Lecture 5: Ecological distance metrics; Principal Coordinates Analysis

Univariate testing vs. community analysis

- Univariate testing deals with hypotheses concerning individual taxa
 - Is this taxon differentially present/abundant in different samples?
 - Is this taxon correlated with a given continuous variable?
- What if we would like to draw conclusions about the community as a whole?

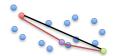
Useful ideas from modern statistics

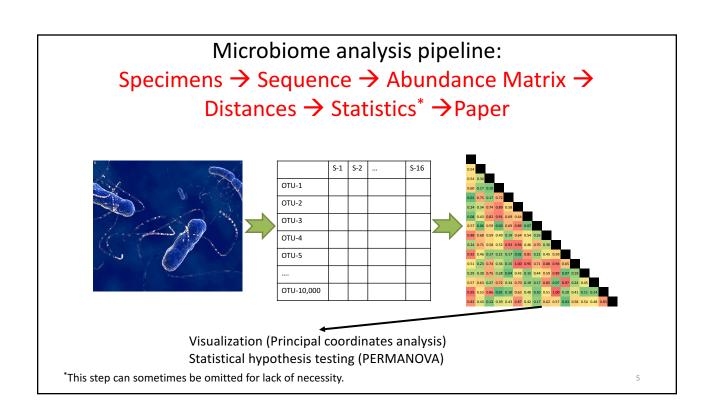
- Distances between anything (abundances, presence-absence, graphs, trees);
- Direct hypotheses based on distances;
- Decompositions through iterative structuration;
- Projections;
- Randomization tests, probabilistic simulations.

3

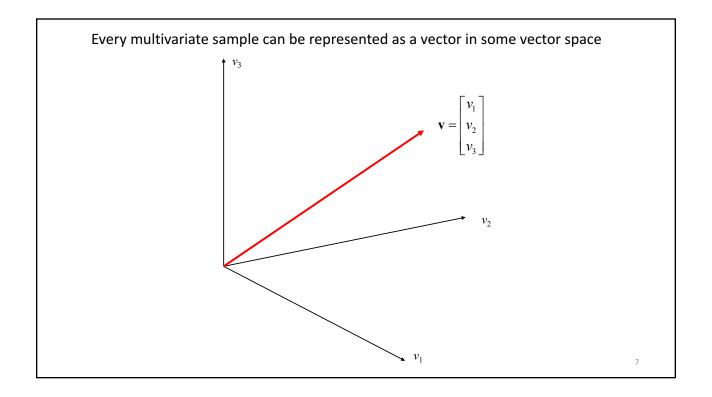
What is a distance metric?

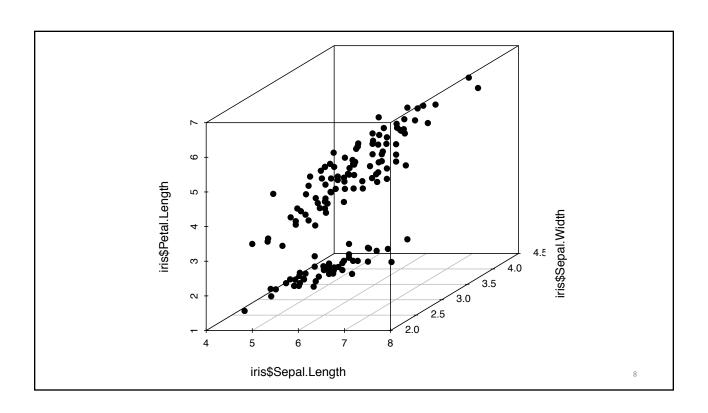
- Scalar function d(.,.) of two arguments
- d(x, y) >= 0, always nonnegative;
- d(x, x) = 0, distance to self is 0;
- d(x, y) = d(y, x), distance is symmetric;
- $d(x, y) \le d(x, z) + d(z, y)$, triangle inequality.





PRINCIPAL COORDINATES ANALYSIS - MULTIDIMENSIONAL SCALING

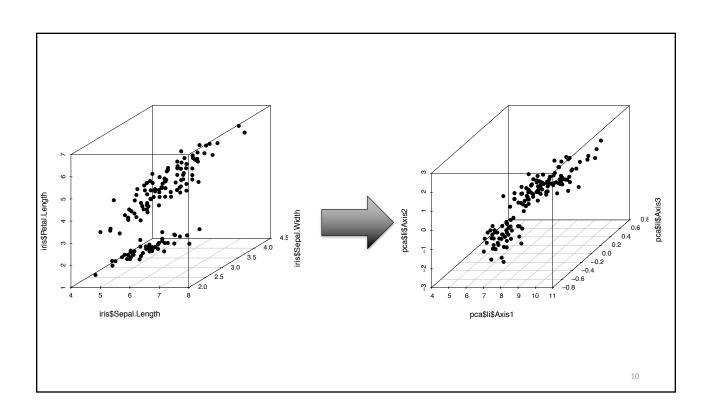




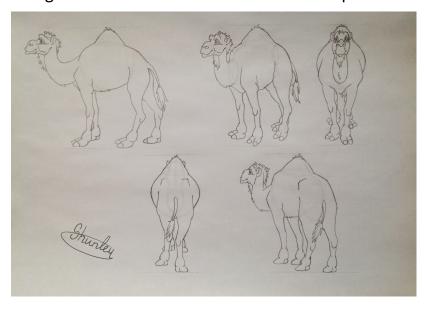
Vector Basis

- A basis is a set of linearly independent (dot product is zero) vectors that **span** the vector space.
- **Spanning** the vector space: Any vector in this vector space may be represented as a linear combination of the basis vectors.
- The vectors forming a basis are orthogonal to each other. If all the vectors are of length 1, then the basis is called orthonormal.

