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Lecture	6:	Distance-based	
multivariate	analysis	of	variance

Beta-diversity;	ordination	analysis
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Measuring	association	of	the	‘entire’	
microbiome with	other	variables
• Distance	matrices	capture	some	aspects	of	the	data	(e.g.	microbiome
composition,	relative	abundance,	phylogenetic	relationships).
• Euclidean	distance	(square-root	of	sums	of	square	differences	
between	components	of	the	centered	data)	captures	the	covariances
of	the	variables.	
• Can	these	characteristics	be	used	to	draw	association	of	the	entire	
microbiome with	other	variables	of	interest	(e.g.	treatment	group,	
locus	of	sampling,	etc.)?	
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A	general	strategy	for	multivariate	analysis

• Apply	a	normalization	to	the	data	(e.g.	relative	abundance);
• Calculate	a	distance	metric	between	the	observations	(e.g.	Unifrac,	
Jensen-Shannon,	Chi-Square);
• Perform	ordination	and/or	clustering	analysis	to	visualize	
relationships	between	observations;
• Test	for	differences	between	predefined	groups	(e.g.	treatment	
levels,	phenotypes)
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ANOVA

• Idea:	SStotal =	SSerror +	SStreatments

• F	test:	F	=	[SStreatments/(I	– 1)]/[SSerror/(nT - I)]
• F	=	(variance	between)/(variance	within	treatments)
• I	– number	of	treatments
• nT – total	number	of	cases
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ANOVA	example
a1 a2 a3

6 8 13

8 12 9

4 9 11

5 11 8

3 6 7

4 8 12

1. Within	group	means
• Y1 =	(6+8+4+5+3+4)/6	=	5
• Y2 =	…	=	9
• Y3 =	…	=	10

2. Overall	mean	Y	=	8
3. Between	group	sum	of	squares	

• SStreatments =	n1(Y1-Y)2+n2(Y2-Y)2+n3(Y3-Y)2	=	84
• (k	– 1)	=	3	– 1	=	2

4. Within	group	sum	of	squares
• SSerror=	68
• (nT – k)	=	18	– 3	=	15

5. F	=	(84/2)	/	(68/15)	=	42/4.5	=		9.3
6. Fcritical (	2,	15)	=	3.68
7. Conclusion:	The	group	effects	are	statistically	

significantly	different.
8. Next:	perform	post-hoc	pairwise	tests	to	detect	the	

pairs	that	are	different

SS1 SS2 SS3
(6	– Y1)2=(6	– 5)^2	=	

1
1 9

(8 – 5)2 =	9 9 1

(4	– 5)2 =	1 0 1

(5	– 5)2 =	0 4 4

(3	– 5)2 =	4 9 9

(4 – 5)2 =	1 1 4
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Euclidean	MANOVA

• A	direct	extension	of	the	univariate ANOVA	to	multiple	variables.
• SS	=	Σ(Yi – Y)T(Yi – Y)
• SS	=	Σ d2,	where	d	is	the	Euclidean	distance	from	the	center.
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Geometric	representation	of	MANOVA
(Anderson,	2001)

of a P-value using some method of permutation. I will
describe the method, which I shall simply call non-
parametric MANOVA, first for the one-way design and
then for more complex designs, followed by some eco-
logical examples. I deal here only with the case of
balanced ANOVA designs, but analogous statistics for any
linear model, including multiple regression and/or
unbalanced data, can be constructed, as described by
McArdle and Anderson (in press).

The test statistic: an F-ratio

The essence of analysis of variance is to compare vari-
ability within groups versus variability among different
groups, using the ratio of the F-statistic. The larger the
value of F, the more likely it is that the null hypothesis
(H0) of no differences among the group means (i.e.
locations) is false. For univariate ANOVA, partitioning
of the total sum of squares, SST, is achieved by calcu-
lating sums of squared differences (i) between indiv-
idual replicates and their group mean (SSW, the
within-group sum of squares; Table 1a), and (ii)
between group means and the overall sample mean
(SSA, the among-group sum of squares). Next, consider
the multivariate case where p variables are measured
simultaneously for each of n replicates in each of a
groups, yielding a matrix of data where rows are obser-
vations and columns are variables. A natural multi-
variate analogue may be obtained by simply adding up
the sums of squares across all variables (Table 1b). An
F-ratio can then be constructed, as in the univariate
case.

