C002.T11.B
2012.C002.T1.C
2012.CO02.T1.D
2012.CO3T1.A
2012.CO3T1.B
2012.CO3T1.C
2012.CO3.T1.D
2012.CO3.T2.A
2012.CO3.12.B
2012.CO3.T12.C
2012.CO3T12.D
2012.CO04.T1.A

2012.CO04.T1.B
2012.CO04.T1.C
2012.CO04.T1.D
2012.CO04.T2.A
2012.CO04.T2.B
2012.CO04.12.C
2012.CO04.12.D
2012.CO05.T1.A
2012.CO05.T1.D




7/13/19

Example unraveled

Year the sample was collected

;

Subject ID/Group

Time point

2012.AD1.T1.A

e

Sampling location

#SamplelD BarcodeSeqt LinkerPrimer Group
2012.AD1.T1.A TACCGCTTCT CCGGACTACIAD
2012.AD1.T1.B  TGTGCGATA, CCGGACTACIAD
2012.AD1.T1.C GATTATCGA(CCGGACTACIAD
2012.AD.T1.D  GCCTAGCCC/ CCGGACTACIAD
2012.CO1.T1.A  GAGAGCAAC CCGGACTACI Control
2012.C01.T1.B  TACTCGGGA. CCGGACTACI Control
2012.C01.T1.C CGTGCTTAG(CCGGACTACI Control
2012.C01.T1.D TACCGAAGG CCGGACTACI Control
2012.CO1.T2.A CACTCATCATCCGGACTACI Control
2012.C01.T2.B  GTATTTCGG/ CCGGACTACI Control
2012.C01.T2.C TATCTATCCT CCGGACTACI Control
2012.C01.T2.0 TTGCCAAGA(CCGGACTACI Control
2012.C002.T1.A AGTAGCGGA CCGGACTACI Control
2012.C002.T1.B GCAATTAGG CCGGACTACI Control

sample_well Patient Group

p01.A1
p01.A2
p01.A3
p01.A4
p01.B5
p01.B6
p01.87
p01.88
p01.B8
p01.810
p01.B11
p01.B12
p01.C1
p01.C2

AD1
AD1
AD1
AD1
co1
co1
co1
co1
co1
co1
co1
co1

Cco2

AD

AD

AD

AD

Control
Control
Control
Control
Control
Control
Control
Control
Control
Control

BC_name
806rcbc96
806rchc97
806rcbc98
806rcbc99
806rcbc112
806rcbc113
806rchbc114
806rcbc115
806rcbc116
806rcbc117
806rcbc118
806rcbc119
806rcbc120
806rcbc121

Time.point Gender Site

1

RF R NNNNRRRRRRR

gz Tm T MMM Tz

b

PRPOOPPRO0O0PROO0®P

L popliteal

L Back

R lateral thigh
R forearm

R antecubital
L popliteal
Labdomen

R cheek

R antecubital
L popliteal
Labdomen

R cheek
face

L forearm

Age.mo Local.EASI Worst.affect: Uninvolved Treatment

3.45 6
3.45
3.45
3.45
30
30
30
30
30
30
30
30
36
36

OO0 O0OO0O0O0O0O0O0O0OO0OWN

1

0
0
0

ow
ow
ow
1w
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Data dictionary

» A data dictionary is a "centralized repository of information
about data such as meaning, relationships to other data, origin,

usage, and format” (IBM Dictionary of Computing)

* Typical elements of a research data dictionary
* Variable name
* Measurement unit
* Allowed values
* Description
* Example

Example data dictionary

Variable Description Values
SamplelD  Unique ID number for each sample Numeric

F = female;
gender Gender of subject M = male
age Age of subject in years Numeric

Oral = mouth sample;
Fecal = fecal sample;

bodysite Body site of sampling Skin = skin sample from left arm
weight Weight of subject in kg Numeric
height Height of subject in cm Numeric
BMI Body mass index (BMI) of subject Numeric

Example
156

F
10

Oral
35.7
116

26.5
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What does the number of sequences
tell us about the physical
characteristics of the microbiomes?