9



Idea: Change basis so that we can better discover patterns in the data.

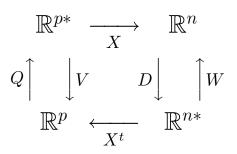


1

Basic idea for analysis of multidimensional data

- Compute distances
- Reduce dimensions
- Embed in Euclidean space
- The general framework behind this process is called **Duality** diagram: $(X_{nxp}, Q_{pxp}, D_{nxn})$
 - $-\mathbf{X}_{\mathsf{nxp}}$ (centered) data matrix
 - $-\mathbf{Q}_{pxp}$ column weights (weights on variables)
 - $-\mathbf{D}_{nxn}$ row weights (weights on observations)

Duality diagram defines the geometry of multivariate analysis

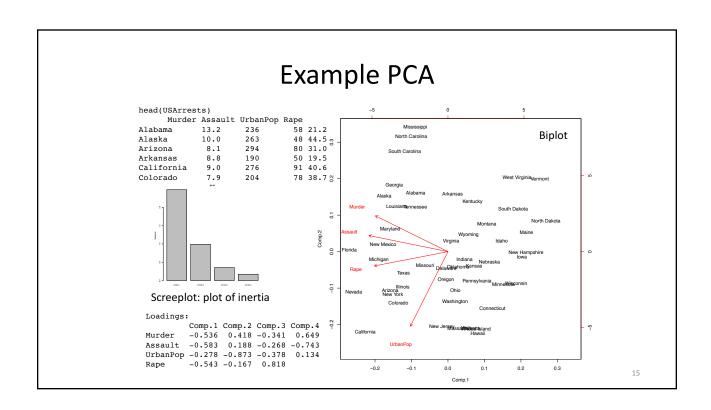


- $V = X^TDX$
- W = XQX^T
- Duality:
 - The eigen decomposition of VQ leads to eigen-decomposition of WD
- Inertia is equal to trace (sum of the diagonal elements) of VQ or WD.

13

Principal Component Analysis (PCA)

- Let Q = I and D = 1/n I and let X be centered.
- $VQ = X^TDXQ = 1/n X^TX$.
- The inertia Tr(VQ) = sum of the variances.
- PCA decomposes the variance of X into independent components.
- To decompose the inertia means to find the eigen-system of VQ or equivalently WD matrices.
- Eigenvalues give the amount of inertia explained in corresponding dimension.
- Eigenvectors give the dimensions of variability.



Centering

- Let Y be not centered data matrix with n observations (rows) and p variables (columns)
- Let H = (I 1/n 1x1')
- Then X = HY is centered

From Euclidean distances to PCA to PCoA

- Note that if **D** is a Euclidean distance, then
- $X X' = 1/n H D^{(2)} H$.
- PCoA is a generalization of PCA in that knowledge of **X** is not required, all you need to represent the points is **D**, the interpoint distance matrix.

1

Representation of (arbitrary) distances in Euclidean space

- The idea is to use singular value decomposition (SVD) on the centered interpoint distance matrix to extract Euclidean dimensions
- SVD: X = U S V, where S is diagonal matrix with diagonal elements s₁, s₂, ..., s_n, and U and V are unit matrices (i.e. their determinant is 1 and they span (they are form orthonormal basis) their corresponding spaces)

Definition

Let \vec{A} be an $n \times n$ matrix Let \vec{x} and λ be such that

$$A\vec{x} = \lambda \vec{x}$$
 with $\vec{x} \neq \vec{0}$

then λ is called an *eigenvalue* of A and and \vec{x} is called an *eigenvector* of A and

19

Note:

$$(A - \lambda I)\vec{x} = \vec{0}$$

If
$$|A - \lambda I| \neq 0$$
 then $\vec{x} = (A - \lambda I)^{-1} \vec{0} = \vec{0}$

thus
$$|A - \lambda I| = 0$$

is the condition for an eigenvalue.