This multivariate analogue can also be thought of
geometrically (e.g. Caliński & Harabasz 1974; Mielke
et al. 1976; Edgington 1995; Pillar & Orlóci 1996), as
shown in Fig. 1 for the case of two groups and two vari-
ables (dimensions). Here, SSW is the sum of the
squared Euclidean distances between each individual
replicate and its group centroid (the point corres-
ponding to the averages for each variable, Fig. 1 and
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Table 1. Calculations of within-group sums of squares for partitioning in (a) univariate ANOVA, (b) a multivariate analogue
obtained by summing across variables, (c) a multivariate analogue equivalent to (b) obtained using sums of squared Euclidean
distances, (d) the traditional MANOVA approach, which yields an entire matrix (W) of within-group sums of squares and cross
products, and (e) the partitioning using inter-point distances advocated here, equivalent to (b) and (c) if Euclidean distances
are used

Univariate
(a) One variable SSW ! "

a
i ! 1 "

n
j ! 1 ( yij – y–i.)2

Multivariate
(b) Summed across variables SSW ! "

a
i ! 1 "

n
j ! 1 "

p
k ! 1 ( yijk – y–i.k)2

(c) Geometric approach SSW ! "
a
i ! 1 "

n
j ! 1 ( yij – y–i.)T( yij – y–i.)

(inner product, a scalar, based on Euclidean distances, correlations between 
variables ignored)

(d) Traditional MANOVA W ! "
a
i ! 1 "

n
j ! 1 ( yij – yy–i.)( yij – yy–i.)T

(outer product, a matrix, based on Euclidean distances, correlations between 
variables matter)

(e) Inter-point geometric approach
(a scalar, based on any distance measure, correlations between variables ignored) SS1 !

1
"

N – 1
i ! 1 "

N
j ! i # 1 d2

ij $ijn

yij, univariate observation of the jth replicate (j ! 1,…, n) in the ith group (i ! 1,…, a); yijk, observation of yij for the kth
variable (k ! 1,…, p); yij, vector of length p, indicating a point in multivariate space according to p variables (dimensions) for
observation j in group i. A superscript !T% indicates the transpose of the vector, bars over letters indicate averages and a dot
subscript indicates averaging was done over that subscripted variable.

Fig. 1. A geometric representation of MANOVA for two
groups in two dimensions where the groups differ in location.
The within-group sum of squares is the sum of squared dis-
tances from individual replicates to their group centroid. The
among-group sum of squares is the sum of squared distances
from group centroids to the overall centroid. (——) Distances
from points to group centroids; (•••••••) distances from group
centroids to overall centroid; (!), overall centroid; ("), group
centroid; (#), individual observation.

partitioning (in terms of ‘average’ differences among
groups) has not been previously achieved using
Bray–Curtis (or other semimetric) distances. However,
the relationship shown in Fig. 2 can be applied to
achieve the partitioning directly from interpoint
distances.

Thus, consider a matrix of distances between every
pair of observations (Fig. 3a). If we let N ! an, the total
number of observations (points), and let dij be the dis-
tance between observation i ! 1,…, N and observation
j ! 1,…, N, the total sum of squares is

1
SST ! "

N–1

i ! l
"
N

j ! i # 1
d2

ij (1)
N

That is, add up the squares of all of the distances in
the subdiagonal (or upper-diagonal) half of the distance
matrix (not including the diagonal) and divide by N
(Fig. 3b). In a similar fashion, the within-group or
residual sum of squares is

