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Lecture 6: Distance-based
multivariate analysis of variance

Beta-diversity; ordination analysis
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Measuring association of the ‘entire’
microbiome with other variables

* Distance matrices capture some aspects of the data (e.g. microbiome
composition, relative abundance, phylogenetic relationships).

* Euclidean distance (square-root of sums of square differences
between components of the centered data) captures the covariances
of the variables.

* Can these characteristics be used to draw association of the entire
microbiome with other variables of interest (e.g. treatment group,
locus of sampling, etc.)?

A general strategy for multivariate analysis

* Apply a normalization to the data (e.g. relative abundance);

* Calculate a distance metric between the observations (e.g. Unifrac,
Jensen-Shannon, Chi-Square);

* Perform ordination and/or clustering analysis to visualize
relationships between observations;

* Test for differences between predefined groups (e.g. treatment
levels, phenotypes)
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ANOVA

* ldea: SStotaI =SS + SStreatments

* Ftest: F= [Sstreatments/(I - 1)]/[Sserror/(nT_ l)]
* F = (variance between)/(variance within treatments)

error

* | — number of treatments

* n; — total number of cases

ANOVA example
HEE 1. Within group means
6 8 13 )
8
4
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3
4

Y, = (6+8+4+5+3+4)/6 =5
.« Y,=..=9
129 « Y,=..=10
9 11

N

Overall meanyY =8

1 8 3. Between group sum of squares
6 7 * SStreatments = N1(Y1-Y)*n,(Y,-Y)?+n;(Y;-Y)? = 84
“7 AR - o
(6-Y,)>=(6-5)"2= Within group sum of squares
1 * Sserr0r= 68

H
((e)
N

(8—5)2=9 9 1 * (nT—k)=18—3=15
(4-5p=1 o 1 5. F=(84/2)/(68/15)=42/45= 93
(5-52=0 4 4 6. Fcritical (2, 15) =3.68
 ER 7. Conclusion: The group effects are statistically
o=t ? d significantly different.
(4-5)2=1 1 4

8. Next: perform post-hoc pairwise tests to detect the
pairs that are different
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Euclidean MANOVA

A direct extension of the univariate ANOVA to multiple variables.

* SS=3(Y,— Y)T(Y, - Y)

* SS =3 d?, where d is the Euclidean distance from the center.

Geometric representation of MANOVA

(Anderson, 2001)

Variable 2

Variable 1

Fig.1. A geometric representation of MANOVA for two
groups in two dimensions where the groups differ in location.
The within-group sum of squares is the sum of squared dis-
tances from individual replicates to their group centroid. The
among-group sum of squares is the sum of squared distances
from group centroids to the overall centroid. (——) Distances
from points to group centroids; (----) distances from group
centroids to overall centroid; (+r), overall centroid; (), group
centroid; (@), individual observation.

- SS4/(a—1)
~ SSw/(N-a)

S5, — between group sums of squares
SSy — within group sums of squares
SS.—total sum of squares

SS; =SS, +5S,

Key: Mean within group squared
distance is equal to sum of squared
distances to the centroid.
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Calculating F-statistic from arbitrary distance
matrices

(a)
SSA /(a — 1) Variables (species) Observations

SSW/(N_ Cl) " g (symmetric)
2 Calculate distances g
3 between each pair S | DISTANCE
Fig.3. Schematic diagram of observations MATRIX
for the calculation of (a) a dis-
tance matrix from a raw data
e o s ) .
one-way design (two gr()fups) Observations
directly from the distance
H
((ills;dnccl:vid‘ed hbyh}\t" (total 2 G’°”"1‘|:
number of observations); SSw, -2
sum of squared distances ;“ WS
within groups (&) divided by s}
n (number of observations g
i P o Y155 { /m
(N-a)), where a = the num- //;/ )
ber of groups. S
9
Obtaining p-values

* The F-statistic does not follow Fisher’s F-ratio under
null, therefore we need to evaluate it’s distribution
under null.

* Null hypothesis: there is no difference between
groups; therefore, we can compute null distribution
empirically by shuffling the group labels.

* For each reshuffling of labels compute F statistic, the
p-value is then

_ (No. of F"=F)
" (Total no. of F™)
10
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Post-hoc tests for multi-level factors

P<0.05

* When a factor has more than 2 levels,
it is not immediately clear which pair
of groups are different from each
other.

* To figure this out a post-hoc pairwise
tests need to be carried out.

* The t-statistic is computed as square
root of the F statistic for the pair only.

* Pairwise p-values are calculated with
additional permutations.

* Multiple comparison correction may
be necessary.

aRolalHs

More sophisticated designs

* Two-way MANOVA
* Straightforward extension with all interactions considered.

* Stratification/block design
* When an effect is to be determined within the levels of another factor
* E.g. Location of sampling vs. treatment

12
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More sophisticated regression scenarios

» Based on Zapala & Schork, PNAS 2006.
* Suppose we have M predictor variables

* We treat the multivariate (N XP) data (microbiome abundance, gene
expression, etc.) as the response variable ¥

* The basic multivariate regression modelis Y = X + ¢,
* where B is the coefficient matrix, and ¢ is an error term.
* Define the hat matrix as usual H = (X'X)~1X'.

