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Goals

 Methods for GWAS with SNP chips

— Integrating expression and SNP information



Many Shared Issues

* Many of the issues/choices/methodological
approaches discussed for microarray data are

true across all “-omics”

* Many methods have been readily extended
for other omic data

* There are several biological and technological
issues that may make just “off the shelf” use
of pathway analysis tools inappropriate



Genome-Wide Association Studies

Population resources
e case-control samples

Whole-genome genotyping
e hundreds of thousands or million(s)
of markers, typically SNPs
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Advantages of GWAS

e Compared to candidate gene studies

— unbiased scan of the genome
— potential to identify totally novel susceptibility factors

e Compared to linkage-based approaches
— capitalize on all meiotic recombination events in a population
e Localize small regions of the chromosome
e enables rapid detection causal gene
— ldentifies genes with smaller relative risks



Concerns with GWAS

* Assumes CDCV hypothesis e Study Design
— Replication
* Expense — Choice of SNPs
 Power dependent on: e Analysis methods
— Allele frequency — IT support, data
— Relative risk management
— Sample size — Variable selection
— LD between genotyped — Multiple testing

marker and the risk allele
— disease prevalence
— .ultiple testing



Successes in GWAS Studies

e 33989 GWAS papers published to date (GWAS catalogue)

* Big Finds:
— In 2005, it was learned through GWAS that age-related macular
degeneration is associated with variation in the gene for

complement factor H, which produces a protein that regulates
inflammation (Klein et al. (2005) Science, 308, 385—389)

— In 2007, the Wellcome Trust Case-Control Consortium (WTCCC)
carried out GWAS for the diseases coronary heart disease, type
1 diabetes, type 2 diabetes, rheumatoid arthritis, Crohn's
disease, bipolar disorder and hypertension. This study was
successful in uncovering many new disease genes underlying
these diseases.



More Successes

Association scan of 14,500 nonsynonymous SNPs in four diseases identifies
autoimmunity variants. Nat Genet. 2007

Genome-wide association study of 14,000 cases of seven common diseases and

3,000 shared controls. Wellcome Trust Case Control Consortium Nature.
2007;447;661-78

Genomewide association analysis of coronary artery disease.
Samani et al. N Engl ) Med. 2007,357;443-53

Sequence variants in the autophagy gene IRGM and multiple other replicating loci
contribute to Crohn's disease susceptibility. Parkes et al. Nat Genet. 2007,39;830-2

Robust associations of four new chromosome regions from genome-wide analyses
of type 1 diabetes. Todd et al. Nat Genet. 2007,39,857-64

A common variant in the FTO gene is associated with body mass index and
predisposes to childhood and adult obesity. Frayling et al. Science. 2007;316;889-
94

Replication of genome-wide association signals in UK samples reveals risk loci for
type 2 diabetes. Zeggini et al. Science. 2007;316;1336-41

Scott et al. (2007) A genome-wide association study of type 2 diabetes in Finns
detects multiple susceptibility variants. Science, 316, 1341-1345.



Limitations

* For many diseases, the amount of trait
variation explained by even the successes is
way below the estimated heritability.

* Assumptions underlying GWAS are not true
for all diseases.



Feasibility of identifying genetic variants by risk allele
frequency and strength of genetic effect (odds ratio).
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Reasons GWAS Can Fail

even if well-powered and well-designed....

Alleles with small effect sizes
Rare variants

Population differences
Epistatic interactions

Copy number variation
Epigenetic inheritance
Disease heterogeneity



Missing Heritability

B GWA studies (5 10%)
B Dark matter (40-45%
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Nature Reviews | Genetics

Lusis et al, 2008



Possible Association Models

1. Each of several genes may have a variant
that confers increased risk of disease

independent of other genes

2. Several genes in contribute additively to the
malfunction of the pathway

3. There are several distinct combinations of
gene variants that increase relative risk but
only modest increases in risk for any single

variant



Hypothetical Disease Mechanism

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Gene A Gene B Gene C Gene D Gene E Phenotype

Gene V Gene W Gene X Gene Y Gene Z
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Hypothetical Disease Mechanism
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Hypothetical Disease Mechanism

* For each gene probability of knockout = 0.22 =
0.04

* Probability of disease:

— Pathway knocked out = 0.4
— Pathway in tact = 0.2

e Sample Size = 2000 cases, 2000 controls

* Power: Best SNP Pathway

Significant Suggestive 0.001 0.005
0.001 0.05 0.42 0.69




Linear Pathway

* For each gene probability of knockout = 0.22 =
0.04

* Probability of disease:
— Pathway knocked out = 0.4
— Pathway in tact = 0.2

* Sample Size = 2000 cases, 2000 controls
* Power:

Best SNP Pathway Pathway (mis-specified)*

Significant | Suggestive 0.001 0.005 0.001 0.005
0.002 0.02 0.94 0.98 0.51 0.73

*Tested pathway includes 15 genes not in simulated pathway



Enrichment Testing in GWAS

e Testing pathway enrichment is possible in GWAS data

— Many of the same issues that exist in gene expression
enrichment testing occur in GWAS enrichment testing (e.g.
choice of statistics, competitive vs self-contained)

* Primary difference:

— In expression data the unit of testing is a gene
— In GWAS data the unit of testing is a SNP

* Challenges:
— ldentifying the SNP (set) -> Gene mapping

— Summarizing across individual SNP statistics to compute a per-
gene measure



Mapping SNPs to Genes

* All SNPs in physical proximity of each gene
— Pros:
* All/most genes represented
— Cons:
* Varying number of SNPs per gene
* Many of the SNPs may dilute signal
* Defining gene proximity can affect results

e eSNPs (Expression associated SNPs)

— Pros:
* 1SNP per gene
* SNPs functionally associated

— Cons:
* Assumes variants effect expression
* Not all genes have eSNPs
* eSNPs may be study and tissue dependent



Gene summaries

* Initial studies propose different
statistics for summarizing the overall
gene association prior to enrichment
analysis
— Number/proportion of SNPs with pvalue < 0.05

— Mean(-log10(pvalue))
— Min(pvalue)

— 1-(1-Min(pvalue))V

— 1-(1-Min(pvalue))(N+1)/2



First approaches: combining p-values

 Compute gene-wise p-value:
— Select most likely variant - ‘best’ p-value
— Selected minimum p-value is biased downward
— Assign ‘gene-wise’ p-value by permutations (Westfall-Young)

e Permute samples and compute ‘best’ p-value for each
permutation

 Compare candidate SNP p-values to this null distribution of
‘best’ p-values

« Combine p-values by Fisher’ s method, across SNPs
(biased in the presence of correlation)

v ==—>log(p,)

g,eG

P = P(Z(zzk) > 21)



Next approaches

* Additive model: log(—) Zﬂll

g;€G

— Where n; indexes the number of allele Bs of a SNP in
geneiinthe geneset G

— Select subset of most likely SNP’ s
— Fit by logistic regression (glm() in R)

* Significance by permutations
— Permute sample outcomes

— Select genes and fit logistic regression again
* Assess goodness of fit each time

— Compare observed goodness of fit



Competitive vs. Self-Contained Tests

 Competitive cutoff tests
— Require only permuting SNP or Gene labels

— May only allow to assess relative significance

e Self-contained distribution tests

— Require permuting phenotype-genotype
relationships

— Resource intensive, may be difficult for large
meta-analyses

— Allow to assess overall significance



Competitive vs. Self-Contained Tests

e Self-contained null hypothesis

— no genes in gene set are differentially expressed

* Competitive null hypothesis

— genes in gene set are at most as often
differentially expressed as genes not in gene set

What does this mean for SNP data?



Choice of Pathways/Gene Sets

* Relatively less “signal” in GWAS than in gene expression
(GE)

— GE enrichment typically test which gene sets/pathways show
enrichment

— GWAS enrichment typically test if there is enrichment

* Typically want to be conservative about selecting the

number of pathways to test, otherwise will be difficult to
overcome multiple testing

* Prioritized Approach:

— Limited number of specific hypotheses (e.g. gene sets from

experiment, co-expression modules, disease-specific
pathways/ontologies)

— Exploratory analyses such as all KEGG/GO sets



Some Specific Methods

 SSEA
— SNP Set Enrichment Analysis

* I-GSEA4AGWAS
* MAGENTA

— Meta-Analysis Gene-set Enrichment of variant
Associations



SSEA

Zhong et al. AJHG (2010)

eSNP analysis to map SNPs to genes
— More on this later.....

Pathway statistic = one-sided Kolmogorov-
Smirnov test statistic

Pathway p-value assessed by permuting
genotype-phenotype relationship

FDR used to control error due to the number of
pathways tested



I-GSEA4GWAS

Zhang et al. Nucl Acids Res (2010)
http://gseadgwas.psych.ac.cn/

Categorizes genes as significant or not significant
— Significant: At least 1 SNP in the top 5% of SNPs
— Does not adjust for gene size

Pathway score: k/K

— k = Proportion of significant genes in the geneset
— K = Proportion of significant genes in the GWAS