1
SSW ! "

N–1

i ! l
"
N

j ! i # 1
d2

ij $ij (2)
n

where $ij takes the value 1 if observation i and obser-
vation j are in the same group, otherwise it takes the
value of zero. That is, add up the squares of all of the
distances between observations that occur in the same
group and divide by n, the number of observations per
group (Fig. 3b). Then SSA ! SST – SSW and a pseudo
F-ratio to test the multivariate hypothesis is

SSA /(a – 1)
F ! (3)

SSW /(N – a)

If the points from different groups have different cen-
tral locations (centroids in the case of Euclidean dis-
tances) in multivariate space, then the among-group
distances will be relatively large compared to the within-
group distances, and the resulting pseudo F-ratio will
be relatively large.

One can calculate the sums of squares in equations
(1) and (2) and the statistic in equation (3) from a 
distance matrix obtained using any distance measure.
The statistic in equation (3) corresponds exactly to 
the statistic in equation (4) of McArdle and Anderson
(in press), who have shown more generally how 
partitioning for any linear model can be done directly
from the distance matrix, regardless of the distance
measure used. Another important aspect of the stat-
istic described above is that, in the case of a Euclidean
distance matrix calculated from only one variable,
equation (3) gives the same value as the traditional
parametric univariate F-statistic.

This is proposed as a new non-parametric MANOVA

statistic that is intuitively appealing, due to its analogy
with univariate ANOVA, and that is extremely relevant
for ecological applications. The results (in terms of
sums of squares, mean squares and pseudo F-ratios)
obtained for individual terms in a multivariate analysis

can be interpreted in the same way as they usually are
for univariate ANOVA. The difference is that the hypoth-
esis being tested for any particular term is a multivariate
hypothesis.

OBTAINING A P-VALUE USING
PERMUTATIONS

The multivariate version of the F-statistic described
here is not distributed like Fisher’s F-ratio under the
null hypothesis. This is so because (i) we do not expect
the individual variables to be normally distributed, and
(ii) we do not expect that the Euclidean distance will
necessarily be used for the analysis. Even if each of the
variables were normally distributed and the Euclidean
distance used, the mean squares calculated for the mul-
tivariate data would not each consist of sums of inde-
pendent %2 variables, because, although individual
observations are expected to be independent, individ-
ual species variables are not independent of one
another. Thus, traditional tabled P-values cannot be
used. A distribution of the statistic under the null
hypothesis can be created, however, using permutations
of the observations (e.g. Edgington 1995; Manly
1997). The only situation in which one could use the
traditional tabled probabilities would be if one had a
single variable that could reasonably be assumed to be
normally distributed and one used Euclidean distances
for the analysis.

Suppose the null hypothesis is true and the groups
are not really different (in terms of their composition
and/or their relative abundances of species, as measured
by the Bray–Curtis distances). If this were the case,
then the multivariate observations (rows) would be
exchangeable among the different groups. Thus, the
labels on the rows that identify them as belonging to a
particular group could be randomly shuffled (per-
muted) and a new value of F obtained (called, say, F&).
This random shuffling and re-calculation of F& is then
repeated for all possible re-orderings of the rows rela-
tive to the labels. This gives the entire distribution of
the pseudo F-statistic under a true null hypothesis for
our particular data. Comparing the value of F obtained
with the original ordering of the rows to the distribution
created for a true null by permuting the labels, a P-value
is calculated as

(No. of F & ≥ F)
P ! (4)

(Total no. of F &)

Note that we consider the original observed value of F
to be a member of the distribution of F& under per-
mutation (i.e. it is one of the possible orderings of the
labels on the rows). The usual scientific convention of
an a priori significance level of ' ! 0.05 is generally
used for interpreting the significance of the result, as
in other statistical tests. It is also possible to view the
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SSA – between	group	sums	of	squares
SSW – within	group	sums	of	squares
SST	– total	sum	of	squares

SST =	SSW	+	SSA

8

Key:	Mean	within	group	squared	
distance	is	equal	to	sum	of	squared	
distances	to	the	centroid.	
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Calculating	F-statistic	from	arbitrary	distance	
matrices

Table 1c). Note that this additive partitioning using a
geometric approach yields one value for each of SSW,
SSA and SST as sums of squared Euclidean distances.
This geometric approach gives sums of squares equiv-
alent to the sum of the univariate sums of squares
(added across all variables) described in the previous
paragraph. This differs from the traditional MANOVA

approach, where partitioning is done for an entire
matrix of sums of squares and cross-products (e.g.
Mardia et al. 1979; Table 1d).