Regression scenario (continued)

1 1., 1.,
+6=—2(1-311)Dp® (1-211');
tr(HGH)/(M—-1)
tr[(I-H)G(I-H)]/(N-M)’
* This is how PERMANOVA is implemented in R/vegan package,
function adonis().

*Then F =
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Assumptions of PERMANQOVA

* PERMANOVA is defined for
balanced sample sizes, but can
be rewritten for n, # n,,.

* Homoscedasticity is an
underlying assumption.

* Do violations of these
assumptions lead to undesired
behaviors?

e Simulation to test these

asumptions:
* Let X be 1,000 dimensional
uncorrelated standard normal
* Let Y be 1,000 dimensional
uncorrelated multivariate normal
with each component
* mean = 1/sqrt(1000)*e
+ $.D.=0.38
* Simulate data with n,,, ny, €
{5,10,15,20}

* Compute Euclidean distances,
PERMANOVA p-values

Empirical robustness of PERMANOVA to
heteroscedasticity and unbalanced sample sizes

Effect: 2

Effect: 4

sample

-5

® 10
................ ® 15

Empirical type | error and power (o = 0.05)
Effect: 0

Effect: 5 Balanced sample size

* No
A Yes

Observations
in least dispersed

Fraction of rejected null hypotheses

Type |
error

1 1 1 i 1 1 i 1 1 1
5 10 15 205 10 15 205 10 15 205 10 15 20 @20
Observations in most dispersed sample
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Robustness of PERMANOVA

* When both homoscedasticity and balanced sample sizes are violated
adverse statistical behavior can be observed.

* If X is the more dispersed sample then
* n, < n,, leads to type | error inflation,

* ny > n, leads to loss of power,
* where n, is the number of observations in the more dispersed sample.

Bioinformatics, 2016, 1-7

doi: 10.1093/bioinformatics/btw524

Advance Access Publication Date: 11 August 2016
Original article

ldea: Borrow from
univariate a p p roa. Ch Multivariate Welch t-test on distances
to h ete rOS C e d a Stl C Alexander V. Alekseyenko

Departments of Public Health Sciences and Oral Health Sciences, Program for Human Microbiome Research, The
d a ta Biomedical Informatics Center Medical University of South Carolina, 135 Cannon Street, MSC 200, Charleston, SC
29466, USA

Genome analysis

v 4)2
» Consider the square of Welch t-statistic Tjy = ———5— & y)z :
SZ/Myx+s3/ny

* If we can write TVZV in terms of pairwise distances, we can generalize it
to multivariate data.

* We can use permutation testing to assess the significance.

18
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Key equations for TVZV derivation

_ Ny 42
- nx(n -1) l<](x’- x}) Ny (Ny _1)Zl<] dl]'
* Where}i.; denotes double summation Yi_; X7, .

*LetZ = (24, o) Znginy) = (X1, s Xy V1 s Yy )
— — Nyt+n 1 2
s (X -y =" Zz<](zl ~ ) - n_xzi<j(xi - xj)

NyNy, [n +n,y
1 2
n—yZi<j(J’i —yj) ]

Pseudo-F vs Ty

;an#ny dz B —Z ian-l__nY 42
n, + n, i<j i<j ny i<j J
F = i,j=1 i,j=1 I,j=n,+1
1 2 1 Tlx+7’ly 2
(@Z A R di,->/<nx )
i,j=1 L,j=n,+1
1 Nx+ny o 1 2 Ny+ny, 2
nx+ny2 i<j d nxz i<j d n Z i<j dl]
2 _ n, + n, ij=1 i,j=1 [,j=n,+1
TW o n.n X 1 1 Ny+n
x'ty —Z d2 —Z XY d2
ni(n, — 1)< i< 2(n, — 1) i<j Ty
XX i,j=1 y y I,j=n,+1

How do these compare when n,, = n, or ———— nx(n n ZK] Ty —1)Zl<f

20
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Type |
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Empirical
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performance of Ti% vs

Effect: 4
0.75 -n
3
o
i
0.50 o
S Balanced le si:
0.254 [N alanced sample size
p * No
goo | 4 Yes
£1.00
e
B
50757 I~ PERMANOVA
2 8
° » o~ Tw2
g 0.50 o
2 ©  Observations
L0.25+ ® i least dispersed
s sample
c ' .
S0.00 5
& 1.00 ® 10
w @ 15
0.754 . @22
3
o
0.50 » .
] Homoscedastic
0254 / R
0.001. —0 A
T T T T T T T T T
2 2 KR® 2 ©¥ gw e v 8§