From sequences to OTU/ASV table

—) Sequencing —)

-

Abundances of each
microbial taxon
in each of the
N samples

(1)
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Number of reads per sample

; .

barplot (sort (sample_sums (mb), decreasing = T),
names.arg = NA, log="y")

15

Normalizing OTU/ASV tables for sequencing
effort

Raw Counts Proportions
| samplell.. |samplen [N [samplell.. |sampleN _
. Ny Nin . P11 Pin
. N1 Nan . P21 Pan
6 N33 N3y 6 P31 Pan
el Nyn P41 Pan
. N5y N5y . Ps1 Psn
. Ne1 Nen . Pe1 Pen
. N71 N7n ! P71 P7n
n., n.g 1 1

p; = nij/n.j

16




7/13/19

Potential problem with relative abundance

Absolute Abundance (2)

~— Total community size

Absolute Abundance (1)

Total community size —

/ Total sum
/ Normalization

Abundance
.
Abundance

_ Relative Abundance E

Abundance

s 6w o»
Sample number

17

Negative correlation of the relative
abundances

* The proportions are negatively
correlated by design.

* If one (or more) OTUs were to
increase in absolute abundance,
the relative abundances of all
other OTUs will decrease to
accommodate the additive
constraint.

18
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Compositional data analysis: log ratios

* Main idea: ratios of absolute and compositional data are preserved
X w;/M

°logx—;=logw;ﬁ= Y
* Where

* M = total community size

* i, j= microbe
* More details is Aitchison, J. (1986). The statistical analysis of

compositional data.

Other normalizations

* Normalized by 1 component, n,

-
* y;; = log (n—;’]) = log(n;;) — log(ng;)

* ng>0foralld

* Assuming the true abundance of d is the same across all samples

* Normalized by geometric mean (centered)
*Yij = log( = log(nij) — log(g(nlj, ...,nTj))

g(nyj..nrj)
1/T
© g(najpworr)) = (Mg i)

* Note: log[0] -> -oo; so often we add ‘pseudo-counts’ before these
transformations.

Tlij

20

10
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CLR: Centered Log-ratio transformation

Compositional data

e clr(x) = logﬁ

« g(x) = Nx1x; Xy

* Transformed data are
unconstrained in N-1 dimensions

CLR transformed data J

21

Why is microbiome diversity
Important?

11
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Describing microbiome community is alike to
taking a demographic census

[ Jrowni[.. [Townn | How many professions are
IN

B 0 represented?
banker  py Pan * How well represented are the
student  py P3n different professions?
teacher p p .
= - * Are some professions more
doctor Psy Psn lar?
. opular?
police P61 Pen Pop
chef P71 P7n
1 1

23

Alpha diversity definition(s)

* Alpha diversity describes the diversity of a single community
(specimen).

* In statistical terms, it is a scalar statistic computed for a single
observation (column) that represents the diversity of that
observation.

* There are many statistics that can describe diversity: e.g. taxonomical
richness, evenness, dominance, etc.

24

12
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Observed species richness

* Suppose we observe a community that can contain up to k ‘species’.
* The relative proportions of the species are P = {p,, ..., p,}-

* Richness is computed as

R=1(py) +1(p;) + ... + 1(py),
where 1(.) is an indicator function, i.e. 1(x) = 1 if p;#0, and 0 otherwise.

* Higher R means greater diversity

* Very dependent upon depth of sampling and sensitive to presence of
rare species

25

Rarefaction curves

* Note: rarefication as a means for normalization is from statistical
standpoint a bad idea. Don’t throw away information!

* Rarefaction curves are not the same!

* Useful to assess sensitivity of sample size to observed alpha-diversity
estimates.