The key to the non-parametric method described
here is that the sum of squared distances between points
and their centroid is equal to (and can be calculated
directly from) the sum of squared interpoint distances
divided by the number of points. This important
relationship is illustrated in Fig. 2 for points in two
dimensions. The relationship between distances to
centroids and interpoint distances for the Euclidean
measure has been known for a long time (e.g. 
Kendall & Stuart 1963; Gower 1966; Caliński &
Harabasz 1974; Seber 1984; Pillar & Orlóci 1996;
Legendre & Legendre 1998; see also equation B.1 in
Appendix B of Legendre & Anderson 1999). What is
important is the implication this has for analyses 
based on non-Euclidean distances. Namely, an 
additive partitioning of sums of squares can be obtained
for any distance measure directly from the distance
matrix, without calculating the central locations of
groups.

Why is this important? In the case of an analysis
based on Euclidean distances, the average for each vari-
able across the observations within a group constitutes
the measure of central location for the group in
Euclidean space, called a centroid. For many distance
measures, however, the calculation of a central location
may be problematic. For example, in the case of the
semimetric Bray–Curtis measure, a simple average
across replicates does not correspond to the ‘central
location’ in multivariate Bray–Curtis space. An
appropriate measure of central location on the basis 
of Bray–Curtis distances cannot be calculated 
easily directly from the data. This is why additive
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Fig. 2. The sum of squared distances from individual
points to their centroid is equal to the sum of squared inter-
point distances divided by the number of points.

Fig. 3. Schematic diagram
for the calculation of (a) a dis-
tance matrix from a raw data
matrix and (b) a non-para-
metric MANOVA statistic for a
one-way design (two groups)
directly from the distance
matrix. SST, sum of squared
distances in the half matrix
(!) divided by N (total 
number of observations); SSW,
sum of squared distances
within groups ( ) divided by
n (number of observations 
per group). SSA ! SST – SSW

and F = [SSA/(a – 1)]/[SSW/
(N – a)], where a ! the num-
ber of groups.
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partitioning (in terms of ‘average’ differences among
groups) has not been previously achieved using
Bray–Curtis (or other semimetric) distances. However,
the relationship shown in Fig. 2 can be applied to
achieve the partitioning directly from interpoint
distances.

Thus, consider a matrix of distances between every
pair of observations (Fig. 3a). If we let N ! an, the total
number of observations (points), and let dij be the dis-
tance between observation i ! 1,…, N and observation
j ! 1,…, N, the total sum of squares is

1
SST ! "

N–1

i ! l
"
N

j ! i # 1
d2

ij (1)
N

That is, add up the squares of all of the distances in
the subdiagonal (or upper-diagonal) half of the distance
matrix (not including the diagonal) and divide by N
(Fig. 3b). In a similar fashion, the within-group or
residual sum of squares is

1
SSW ! "

N–1

i ! l
"
N

j ! i # 1
d2

ij $ij (2)
n

where $ij takes the value 1 if observation i and obser-
vation j are in the same group, otherwise it takes the
value of zero. That is, add up the squares of all of the
distances between observations that occur in the same
group and divide by n, the number of observations per
group (Fig. 3b). Then SSA ! SST – SSW and a pseudo
F-ratio to test the multivariate hypothesis is

SSA /(a – 1)
F ! (3)

SSW /(N – a)

If the points from different groups have different cen-
tral locations (centroids in the case of Euclidean dis-
tances) in multivariate space, then the among-group
distances will be relatively large compared to the within-
group distances, and the resulting pseudo F-ratio will
be relatively large.

