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Goals

 Methods for GWAS with SNP or whole
genome sequencing (WGS) chips

— Integrating expression and SNP information



Many Shared Issues

* Most issues/choices/approaches discussed for
microarray data are true across all “-omics”

* A few biological and technological issues that
may make just “off the shelf” use of
expression pathway analysis tools
Inappropriate



Genome-Wide Association Studies
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e Standard analysis looks
variant-by-variant



Feasibility of identifying genetic variants by risk allele
frequency and strength of genetic effect (odds ratio).
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Possible Association Models

Each of several genes may have a variant that
confers increased risk of disease independent of
other genes

Several genes in contribute additively to the
malfunction of the pathway

There are several distinct combinations of gene
variants that increase relative risk but only
modest increases in risk for any single variant



Hypothetical Disease Mechanism
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Hypothetical Disease Mechanism
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Hypothetical Disease Mechanism
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Post GWAS Era Workflow
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Enrichment Testing in GWAS

* Testing pathway enrichment is possible in GWAS data

— Many of the same issues that exist in gene expression enrichment
testing occur in GWAS enrichment testing (e.g. choice of statistics,
competitive vs self-contained)

* Primary difference:
— In expression data the unit of testing is a gene
— In GWAS data the unit of testing is a SNP

* Challenges:
— ldentifying the SNP (set) -> Gene mapping

— Summarizing across individual SNP statistics to compute a per-gene
measure

— Correcting for LD, especially across ancestral populations
— Correcting for gene size, pathway size, and number of variants



Candidate Gene vs. Agnostic

* Choices dependent on study goals
- scientific question and available data

 Candidate pathway analysis

— Hypothesis driven questions

* Ex: “are oxidative stress pathways genetically different in individuals with
cancer?

* More common in SNPs than expression

* Agnostic
— Exploratory analyses across knowledge base

— Many choices for input

* Gene-level replication of previously implicated variants
* Polygenic risk score
* Ex: “what pathways are these genetic associations aggregating in?”



Mapping SNPs to Genes

e All SNPs in physical proximity of each gene
— Pros:
* All/most genes represented

* Some approaches use LD to help define
boundaries

— Cons:
* Varying number of SNPs per gene
* Many of the SNPs may dilute signal
e Defining gene proximity can affect results

* LD is population dependent
— Need to match LD panel to study population

— Need raw values or post hoc analysis with summary
statistics



Incorporating Functional Info

 eSNPs (Expression associated SNPs)

— Pros:
* 1SNP per gene
e SNPs functionally associated

— Cons:
* Assumes variants effect expression
* Not all genes have eSNPs
* eSNPs may be study and tissue dependent

e Hi-C (3D folding)
— relationship between chromosome organization and genome activity
— Pros:
* Helps understand transcription and translation
— Cons

* Limited annotation resources
e Short vs. long range assumptions



Gene summaries

* Initial studies propose different statistics for summarizing the
overall gene association prior to enrichment analysis

— Number/proportion of SNPs with pvalue < 0.05
— Mean(-log10(pvalue))

— Min(pvalue) (sentinel SNP)

— 1-(1-Min(pvalue))N

— 1-(1-Min(pvalue))N+1)/2



Competitive vs. Self-Contained Tests

 Competitive cutoff tests

— Require only permuting SNP or Gene labels
— May only allow to assess relative significance

e Self-contained distribution tests

— Require permuting phenotype-genotype relationships

— Resource intensive, may be difficult for large meta-
analyses

— Allow to assess overall significance



Competitive vs. Self-Contained Tests

e Self-contained null hypothesis

— no genes in gene set are differentially expressed

* Competitive null hypothesis

— genes in gene set are at most as often
differentially expressed as genes not in gene set

What does this mean for SNP data?



Choice of Pathways/Gene Sets

* Relatively less “signal” in GWAS than in gene expression
(GE)

— GE enrichment typically test which gene sets/pathways show
enrichment

— GWAS enrichment typically test if there is enrichment

* Typically want to be conservative about selecting the

number of pathways to test, otherwise will be difficult to
overcome multiple testing

* Prioritized Approach:

— Limited number of specific hypotheses (e.g. gene sets from

experiment, co-expression modules, disease-specific
pathways/ontologies)

— Exploratory analyses such as all KEGG/GO sets



Overall Workflow

Obtain sample genotypes for
common SNPs across entire

\: genome

Perform asscciation analysis to
generate p values for SNPs

( Assign SNPs 1o gene boundaries )
N,
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Look for over-representation of
significant SNPs in groupings

l
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First approaches: combining p-values

 Compute gene-wise p-value:
— Select most likely variant - ‘best’ p-value
— Selected minimum p-value is biased downward
— Assign ‘gene-wise’ p-value by permutations (Westfall-Young)

e Permute samples and compute ‘best’ p-value for each
permutation

 Compare candidate SNP p-values to this null distribution of
‘best’ p-values

« Combine p-values by Fisher’ s method, across SNPs
(biased in the presence of correlation)

v =—>log(p,)

g,eG

P = P(Z(zzk) > 21)