Observations in most dispersed sample 21
~
~

Empirical type | error and power (o = 0.05) Empirical type | error and power (o = 0.05)
Effect: 0 Effect: 4 Effect: 5 Effect: 0 Effect: 2 Eff
.00 1.00 reooea
075 o 0.75 o
g 3
[
050 5 050 4
S| Observations S Balanced sample size
© inleast di d 5
025 M| Inleast disperse 025 SN
§000 -8 3 4 Yes
£ .9 2000
51001 £1.004 == Statistical
<3 e |10 g test
%ms— o @1 Eo754 L -~ PERMANOVA
£ 5 @ 2 g -
£os0 o ) B 050 4
g | Balanced sample size 8 z Observations
o o eN L S inleast dispersed
oz o ©0.254 @ sample
5 4 Yes 5
< - a8
So00 So oo’“‘“g-‘
S 004 Statistical 5 =
@ 14 test & 1.00 oo
s g ® 50
o754 e PERMANOVA o5
T e Tw2 075 o
3 @2
.50 » »
050 4 0504 o
= °
0257 0.254 8
o L N A S 000
© oo r 8w o o r we o o = & U A R S A S S S S S S S S
2 29 5 %2 285 N2 2 8 5 O
Observations in most dispersed sample ¥ ¥ 0 w0 T U A
Observanons in most dispersed sample 2

11



7/16/19

Performance in a real dataset

Table 2. Comparison of PERMANOVA and T&V on mouse gut microbiome dataset.

Cecal microbiome Fecal microbiome

P-values P-values
Comparison Nobs. #H w? d PERMANOVA T}, Nobs. H w? d PERMANOVA T,
C. vs. All Abx. 10vs.40 1.4 0.22 1.21 0.040 0.0001 10vs.36 1.4 029 134 0.015 0.0014
C. vs. Penicillin 10vs. 10 0.85 0.12 1.90 0.00001 0.00002 10vs.9 1.1 0.07 1.94 0.015 0.015
C. vs. Vancomycin 10vs. 10 1.8 0.08 2.26 0.00009 0.0001 10vs.9 1.6 021 2.70 0.00001 0.00002
C. vs. Tetracycline 10vs.10 1.2 0.12 2.05 0.00005 0.00005 10vs.10 1.0 0.07 1.89 0.007 0.006
C.vs. Van. + Tetr. 10vs. 10 1.1  0.10 1.97 0.002 0.002 10vs.8 14 0.11 224 0.001 0.002
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Hamidi et al. Microbiome (2019) 7:51
https://doi.org/10.1186/540168-019-0659-9 Microbiome

W-test: robust distance-based
multivariate analysis of variance

Bashir Hamidi'?, Kristin Wallace?, Chenthamarakshan Vasu* and Alexander V. Alekseyenko

* In univariate case W," is equivalent to W".

s Let x;~N (O, s;),
1. st =1;
2. s?=1,52 =0.8,52 = 0.8
3. s?=1,s2=0.2,s3 =0.22.
* n; € {5,10,20,40}.

Hamidi et al. Wd*-test: robust distance-based multivariate analysis of variance. Microbiome. 2019.

Check for
Updates

1235%

Note that univariate W* test based on F distribution applies here.

24
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W, * and PERMANOVA on heteroscedastic
univariate data

Variance Test
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Key derivations for W *

oW - /=1 N\
T 1+ RG—2/R-D] T w = nj/st = (nj — D] (Z dyg )
r<q
W]' = nj/sz,
/TL = Z WjQ_Cj/W,

k

R 1 -
E wi(% — ) = WE wiw;(X; — %)
j=1

i<j

W = ij, and
hi = (1 —wj/W)*/(nj — 1).
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Application example: racial disparity in
colorectal cancer microbiome

Table 2 Significance of the primary and interaction effects by

PERMANOVA and W tests
Covariate PERMANOVA p value W} p value
Race 0064 0.047
Location 0.907 0.908
Race and location 0.282 0.037
/IECK.PROX

. Table 3 One versus all post hoc comparisons of the interaction

terms

Group TVZV statistic W} p value
AA distal 8.88 0.039

CA distal 193 0.075

AA proximal 0.36 0.936

CA proximal 0.70 0.665
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Bioinformatics, 32(17), 2016, 2618-2625
doi: 10.1093/bioinformatics/btw311
Advance Access Publication Date: 19 May 2016
Original Paper OXFORD
PERMANQOVA-S: o o
accommo d a te S PERMANOVA-S: association test for microbial

community composition that accommodates

mu |t| p | e d |Sta Nces confounders and multiple distances

Zheng-Zheng Tang'* ', Guanhua Chen*"
Alexander V. Alekseyenko?3*

and

'Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA, *Biomedical
Informatics Center, 3Depar!mem of Public Health Sciences and °Depar!ment of Oral Health Sciences, Medical
University of South Carolina, Charleston, SC 29403, USA

* Based on Tang et al. Bioinformatics 2016.

* Suppose we want to consider K distances simultaneously, D4, ..., Dg.
* We would like to know the significance of the entire ensemble

* Determine which individual distance performs best
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