One can calculate the sums of squares in equations
(1) and (2) and the statistic in equation (3) from a 
distance matrix obtained using any distance measure.
The statistic in equation (3) corresponds exactly to 
the statistic in equation (4) of McArdle and Anderson
(in press), who have shown more generally how 
partitioning for any linear model can be done directly
from the distance matrix, regardless of the distance
measure used. Another important aspect of the stat-
istic described above is that, in the case of a Euclidean
distance matrix calculated from only one variable,
equation (3) gives the same value as the traditional
parametric univariate F-statistic.

This is proposed as a new non-parametric MANOVA

statistic that is intuitively appealing, due to its analogy
with univariate ANOVA, and that is extremely relevant
for ecological applications. The results (in terms of
sums of squares, mean squares and pseudo F-ratios)
obtained for individual terms in a multivariate analysis

can be interpreted in the same way as they usually are
for univariate ANOVA. The difference is that the hypoth-
esis being tested for any particular term is a multivariate
hypothesis.

OBTAINING A P-VALUE USING
PERMUTATIONS

The multivariate version of the F-statistic described
here is not distributed like Fisher’s F-ratio under the
null hypothesis. This is so because (i) we do not expect
the individual variables to be normally distributed, and
(ii) we do not expect that the Euclidean distance will
necessarily be used for the analysis. Even if each of the
variables were normally distributed and the Euclidean
distance used, the mean squares calculated for the mul-
tivariate data would not each consist of sums of inde-
pendent %2 variables, because, although individual
observations are expected to be independent, individ-
ual species variables are not independent of one
another. Thus, traditional tabled P-values cannot be
used. A distribution of the statistic under the null
hypothesis can be created, however, using permutations
of the observations (e.g. Edgington 1995; Manly
1997). The only situation in which one could use the
traditional tabled probabilities would be if one had a
single variable that could reasonably be assumed to be
normally distributed and one used Euclidean distances
for the analysis.

Suppose the null hypothesis is true and the groups
are not really different (in terms of their composition
and/or their relative abundances of species, as measured
by the Bray–Curtis distances). If this were the case,
then the multivariate observations (rows) would be
exchangeable among the different groups. Thus, the
labels on the rows that identify them as belonging to a
particular group could be randomly shuffled (per-
muted) and a new value of F obtained (called, say, F&).
This random shuffling and re-calculation of F& is then
repeated for all possible re-orderings of the rows rela-
tive to the labels. This gives the entire distribution of
the pseudo F-statistic under a true null hypothesis for
our particular data. Comparing the value of F obtained
with the original ordering of the rows to the distribution
created for a true null by permuting the labels, a P-value
is calculated as

(No. of F & ≥ F)
P ! (4)

(Total no. of F &)

Note that we consider the original observed value of F
to be a member of the distribution of F& under per-
mutation (i.e. it is one of the possible orderings of the
labels on the rows). The usual scientific convention of
an a priori significance level of ' ! 0.05 is generally
used for interpreting the significance of the result, as
in other statistical tests. It is also possible to view the
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Obtaining	p-values
• The	F-statistic	does	not	follow	Fisher’s	F-ratio	under	
null,	therefore	we	need	to	evaluate	it’s	distribution	
under	null.
• Null	hypothesis:	there	is	no	difference	between	
groups;	therefore,	we	can	compute	null	distribution	
empirically	by	shuffling	the	group	labels.	
• For	each	reshuffling	of	labels	compute	F	statistic,	the	
p-value	is	then
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partitioning (in terms of ‘average’ differences among
groups) has not been previously achieved using
Bray–Curtis (or other semimetric) distances. However,
the relationship shown in Fig. 2 can be applied to
achieve the partitioning directly from interpoint
distances.