* |dea:
* Let Ny, ..., N be a set of numbers N; < N;,,;
* Let n’ij(k) be abundance of taxon i in sample j subsampled to N, total counts per
sample;
 Estimate average alpha diversity for each N, over a several repeated subsamplings;
* Plot the average alpha diversity as a function of sample size.

26

13
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Rarefactions

Rarefaction Measure: observed_species

100

1000

Cecal

= Control

= Penicillin

= Chlortetracycline
= Pen + Vanc

= Vancomycin

2000 3000 4000 5000
Sequences Per Sample

Rarefaction Measure: observed_species
&
8

1000

- Control
Penicillin
Chlortetracycline

= Pen +Vanc

- Vancomycin

2000 El

000 3000 5000
Sequences Per Sample

Supplementary Figure 6. Rarefaction curves measuring alpha diversity in fecal
and cecal communities. The vertical axis shows the number of OTUs observed
after sampling the number of tags or sequences shown on the horizontal axis.
Curvature toward horizontal indicates that increased sequencing effort is required
to observe novel OTUs, when only rare OTUs remain to be discovered. Rarefaction
curves were based on the V3 16S rRNA sequences and analyzed at OTU-level
phylotypes, defined by 297% identity. Values represent the Mean + 95% confidence

interval.

Cho, I., Meth, BA., Nondorf, L., Li, K., Alekseyenko, AV., Blaser, MJ. "Subtherapeutic antibiotics alter the murine colonic microbiome

and early life adiposity", Nature 488, 621 -- 626 (30 August 2012).

27

Chaol index

* Species richness index is often too sensitive to depth of sampling,

* Chaol index overcomes this problem by applying a correction

eR- =S i
C — “obs + (Zfz)'

* Where f; is the number of taxa with a single observation (singletons),
f2 is the number of taxa with exactly two observations.

* If a sample contains a lot of singleton taxa, then there is a greater
chance that this sample is undersampled.

14
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Shannon index

* Suppose we observe a community that can contain up to k
‘species’.

* The relative proportions of the species are P = {p, ..., py}-

* Shannon index is related to the notion of information content
from information theory. It roughly represents the amount of
information that is available for the distribution of P.

* When p; = p,, for all i andd', then we have no information about
which species a random draw will result in. As the inequality
becomes more pronounced, we gain more information about
the possible outcome of the draw. The Shannon index captures
this property of the distribution.

* Shannon index is computed as
Si= = P1108,p1 — P,log,p; = - — Pilog,P
Note as p; =0, log,p, = —=°, we therefore define p,log,p,= 0.

* Higher S, means higher diversity

From Shannon to Evenness

* Shannon index for a community of k species has a maximum at log,k
* We can make different communities more comparable if we

normalize by the maximum

* Evenness index is computed as
Ei=Si/log,k
* E,=1 means total evenness

15
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Simpson index

* Suppose we observe a community that can contain up to k ‘species’.
* The relative proportions of the species are P = {p,, ..., p,}-

* Simpson index is the probability of resampling the same specie on two
consecutive draws with replacement.

* Suppose on the first draw we picked specie i, this event has probability p;,
hence the probability of drawing that species twice is p,*p;.

* Simpson index is thus computed as
D=1—(p2+p,2+..+p?)

* D = 0 means no diversity (1 species is completely dominant)
* D =1 means complete diversity

Phylogenetic Diversity (Faith’s D)

* Faith (Biological Conservation
1992, 61, 1-10) considered the
problem of selecting species for
conservation so as to preserve
diversity.

* Faith defines PD (phylogenetic
diversity) as the sum of all the
branch lengths. PD is analogous
to total information in the tree.

* The marginal contribution of a tip
x is then min, (D, ; + D,;— D).
Higher value suggest a greater
impact on conservation.

16
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Numbers equivalent diversity

* Often it is convenient to talk about alpha diversity in terms of
equivalent units:

* How many equally abundant taxa will it take to get the same diversity as we
see in a given community?