Diagonalization

Thereom If the matrix A is symmetric with distinct eigenvalues, $\lambda_1, \ldots, \lambda_n$ with corresponding eigenvectors $\vec{x}_1, \ldots, \vec{x}_n$

Assume
$$\vec{x}_i'\vec{x}_i = 1$$

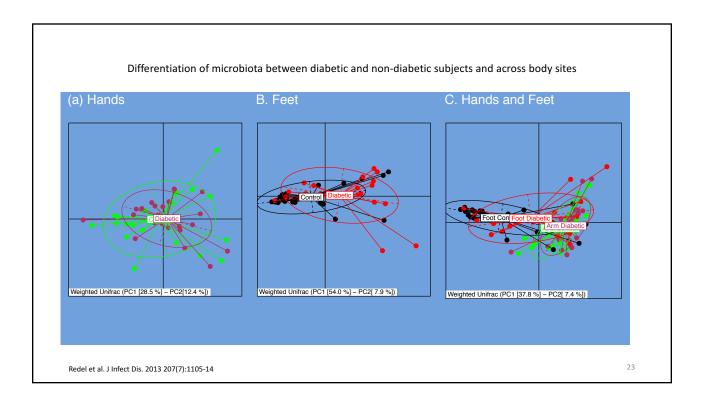
then
$$A = \lambda_1 \vec{x}_1 \vec{x}_1' + \dots + \lambda_n \vec{x}_n \vec{x}_n'$$

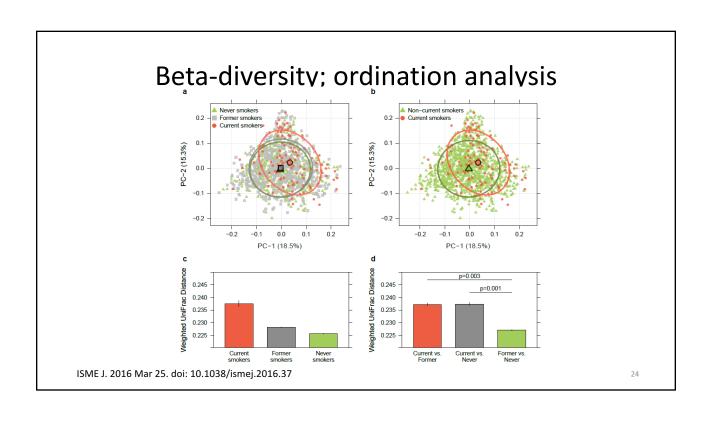
$$= \begin{bmatrix} \vec{x}_1, \dots, \vec{x}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix} \begin{bmatrix} \vec{x}_1' \\ \vec{x}_n' \end{bmatrix} = PDP'$$

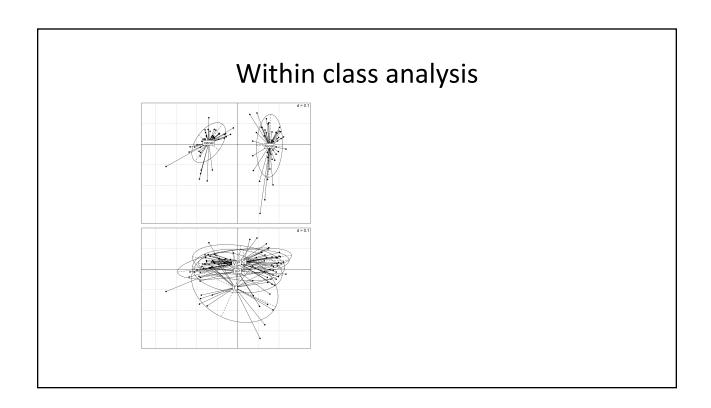
2

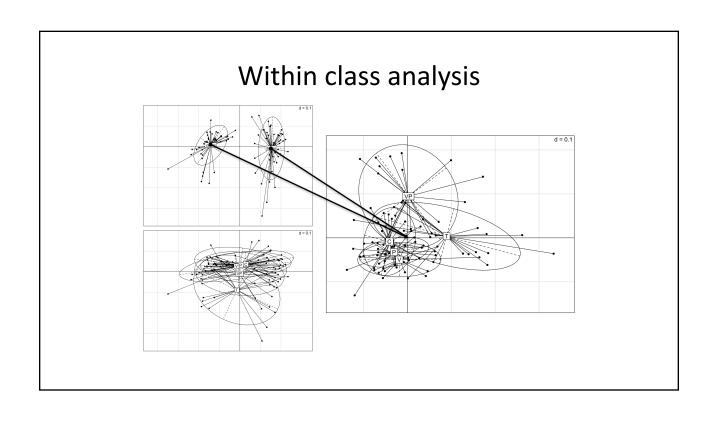
PCoA details

- Algorithm starting from **D** inter-point distances:
 - Center the rows and columns of the matrix of square (element-by-element) distances: $\mathbf{S} = -1/2\mathbf{H} \ \mathbf{D}^{(2)}\mathbf{H}$
 - Compute SVD by diagonalizing **S**, **S** = **U** Λ **U**^T
 - Extract Euclidean representations: $\underline{X} = \mathbf{U} \Lambda^{1/2}$
- The relative values of diagonal elements of Λ gives the proportion of variability explained by each of the axes.
- The values of Λ should always be looked at in deciding how many dimensions to retain.

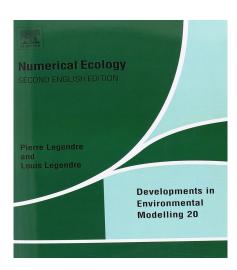








Suggested reading



 Susan Holmes "Multivariate Data Analysis: The French Way", IMS Lecture Notes—Monograph Series, 2006.

27