Thus, consider a matrix of distances between every
pair of observations (Fig. 3a). If we let N ! an, the total
number of observations (points), and let dij be the dis-
tance between observation i ! 1,…, N and observation
j ! 1,…, N, the total sum of squares is

1
SST ! "

N–1

i ! l
"
N

j ! i # 1
d2

ij (1)
N

That is, add up the squares of all of the distances in
the subdiagonal (or upper-diagonal) half of the distance
matrix (not including the diagonal) and divide by N
(Fig. 3b). In a similar fashion, the within-group or
residual sum of squares is

1
SSW ! "

N–1

i ! l
"
N

j ! i # 1
d2

ij $ij (2)
n

where $ij takes the value 1 if observation i and obser-
vation j are in the same group, otherwise it takes the
value of zero. That is, add up the squares of all of the
distances between observations that occur in the same
group and divide by n, the number of observations per
group (Fig. 3b). Then SSA ! SST – SSW and a pseudo
F-ratio to test the multivariate hypothesis is

SSA /(a – 1)
F ! (3)

SSW /(N – a)

If the points from different groups have different cen-
tral locations (centroids in the case of Euclidean dis-
tances) in multivariate space, then the among-group
distances will be relatively large compared to the within-
group distances, and the resulting pseudo F-ratio will
be relatively large.

One can calculate the sums of squares in equations
(1) and (2) and the statistic in equation (3) from a 
distance matrix obtained using any distance measure.
The statistic in equation (3) corresponds exactly to 
the statistic in equation (4) of McArdle and Anderson
(in press), who have shown more generally how 
partitioning for any linear model can be done directly
from the distance matrix, regardless of the distance
measure used. Another important aspect of the stat-
istic described above is that, in the case of a Euclidean
distance matrix calculated from only one variable,
equation (3) gives the same value as the traditional
parametric univariate F-statistic.

This is proposed as a new non-parametric MANOVA

statistic that is intuitively appealing, due to its analogy
with univariate ANOVA, and that is extremely relevant
for ecological applications. The results (in terms of
sums of squares, mean squares and pseudo F-ratios)
obtained for individual terms in a multivariate analysis

can be interpreted in the same way as they usually are
for univariate ANOVA. The difference is that the hypoth-
esis being tested for any particular term is a multivariate
hypothesis.

OBTAINING A P-VALUE USING
PERMUTATIONS

The multivariate version of the F-statistic described
here is not distributed like Fisher’s F-ratio under the
null hypothesis. This is so because (i) we do not expect
the individual variables to be normally distributed, and
(ii) we do not expect that the Euclidean distance will
necessarily be used for the analysis. Even if each of the
variables were normally distributed and the Euclidean
distance used, the mean squares calculated for the mul-
tivariate data would not each consist of sums of inde-
pendent %2 variables, because, although individual
observations are expected to be independent, individ-
ual species variables are not independent of one
another. Thus, traditional tabled P-values cannot be
used. A distribution of the statistic under the null
hypothesis can be created, however, using permutations
of the observations (e.g. Edgington 1995; Manly
1997). The only situation in which one could use the
traditional tabled probabilities would be if one had a
single variable that could reasonably be assumed to be
normally distributed and one used Euclidean distances
for the analysis.

Suppose the null hypothesis is true and the groups
are not really different (in terms of their composition
and/or their relative abundances of species, as measured
by the Bray–Curtis distances). If this were the case,
then the multivariate observations (rows) would be
exchangeable among the different groups. Thus, the
labels on the rows that identify them as belonging to a
particular group could be randomly shuffled (per-
muted) and a new value of F obtained (called, say, F&).
This random shuffling and re-calculation of F& is then
repeated for all possible re-orderings of the rows rela-
tive to the labels. This gives the entire distribution of
the pseudo F-statistic under a true null hypothesis for
our particular data. Comparing the value of F obtained
with the original ordering of the rows to the distribution
created for a true null by permuting the labels, a P-value
is calculated as