FDR assessed by permuting SNP labels



Home | Documents | Template Program | Citation

Demo Run
¥ Load demo data @

Job name: |untitled |

| RUN | | CLEAR |

Upload your GWAS data @
Select data type: o SNP J CNV -~ Gene

GWAS file: | crcase file | no file selected

Select mapping rules of SNPs->genes®
) 500kb upstream and downstream of gene

" 20kb upstream and downstream of gene
" within gene

Gene set database @

¥ canonical pathwways | GO biclogical process | GO molecular function

OR upload your own gene sets file: @ | cacose file | no file selected

Options for gene set database

Improved - Gene Set Enrichment Analysis for

Genome-Wide Association Study

server for identification of pathways/gene sets associated with traits

Emall {links for result will be sent to your email): |

~) “oganthm transformation {necessary ONLY for P-value data)

- 100kb upstream and downstream of gene

- 5kb upstream and downstream of gene

- functional SNP {nonsynonymous, stop gained/lost, frame shift,
essential splice site, regulatory region)

~) GO celiular component

gene name (e.g. CD4)

Keyword:l |.ncude ::exclude

Limit gene sets by keyword (e.g. iImmune). The keyword can be

Mask MHC/xMHC region®
# NO [ mask MHC ~ mask xMHC

Number of genes in gene set @

Minimum (typical 5-20): |20 ]
Maximum (typical 200-inf): 200 |

RUN | | CLEAR




Results

HSAMOS0 MATURITY ONSET DIABETES OF THE YOUNG Genes involved Iin <
View Detal ma..... More 0.001
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View Detail L. More 0.001
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MAGENTA

Segre et al. PLoS Genetics (2010)

Software download:

— http://www.broadinstitute.org/mpg/magenta/

— Requires MATLAB!!

— Less convenient, but more customizable than iGSEA4GWAS

Customizable proportion of “significant” genes

Customizable gene window (upstream & downstream)
Option for Rank-Sum test

Gene Summary = min(p)

— Uses stepwise regression to adjust for multiple possible
factors: e.g. gene size, SNP density


http://www.broadinsFtute.org/mpg/magenta/

MAGENTA Results

positive regulation
of osteoblast

differentiation 3.36E-01 8.02E-01 1 2 3.00E-04 7.91E-02 6 14
one-carbon

metabolic process 2.20E-03 3.55E-01 1 6 1.60E-03 1.44€-01 7 15
placenta

development 3.36E-01 8.06E-01 1 2 4.00E-04 1.45E-01 6 14
carbohydrate

transport 8.19E-01 9.46E-01 2 1 3.20E-03 3.45E-01 8 16



Adaptations of GSEA

* Order log-odds ratios or linkage p-values for
all SNPs

* Map SNPs to genes, and genes to groups

* Use linkage p-values in place of t-scores in
GSEA

— Compare distribution of log-odds ratios for SNPs in
group to randomly selected SNP’ s from the chip



Summary Points for GWAS

In GWAS, few SNPs typically reach genome-wide significance
Biological function of those that do can take years of work to unravel

Incorporating biological information (expression, pathways, etc) can help
interpret and further explore GWAS results

Enrichment tests can be used to explore biological pathway enrichment
— Different tests tell you different things

Annotation choices very different that in gene expression data, though still
rely on the same resources.... not necessarily so for other ‘omics”



Adding in Gene Expression Data

* Many motivating reasons to combine/integrate
data from multiple “-omes”

* Expression and SNP data is most commonly done

— Though methods could be applied to combine other “-
omics”

* Generally make assumptions about central
dogma

@NA -—) RNA —> Protein

Replication Transcription Translation



Genetics of Gene Expression

* Schadt, Monks, et al. (Nature 2003) & Morley,
Molony, et al. (Nature 2004) showed that gene
expression is a heritable trait under genetic
control

 |dentifying expression-associated SNPs (eSNPs)
can identify SNPs which are associated with
biological function

* For significant GWAS “hits” eSNPs can suggest
candidate genes and possibly information about
direction of association



eSNPs can enrich p-values in GWAS studies

Example: T2D Data

Raw T2D Relevant Gene Expression
GWAS Data and Network Information

\__
R\ \ - /

%

% eSNPs by
%@ Disease Tissue

eSNPs by
Disease
Subnetwork

4

T20 Candidate Susceptibity Genes and
Disease Networks with Human Evidence

Zhong et al. {2010) Elucidating Networks of eSNPs
associated with Type 2 Diabetes.