* For richness there is no difference in statistic

* For Shannon, remember that log,k is the maximum which is attained
when all species are equally represented. Hence the diversity in
equivalent units is 25

* For Simpson the equivalent units measure of diversity is 1/(1-D)

How to compare microbiomes?

17
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Motivating example

Sub-Therapeutic Antibiotic Treatment (STAT)

Control

(water)

Tetracycline

Microbiota
Penicillin Hormone levels from fecal
Fat levels and cecal
Vancomycin Bone mineral content contents
Tetracycline +
Vancomycin
Weaning Sacrifice

Cho, I., Meth, BA., Nondorf, L., Li, K., Alekseyenko, AV., Blaser, MJ. “Subtherapeutic antibiotics
alter the colonic microbiome and early life adiposity in mice”. Nature. 2012 Aug 30;488(7413):621-6.
35

Questions

* Are there any specific taxa, which are STAT
associated with antibiotic treatment? ?
* By preSt?nce/absence patterns Microbiome
* By relative abundance
* s there correlation between
abundance of any taxa and metabolic
phenotypes (hormone levels, fat, Microbiome
bone)? ,
Phenotypes

18



7/13/19

Hypotheses

* Are precise statements that are amenable to being proven false using
data.

* Null hypothesis: a proposition that corresponds to default position.
(“Nothing special is happening”)

* Alternative hypothesis: a proposition that describes a non default
outcome (“Something interesting is going on”)

* The inference is obtained by rejecting the Null hypothesis. Null
hypothesis can never be confirmed by the data, nor does it have to
be!

Example of hypotheses

* General question: Are any taxa associated with  ¢rar Microbiome
antibiotic treatment? (many toxa)
?

¢ Univariate hypothesis question: Is taxon T
associated with antibiotic treatment?

* Null h%pothesis: abundance of taxon T follow the
same distribution in treated and control groups. m
¢ Alternative hypothesis 1: abundance of taxon T

follow distribution of different form in the two e
groups.

¢ Alternative hypothesis 2: abundance of taxon T
follow the same form of distribution but with
different mean/median between groups.
¢ Alternative hypothesis 3: abundance of taxon T

follow the same form of distribution but with
different variance between groups.

STAT . TaxonT

19
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Flow of statistical inference under hypothesis
testing

* Define a test statistic that evaluates evidence against the Null Hypothesis;
* What is a good statistic to compare the averages of two samples: x1, ..., xN and y1,
..., YM? What is the null hypothesis here?
* Determine the distribution of the test statistic under the Null Hypothesis;
* Options here:
* Asymptotic properties of the statistic;
* Monte Carlo simulations: bootstrap, permutation, ...
* How would the distribution of statistic above look like under the Null?

* Calculate the test statistic value in the observed data;

* Compare the observed test statistic to the distribution of the statistic,
when the null hypothesis is true.

* |f the probability of observing a statistic as extreme or more is small enough
(P<0.057?), reject the null hypothesis.

P-values

* If the Null Hypothesis was in fact true a statistic, used to perform
the test, would follow a certain distribution: the null distribution.

* P-value is the tail probability under the null distribution.

Two-tail p-value One-tail p-value
< <
o 7 o 7
@ | @ |
o o
2 2
7] o 7] o
5 o g ©
© ©
5 5
o ] o |
© T 1 T T T T T © T T T T T T T
-3 -2 - 0 1 2 3 -3 -2 -1 0 1 2 3
statistic statistic

20
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Distribution of OTU/ASV abundance data

* Justifiable distribution assumptions often allow for better statistical tests.
* Properties of OTU/ASV abundance data:

* Correlated: Sums to 1, hence to increase something, something else has to decrease
* Variable across subjects
* Some distributions that have been used with microbiome data
* Dirichlet-Multinomial => Marginal univariate (Beta-binomial)
* Poisson and Negative bionomial
* Zero inflation

* When distribution specific tests are not available, we have to rely on non-
parametric (distribution free) tests, possibly at the cost of decreasing the

power of the tests.