(No. of F & ≥ F)
P ! (4)

(Total no. of F &)

Note that we consider the original observed value of F
to be a member of the distribution of F& under per-
mutation (i.e. it is one of the possible orderings of the
labels on the rows). The usual scientific convention of
an a priori significance level of ' ! 0.05 is generally
used for interpreting the significance of the result, as
in other statistical tests. It is also possible to view the
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Post-hoc	tests	for	multi-level	factors

• When	a	factor	has	more	than	2	levels,	
it	is	not	immediately	clear	which	pair	
of	groups	are	different	from	each	
other.
• To	figure	this	out	a	post-hoc	pairwise
tests	need	to	be	carried	out.
• The	t-statistic	is	computed	as	square	
root	of	the	F	statistic	for	the	pair	only.
• Pairwise	p-values	are	calculated	with	
additional	permutations.
• Multiple	comparison	correction	may	
be	necessary.

11

P<0.05

P1

P2

P3

More	sophisticated	designs

• Two-way	MANOVA
• Straightforward	extension	with	all	interactions	considered.

• Stratification/block	design
• When	an	effect	is	to	be	determined	within	the	levels	of	another	factor
• E.g.	Location	of	sampling	vs.	treatment

12
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More	sophisticated	regression	scenarios

• Based	on	Zapala &	Schork,	PNAS	2006.
• Suppose	we	have	M	predictor	variables
• We	treat	the	multivariate	(𝑁×𝑃)	data	(microbiome	abundance,	gene	
expression,	etc.)	as	the	response	variable	𝒀
• The	basic	multivariate	regression	model	is	𝒀 = 𝑿𝜷 + 𝜀,
• where	𝜷 is	the	coefficient	matrix,	and	𝜀 is	an	error	term.
• Define	the	hat	matrix	as	usual	𝑯 = 𝑿+𝑿 ,𝟏𝑿′.

13

Regression	scenario	(continued)

• 𝑮 = −1
2
𝑰 − 𝟏

𝒏
𝟏𝟏+ 𝑫(𝟐) 𝑰 − 𝟏

𝒏
𝟏𝟏+ ;

• Then	F = ;<(𝑯𝑮𝑯)/(>,1)
;< 𝑰,𝑯 𝑮 𝑰,𝑯 /(?,>)

.

• This	is	how	PERMANOVA	is	implemented	in	R/vegan	package,	
function	adonis().

14
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Assumptions	of	PERMANOVA

• PERMANOVA	is	defined	for	
balanced	sample	sizes,	but	can	
be	rewritten	for	𝑛A ≠ 𝑛C.
• Homoscedasticity	is	an	
underlying	assumption.
• Do	violations	of	these	
assumptions	lead	to	undesired	
behaviors?

• Simulation	to	test	these	
asumptions:
• Let	X	be	1,000	dimensional	
uncorrelated	standard	normal
• Let	Y	be	1,000	dimensional	
uncorrelated	multivariate	normal	
with	each	component	
• mean	=	1/sqrt(1000)*e
• S.D.	=	0.8

• Simulate	data	with	𝑛A, 𝑛C ∈
5,10,15,20

• Compute	Euclidean	distances,	
PERMANOVA	p-values

15

Empirical	robustness	of	PERMANOVA	to	
heteroscedasticity	and	unbalanced	sample	sizes
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Robustness	of	PERMANOVA

• When	both	homoscedasticity	and	balanced	sample	sizes	are	violated	
adverse	statistical	behavior	can	be	observed.
• If	X	is	the	more	dispersed	sample	then
• 𝑛A < 𝑛C leads	to	type	I	error	inflation,
• 𝑛A > 𝑛C leads	to	loss	of	power,
• where	𝑛A is	the	number	of	observations	in	the	more	dispersed	sample.

17

Idea:	Borrow	from	
univariate	approach	
to	heteroscedastic	
data

• Consider	the	square	of	Welch	t-statistic	𝑇M2 =
A̅,CO P

QRP SR⁄ UQVP SVW
.