All SNPs

vvvvvv

eSNPs

Fraguncy

Adipose eSNPs

vvvvvv



Considerations on Filtering/Mining
Data

Trade-off between un-biased discovery and improving
power (improving enrichment)

Gold standard for publication is p-value < 5e-8 PLUS
replication

For hypothesis generation or biological data mining
might be willing to accept more Type | error

Possible approaches:
— Gold standard only

— Gold standard then mining “biological” SNPs (e.g. all SNPs
near genes, eSNPs, eSNPs by tissue, etc)

— Partitioning SNPs into sets by prior information



Considerations: Multiple Test
Correction

* Can be valid to test hypotheses in a
partitioned fashion if:

1. The partitions are specified before you look at
the data

2. Your multiple testing procedure controls the
overall error rate



5% P-value vs 5% FDR

* P-value -> Over a large number of times the
experiment is repeated, 5% of the time we’ll
identify 1 or more false positive SNPs

e FDR -> 5% of identified SNPs are false
positives



Partitioned SNP Testing (p-value)

* Can be beneficial if you have a small number
of high(er)-confidence SNPs

 Genomewide significance threshold: 5e-8 =
0.05/1,000,000

 Example: 10,000 eSNPs

— eSNP threshold: 0.025/10,000 = 2.5e-6

— Remaining SNP threshold: 0.025/990,000 =
2.53e-8



Partitioned Testing (FDR)

* Simple way to control error over multiple
partitions

* Controlling FDR at level ¢ in each (non-
overlapping) set, results in overall FDR &

5% False + 5% False _— .
Discovery Discovery 5. aisc
Discovery



eSNPs: Computing your own

 eSNP analyses are just GWAS’s with continuous traits, but 1000’s of
them

* Approaches:

— Frequentist:
* Linear Regression
— Qutlier sensitive, can adjust for covariates

* Robust Regression
— Qutlier resistant, can adjust for covariates, more computationally demanding

* Kruskal-Wallis
— Nonparametric (outlier resistant), difficult to adjust for covariates
— Bayesian:
* More resistant to outlier effects than linear regression, but require setting
priors on each parameter

* Some software available:

— Bimbam
— SNPTEST



eSNPs: A note on computation

 eSNP analysis is extremely resource intensive
in both processor time and storage

* Computation requires a cluster (not possible
on a desktop machine)

* Storage: N X Nexpression traits 1S typically large

— One approach is to store only results with pvalue
< some threshold

markers



eSNP Discovery

eSNPs near gene location are easier to find

— Real biological effects (cis regulation)

— Fewer hypothesis tests relative to genomewide
Typical approach is to identify local (proximal)
eSNPs and distant (distal) eSNPs in separate steps

Controlling each at fixed FDR, &, controls the
overall FDR at &

Choice of proximal window can effect eSNP
discovery



Cis vs Trans Regulation

Proteins bind to cis-acting control sites

Protein binds
at control site
\ Conlrol site

Two type$ of RNAs
DNA sequences synthesized

ovirtualtext www.€rgito.com \/\/\/RNA

DNA




Aside: Cis/Trans vs Proximal/Distal

Cis element -> Regulates transcription only of
copy sharing same DNA strand

Trans element -> Regulates transcription of
both DNA strands

Trans elements can be near the gene, cis
elements can be far from gene (on MB scale)

Proximal (near) and distal (far) more accurate
when referring variants associated with

expression



eSNPs: Publically Available

e Databases:

— www.scandb.org

— http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl!/

* Available in Synapse (synapse.sagebase.org):
— Harvard Brain- Brain, multiple disease
— Kronos Phase |- Brain, alzheimer’s
— Human Liver Cohort- Liver, population sample



Motivation for Integrated Analysis

* Newer approaches will allow you to not do
partitioned/filtered analysis, and leverage
information across datatypes

* New technologies allow for more ready
Integration
— EX. RNA-Seq

— Dropping costs allow for more datatypes to be
collected simultaneously

— Biobanking effort are storing more tissues



Motivation for Integrated Analysis

* Naturally allow Bayesian approaches for identifying
priors or jointing modeling data

e Several new approaches proposed

— Methods that were developed for eSNPs are readily
extended across data types

— Other approaches take into account similarities
between/withing phenotypes

» Several an ontology jointly representing disease risk factors and
causal mechanisms based on GWAS results

* Proposed ontology is disease-specific (nicotine addiction and
treatment) and only applicable to very specific research questions

— More later on “different issues for —omics”



Motivation for Integrated Analysis

 Methods are largely relying on central dogma
assumptions that do not always hold

protein
phosphorylation DG O

o“‘\
,,,,, mRNA
_____ ; _ gene product
response
microRNA A T
v L
ontology c_ell_ cycle

methylation
4 | [ —
SNPs




Summary

Pathway and gene set analysis has been extended
to SNP and SNV data

Some annotation resources are readily adapted,
but a new series of choices are available

Software packages for GWAS pathway analysis
are maturing

Advances in approximation for permutation
testing will make these tools more
computationally tractable

Many of the same issues with missing annotation,
etc. are still a concern



Summary

Integration of SNP level and eSNP data has
been highly successful, and helps motivate the

integration of other “~-omes” in analysis

Such integration will be dependent on the
qguality of the annotation that it relies on

Next, we will talk about specific concerns for
different datatypes

Issues will compound in integrated analysis...



Questions?