41

Some practical statistical tests to
try with your microbiomes...

21
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Chi Squared test for taxon incidence

 Raw Counts * Incidence table

| [sample1[.. [samplen [N [sample1|.. |SampleN |
. Ny NN . 1, 1y

. Ny NN . 1, 1,
@V N3 N3y v 13 15y

Ny Ngn 1, 1
. N5y Nsy . 15 Loy
. Ne1 Nen . 1, 1ey
. N7 NN . 17 15y

N N.g

- 1, if n; > 0
ij

0, otherwise
43

Chi Squared test for taxon incidence

Tax Lab

* We focus on a single t?xon R
* Suppose the observations of the taxon
come from two groups (e.g. control vs.

STAT) lor0 STAT

* Question: Is the frequency of
occurrence of this taxon in two groups
different?

* Null hypothesis: the frequency is the Control | STAT
e S
Ny Ny,

* Significant Chi Square test indicates a  Present nj,
difference in the rate of occurrence of
the taxon. Absent n,, Ny Ny

*InR:chisqg.test

N n, N

44

22
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Mann-Whitney U or Wilcoxon rank-sum two-sample test

* Assumptions:
* Independent observations

* Observations can be ordered with respect to each other

* Null hypothesis: The distribution in two samples is the same. If one
randomly draws one observation from each sample X, Y; then Pr(X>Y) =

Pr(Y>X)

* Two-sided alternative hypothesis: Pr(X>Y) # Pr(Y>X)

* Interpretation: for continuous observations, significant tests indicate

change in the median

* Example: Is the abundance of a taxon different between STAT and Control?

*InR:wilcox.test

45

Connection with predictivity

* Mann-Whitney U-statistic calculation:
» Convert the observations to ranks
* Compute the sum of ranks in each sample,
R; and R,
* U;=R;—ny(n; +1)/2
« U,=R,—ny(n, +1)/2
* U=min(Uy, U,)

* One can show that U statistic is
equivalent to AUC. AUC = U/(n, n,)

* AUC, area under receiver operator
characteristic (ROC) curve, measures how
well we can distinguish one sample from
another. AUC = 0.5 means predictivity no
better than random, AUC = 1.0 perfect
predictivity.

Sample 1 Sample 2

Ranks 1 Ranks 2

0.135 2.680 8 1
-0.907 1.078 18 2
-0.801 0.080 16 9
0.452 0.493 6 5
-0.523 0.010 15 11
0.075 -0.322 10 13
1.038 -0.370 3 14
-1.140 0.633 19 4
-2.308 -0.020 20 12
-0.808 0.368 17 7
Rank Sums 132 78
u 77 23
U statistic 23
AUC 0.77 0.23

23
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Kruskal-Wallis one-way analysis of variance (more than two
samples/groups)

* Assumptions:

* Independent observations that follow distribution with the same shape and
scale

* Observations can be ordered with respect to each other
* Null hypothesis: The location (median) of all the groups is the same.

* Alternative hypothesis: Location for at least one group is different
from location of at least one other group

* Example: Is the abundance of a taxon different in STAT/control over 3
sampled time points?

* InR: kruskal.test

47

Correlation coefficients, rank correlations

* Linear correlation
coefficient (Pearson)
assumes linear
dependence between two

1/(exp(-x))"8
0e+00 26408  4e+08

\/ Ea "i Ea k) I (3 S; 70‘0 0‘5 1‘0 1‘5 2‘0 2‘5

* Rank correlation x
coefficient measure the Pearson correlation coefficient: 0.66 (not
extent of monotonicity significant, p=0.15)

between two variables

* Null hypothesis for
correlation testing:
correlation coefficient is
equal to 0.

