
Lecture	5:	Ecological	distance	metrics;	
Principal	Coordinates	Analysis

Univariate testing	vs.	community	analysis

• Univariate testing	deals	with	hypotheses	concerning	individual	
taxa
– Is	this	taxon	differentially	present/abundant	in	different	samples?
– Is	this	taxon	correlated	with	a	given	continuous	variable?

• What	if	we	would	like	to	draw	conclusions	about	the	
community	as	a	whole?
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Useful	ideas	from	modern	statistics

• Distances	between	anything	(abundances,	presence-absence,	
graphs,	trees);

• Direct	hypotheses	based	on	distances;
• Decompositions	through	iterative	structuration;
• Projections;
• Randomization	tests,	probabilistic	simulations.
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What	is	a	distance	metric?

• Scalar	function	d(.,.)	of	two	arguments
• d(x,	y)	>=	0,	always	nonnegative;	
• d(x,	x)	=	0,	distance	to	self	is	0;
• d(x,	y)	=	d(y,	x),	distance	is	symmetric;
• d(x,	y)	<=	d(x,	z)	+	d(z,	y),	triangle	inequality.
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WHAT	ARE	SOME	GOOD	DISTANCE	METRICS?
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Using	distances	to	capture	multidimensional	heterogeneous	
information

• A	“good”	distance	will	enable	us	to	analyze	any	type	of	data	
usefully

• We	can	build	specialized	distances	that	incorporate	different	types	
of	information	(abundance,	trees,	geographical	locations,	etc.)

• We	can	visualize	complex	data	as	long	as	we	know	the	distances	
between	objects	(observations,	variables)

• We	can	compute	distances	(correlations)	between	distances	to	
compare	them

• We	can	decompose	the	sources	of	variability	contributing	to	
distances	in	ANOVA-like	fashion
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Distance	and	similarity

• Sometimes	it	is	conceptually	easier	to	talk	about	similarities	
rather	than	distances
– E.g.	sequence	similarity

• Any	similarity	measure	can	be	converted	into	a	distance	
metric,	e.g.
– S
– If	S	is	(0,	1),	D=1-S
– If	S>0,	D	=	1/S	or	D	=	exp(-S)

8



A	few	useful	distances	and	similarity	indices
• Distances:

– Euclidean:	(remember	Pythagoras	theorem)	Σ(xi-yi)2
– Weighted	Euclidean:	χ2 = Σ(ei - oi)2/ei
– Hamming/L1,	Bray	Curtis	=	Σ 1{xi=yi}
– Unifrac (later)
– Jensen-Shannon:	(D(X|M)	+	D(Y|M))/2,	where

• M =	(X +	Y)/2
• Kullback-Leibler divergence:	D(X|Y)	=	Σ ln[xi/yi]xi

• Similarity:
– Correlation	coefficient
– Matching	coefficient:	(f11+f00)/(f11 +	f10 +	f01	+	f00)
– Jaccard Similarity	Index:	f11/(f11 +	f10 +	f01)

x\y 1 0

1 f11 f10
0 f01 f00
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Unifrac distance	(Lozupone and	Knight,	2005)
• Is	a	distance	between	groups	of	organisms	related	by	a	tree
• Definition:	Ratio	of	the	sum	of	the	length	of	the	branches	

leading	to	sample	X	or	Y,	but	not	both,	to	the	sum	of	all	
branch	lengths	of	the	tree.
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Weighted	Unifrac (Lozupone et	al.,	2007)
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Key	warnings	about	the	Unifrac family	of	distances.

• The	scaling	of	the	tree	is	important.
• The	rooting	of	the	tree	is	important.
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A	note	of	warning!

• “Garbage	in,	garbage	out”
• Wrong	normalization	=>	wrong	distance	=>	wrong	answer
• However,	given	the	many	choices	there	isn’t	much	beyond	
prior	knowledge,	experience	and	intuition	to	guide	in	selection	
of	the	distance.
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PRINCIPAL	COORDINATES ANALYSIS	-
MULTIDIMENSIONAL	SCALING
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Every	multivariate	sample	can	be	represented	as	a	vector	in	some	vector	space
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Vector	Basis

• A	basis	is	a	set	of	linearly	independent	(dot	product	is	zero)	
vectors	that	span the	vector	space.