Next approaches

* Additive model: log(—) Zﬂll

g;€G

— Where n; indexes the number of allele Bs of a SNP in
geneiinthe geneset G

— Select subset of most likely SNP’ s
— Fit by logistic regression (glm() in R)

* Significance by permutations
— Permute sample outcomes

— Select genes and fit logistic regression again
* Assess goodness of fit each time

— Compare observed goodness of fit



Current approaches

* Adding information about functional annotation
to prioritize/select SNPs:

— ICSNPathway (Zhang et al 2011)

* Use kth best SNP as the representative p-value
combined with permutation testing
— GSA-SNP2 (Nam et al. 2010, Yoon et al 2018)
— Avoids bias from randomly significant SNPs
— Loses power if functional SNPs are included



Current approaches

* Using ranked enrichment tests

— Test the enrichment of a gene or gene set’s SNPs at
the significant end of a list of ranked SNP p-values

— VEGAS2 (Liu et al 2010; Mishra & MacGregor 2015;
Mishra & MacGregor 2017)

— Accounts for all SNPs

— Reduces effects of false positive GWAS through
enrichment of moderately associate SNPs

— Doesn’t negate strongly significant associations
— Computationally intensive



Follow-up
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Some Specific Methods

* I-GSEA4AGWAS

* MAGENTA/FUMA

— Meta-Analysis Gene-set Enrichment of variant
Associations



I-GSEA4GWAS

Zhang et al. Nucl Acids Res (2010)
http://gseadgwas.psych.ac.cn/

Categorizes genes as significant or not significant
— Significant: At least 1 SNP in the top 5% of SNPs
— Does not adjust for gene size

Pathway score: k/K

— k = Proportion of significant genes in the geneset
— K = Proportion of significant genes in the GWAS

FDR assessed by permuting SNP labels
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MAGENTA/FUMA

Segre et al. PLoS Genetics (2010)

Software download:

— http://www.broadinstitute.org/mpg/magenta/

— Requires MATLAB!!

— Less convenient, but more customizable than iGSEA4GWAS

Customizable proportion of “significant” genes

Customizable gene window (upstream & downstream)
Option for Rank-Sum test

Gene Summary = min(p)

— Uses stepwise regression to adjust for multiple possible
factors: e.g. gene size, SNP density


http://www.broadinstitute.org/mpg/magenta/

MAGENTA Results

positive regulation
of osteoblast

differentiation 3.36E-01 8.02E-01 1 2 3.00E-04 7.91E-02 6 14
one-carbon

metabolic process 2.20E-03 3.55E-01 1 6 1.60E-03 1.44€-01 7 15
placenta

development 3.36E-01 8.06E-01 1 2 4.00E-04 1.45E-01 6 14
carbohydrate

transport 8.19E-01 9.46E-01 2 1 3.20E-03 3.45E-01 8 16



FUMA

Watanabe et al, Nature Comm 2017

mplementation of MAGENTA

Cunctional annotation

Pathway analysis
Visualization



Other Adaptations of GSEA

* Order log-odds ratios or linkage p-values for
all SNPs

* Map SNPs to genes, and genes to groups

* Use linkage p-values in place of t-scores in
GSEA

— Compare distribution of log-odds ratios for SNPs in
group to randomly selected SNP’ s from the chip



Pathway Analysis for Rare Variants

* Low frequency (1% - 5% MAF) and rare variants
(<1%) require additional considerations

* Off the shelf use of GWAS pathway methods may
not be appropriate

— Generally, rare variants need to be weighted to have
any power
— One and two stage options

* Using variant level data
 Collapsing variant level data into genes/regions/pathways



Pathway Analysis for Rare Variants

* Power is highly dependent on how closely the
analysis plan matches the true underlying
etiology

e Rare variant common disease (RVCD)
hypothesis

— Generally assumed RVs will have high effect sizes
and/or direct functional consequences

— Not always true

* Ex: Missense mutations can have small effect sizes, with
weak selective pressure



Pathway Analysis for Rare Variants

* Example methods:
— aSPU

* Pan et al American Journal of Human Genetics 2015
— Smoothed functional principal components
analysis
e Zhao et al European Journal of Human Genetics 2015

— Bayesian methods

 Han et al 2019 bioRxiv
doi: https://doi.org/10.1101/828061



Summary Points for GWAS

In GWAS, few SNPs typically reach genome-wide significance
Biological function of those that do can take years of work to unravel

Incorporating biological information (expression, pathways, etc) can help
interpret and further explore GWAS results

Enrichment tests can be used to explore biological pathway enrichment
— Different tests tell you different things

Annotation choices very different that in gene expression data, though still
rely on the same resources.... not necessarily so for other ‘omics”

Methods for rare variants are evolving



Questions?