1e+08
I I I

1e+04

1/(exp(-x))"8 (log-scale)

1e+00

00 05 10 15 20 25

Diaconis, P. (1988), Group Representations in Probability and Statistics, Lecture Notes-Monograph
Series, Hayward, CA: Institute of Mathematical Statistics, ISBN 0-940600-14-5 48

24
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Rank correlation coefficients

* Spearman’s p: Rank correlation measure defined as the Pearson
correlation of the two variables after conversion to ranks

» Kendall’s T: Rank correlation measure based on counting concordant
pairs. [(x,,y;) and (x,,y,) are concordant if x,;>x, when y,>y,]

* Example: Is there correlation between any given two taxa? Is there
correlation between a given metabolic variable and a given taxon?

*InR:
* cor.test(x, y, method=’'spearman’)
* cor.test(x, y, method=‘kendall’)

Multiple Hypothesis Testing

25
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Problems with testing many hypotheses

simultaneously
* We have many OTUs/ASVs/taxa that we would like to apply the test to.

* If the test is applied at specified significance level (probability of falsely

rejecting the null, when it is true), we cannot guarantee that combined result
is at the S|gn|f|cance level or|g|nally specified.

* Since p-values are distributed uniformly if the null hypothe5|s is true, the
expected number of rejections by mere chance m*a

* How do we control significance for multiple tests?

P-values under Null hypothesis with 100 trials

03— rejected
© FALSE

- il atndtudi

51
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# true null
hypotheses

# non-true
null T S m-mg
hypotheses

Total m-R R m

FWER control methods adjust the
significance of each individual test
to ensure overall significance at
given a.

FWER result in more stringent
tests.

FWER: Family-wise error rate

# not- Total
rejected rejected * Suppose we perform m tests (e.g.

m taxa are tested for association
with antibiotic treatment)

* The number of true null
hypotheses is unknown m,

* Vis false positive rate (Type | error)

* Tis false negative rate (Type Il
error)

* We observe R, butS, T, U, V are
unobserved

* FWER = Pr(V21)

53

Example: Bonferroni correction

* To ensure overall significance at a given a, one performs each
individual test at o’ = a/m

* Very stringent, results in loss of power (increase in Type Il error)

54
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FDR: false discovery rate

* Modifies the idea of controlling
Type | error, to instead control the
rate at which type | errors do occur

* FDR is the expected value of V/R

* Methods for FDR control
* Benjamini—-Hochberg
* Assumes tests are independent
* Benjamini—-Hochberg—Yekutieli
* Assumes that tests are uniformly
correlated:

* Positively correlated: if one test has low
p-value, other tests are more likely to
also be significant

* Negatively correlated: if one test has
low p-value, other tests are less likely to
be significant

#no
reje

# true null
hypotheses

# non-true
null
hypotheses

Total

m-R

t- # Total
cted | rejected
U V my

55

FDRIn R

* FDR is implemented in R as a p-value adjustment procedure.

* Input: p-values for a set of univariate tests

* Qutput: p-values that are adjusted to FDR

* E.g. 0.05 adjusted p-value means that expected rate of false positives

is 0.05 for tests significant at that adjusted level

*p.adjust
* Methods:
* method

‘fdr’: Benjamini-Hochberg

* method = ‘BY’: Benjamini-Hochberg-Yekutieli

56
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Filtering: reducing the number of tests

* We can improve the overall power of the tests by
performing less simultaneous tests.

* Eliminate “uninteresting” taxa, e.g. a taxon does not have
deep taxonomic resolution.

* Eliminate taxa that show low variability. These are not
changing much overall thus are not likely to be different
across factor levels.

* Eliminate taxa with low abundance. These are usually not
measured very well and are likely to have little biological
significance anyway.

* Note: A care needs to be taken with filtering procedures
so as not to introduce selection bias, which will invalidate
multiple comparison assumptions. A safe practice is for
filtering to be blind towards the factor you would like to
test.
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