• Spanning the	vector	space:	Any	vector	in	this	vector	space	may	
be	represented	as	a	linear	combination	of	the	basis	vectors.

• The	vectors	forming	a	basis	are	orthogonal	to	each	other.	If	all	
the	vectors	are	of	length	1,	then	the	basis	is	called	
orthonormal.	
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Basic	idea	for	analysis	of	multidimensional	data

• Compute	distances
• Reduce	dimensions
• Embed	in	Euclidean	space
• The	general	framework	behind	this	process	is	called	Duality	
diagram:	(Xnxp,	Qpxp,	Dnxn)
– Xnxp (centered)	data	matrix
– Qpxp column	weights	(weights	on	variables)
– Dnxn row	weights	(weights	on	observations)
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Duality	diagram	defines	the	geometry	of	
multivariate	analysis

S. Holmes/The French way. 2

which were translated into English. My PhD advisor, Yves Escoufier [8][10] pub-
licized the method to biologists and ecologists presenting a formulation based on
his RV-coe�cient, that I will develop below. The first software implementation of
duality based methods described here were done in LEAS (1984) a Pascal program
written for Apple II computers. The most recent implementation is the R pack-
age ade-4 (see A for a review of various implementations of the methods described
here).

2.1. Notation

The data are p variables measures on n observations. They are recorded in a matrix
X with n rows (the observations) and p columns (the variables). D

n

is an nxn
matrix of weights on the ”observations”, most often diagonal. We will also use a
”neighborhood” relation (thought of as a metric on the observations) defined by
taking a symmetric definite positive matrix Q. For example, to standardize the
variables Q can be chosen as
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These three matrices form the essential ”triplet” (X,Q,D) defining a multivariate
data analysis. As the approach here is geometrical, it is important to see that Q
and D define geometries or inner products in Rp and Rn respectively through

xtQy =< x, y >
Q

x, y 2 Rp

xtDy =< x, y >
D

x, y 2 Rn

From these definitions we see there is a close relation between this approach and

kernel based methods, for more details see [24]. Q can be seen as a linear function

from Rp to Rp⇤ = L(Rp), the space of scalar linear functions on Rp. D can be seen

as a linear function from Rn to Rn⇤ = L(Rn). Escoufier[8] proposed to associate to

a data set an operator from the space of observations Rp into the dual of the space

of variables Rn⇤. This is summarized in the following diagram [1] which is made

commutative by defining V and W as XtDX and XQXt respectively.
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This is known as the duality diagram because knowledge of the eigendecompo-
sition of XtDXQ = V Q leads to that of the dual operator XQXtD. The main
consequence is an easy transition between principal components and principal axes

imsart-lnms ver. 2005/05/19 file: dfc.tex date: July 30, 2006

• V	=	XTDX
• W	=	XQXT

• Duality:
– The	eigen decomposition	of	VQ	
leads	to	eigen-decomposition	of	
WD

• Inertia is	equal	to	trace	(sum	of	
the	diagonal	elements)	of	VQ	or	
WD.
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Principal	Component	Analysis	(PCA)

• Let	Q	=	I	and	D	=	1/n	I	and	let	X	be	centered.
• VQ	=	XTDXQ	=	1/n	XTX.
• The	inertia	Tr(VQ)	=	sum	of	the	variances.
• PCA	decomposes	the	variance	of	X	into	independent	components.
• To	decompose	the	inertia	means	to	find	the	eigen-system	of	VQ	or	
equivalently	WD	matrices.

• Eigenvalues	give	the	amount	of	inertia	explained	in	corresponding	
dimension.

• Eigenvectors	give	the	dimensions	of	variability.
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Example	PCA
head(USArrests)

Murder Assault UrbanPop Rape
Alabama      13.2     236       58 21.2
Alaska       10.0     263       48 44.5
Arizona       8.1     294       80 31.0
Arkansas      8.8     190       50 19.5
California    9.0     276       91 40.6
Colorado      7.9     204       78 38.7
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Screeplot:	plot	of	inertia

Biplot

Loadings:
Comp.1 Comp.2 Comp.3 Comp.4

Murder -0.536  0.418 -0.341  0.649
Assault  -0.583  0.188 -0.268 -0.743
UrbanPop -0.278 -0.873 -0.378  0.134
Rape -0.543 -0.167  0.818 
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Centering

• Let	Y	be	not	centered	data	matrix	with	n	observations	(rows)	
and	p	variables	(columns)

• Let	H =	(I – 1/n	1x1’)
• Then	X	=	HY	is	centered
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From	Euclidean	distances	to	PCA	to	PCoA

• Note	that	if	D is	a	Euclidean	distance,	then
• X	X’	=	1/n	H D(2) H.
• PCoA is	a	generalization	of	PCA	in	that	knowledge	of	X	is	not	
required,	all	you	need	to	represent	the	points	is	D,	the	inter-
point	distance	matrix.
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Representation	of	(arbitrary)	distances	in	Euclidean	
space	

• The	idea	is	to	use	singular	value	decomposition	(SVD)	on	the	
centered	interpoint distance	matrix	to	extract	Euclidean	
dimensions

• SVD:	X	=	U	S	V,	where	S	is	diagonal	matrix	with	diagonal	
elements	s1,	s2,	…,	sn,	and	U	and	V	are	unit	matrices	(i.e.	their	
determinant	is	1	and	they	span	their	corresponding	spaces)
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PCoA details

• Algorithm	starting	from	D inter-point	distances:
– Center	the	rows	and	columns	of	the	matrix	of	square	(element-by-
element)	distances:	S =	-1/2H D(2)H

– Compute	SVD	by	diagonalizing S,	S =	U Λ UT

– Extract	Euclidean	representations:	X =	U	Λ1/2

• The	relative	values	of	diagonal	elements	of	Λ gives	the	
proportion	of	variability	explained	by	each	of	the	axes.

• The	values	of	Λ should	always	be	looked	at	in	deciding	how	
many	dimensions	to	retain.
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Beta-diversity;	ordination	analysis

27ISME	J.	2016	Mar	25.	doi:	10.1038/ismej.2016.37

Differentiation	of	microbiota between	diabetic	and	non-diabetic	subjects	and	across	body	sites

28

(a) Hands B. Feet C. Hands and Feet 

   

!

 Weighted Unifrac (PC1 [28.5 %] − PC2[12.4 %]) 

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

● ●

●

●
●

●

●

●

●

 Control  Diabetic 

 Weighted Unifrac (PC1 [54.0 %] − PC2[ 7.9 %]) 

●
● ● ●

●
●

●

●
●●

●

●● ●●

●

● ●

●

●

●

●

●
●

● ●
●

●●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

● Control  Diabetic 

 Weighted Unifrac (PC1 [37.8 %] − PC2[ 7.4 %]) 

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●●

● ●
●
●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●●

●

●

●

●●

●

●

●●

●

●
●

● ●

●
●

●

●

●
●

●

●

●

●

●

 Arm Control 
 Foot Control 

 Arm Diabetic 
 Foot Diabetic 

Redel et	al.	J	Infect	Dis.	2013	207(7):1105-14



Correspondence	analysis
• Is	obtained	by	analyzing	the	eigen values	of	the	chi-square	transformed	
counts	Y.

• 𝑌 = 	
𝑦%% 𝑦%& 𝑦%'
𝑦&% 𝑦&& 𝑦&'
𝑦'% 𝑦'& 𝑦''

, 𝑦)* =
𝑦%% + 𝑦%& + 𝑦%'
𝑦&% + 𝑦&& + 𝑦&'
𝑦'% + 𝑦'& + 𝑦''

,

• 𝑦*, = 𝑦%% + 𝑦&% + 𝑦'%,… ,…

• 𝑄 = 𝑞), = 0120334013032
033 013032�

• SVD	analysis	of	Q	results	in	principal	components	for	correspondence	
analysis

• Correspondence	analysis	preserves	the	chi-square	distance.

Within	class	analysis



Within	class	analysis

Suggested	reading/references

32
+	any	proof-based	linear	algebra	text	book.	



Suggested	reading

• Susan	Holmes	“Multivariate	Data	
Analysis:	The	French	Way”,	IMS	
Lecture	Notes–Monograph	
Series,	2006.
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