• If	we	can	write	𝑇M2 in	terms	of	pairwise	distances,	we	can	generalize	it	
to	multivariate	data.
• We	can	use	permutation	testing	to	assess	the	significance.

18

Genome analysis
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Abstract

Motivation: Permutational non-Euclidean analysis of variance, PERMANOVA, is routinely used in
exploratory analysis of multivariate datasets to draw conclusions about the significance of patterns
visualized through dimension reduction. This method recognizes that pairwise distance matrix be-
tween observations is sufficient to compute within and between group sums of squares necessary
to form the (pseudo) F statistic. Moreover, not only Euclidean, but arbitrary distances can be used.
This method, however, suffers from loss of power and type I error inflation in the presence of heter-
oscedasticity and sample size imbalances.
Results: We develop a solution in the form of a distance-based Welch t-test, T 2

W, for two sample
potentially unbalanced and heteroscedastic data. We demonstrate empirically the desirable type
I error and power characteristics of the new test. We compare the performance of PERMANOVA
and T 2

W in reanalysis of two existing microbiome datasets, where the methodology has
originated.
Availability and Implementation: The source code for methods and analysis of this article is avail-
able at https://github.com/alekseyenko/Tw2. Further guidance on application of these methods can
be obtained from the author.
Contact: alekseye@musc.edu

1 Introduction

The PERMANOVA test (Anderson, 2001), has been proposed for

use in numerical ecology to test for the location differences in micro-

bial communities. The relationships between these communities are

typically described by ecological distance metrics (e.g. Jaccard, Chi-

Squared, Bray-Curtis) and visualized through dimension reduction

(also referred to as ordination in numerical ecology literature). The

PERMANOVA permutation test based on (pseudo) F statistic com-

puted directly from distances is a widely accepted means of estab-

lishing statistical significance for observed patterns. This test and

the extension of this paper are related to the multivariate Behrens-

Fisher problem (Krishnamoorthy and Yu, 2004) of testing the differ-

ence in multivariate means of samples from several populations. The

underlying statistics for both distance-based tests are related to the

Hotelling T2 statistic. The PERMANOVA is more general in allow-

ing for more than two populations to be compared simultaneously.

The distance-based geometric approach; however, forgoes the need

to estimate the covariance matrices. The cost of these geometric

approaches is that they only provide omnibus tests, which are un-

able to make inferences about individual components of the multi-

variate random vectors tested.

With the revived interest in numerical ecology fueled by the avail-

ability of DNA sequencing-based high-throughput microbial commu-

nity profiling, i.e. microbiomics, the PERMANOVA test is enjoying a

new wave of popularity. Several, cautionary articles have been pub-

lished noting the undesired behavior of the test in heteroscedastic con-

ditions (Warton et al., 2012). A definitive principled solution to this

issue is still lacking, however. The consensus is to ascertain the pre-

sence of heteroscedasticity using an additional test (e.g. PERMDISP;

Anderson, 2006; Anderson et al., 2006) in case of positive

PERMANOVA results and to report both with a disclaimer that the

attribution of positive PERMANOVA test to location or dispersion
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Key	equations	for	𝑇M2 derivation

• 𝑠A2 =
1

SR SR,1
∑ 𝑥[ − 𝑥\

2SR
[]\ = 1

SR SR,1
∑ 𝑑[\2
SR
[]\ ,

• Where∑ 	S
[]\ denotes	double	summation	∑ ∑ 	S

\`[U1
S
[`1 .

• Let	𝒁 = (𝑧1, … , 𝑧SRUSV) = (𝑥1, … , 𝑥SR, 𝑦1, … , 𝑦SV),

• 𝑥̅ − 𝑦O 2 = SRUSV
SRSV

e 1
SRUSV

∑ 𝑧[ − 𝑧\
2�

[]\ − 1
SR
∑ 𝑥[ − 𝑥\

2�
[]\ −

1
SV
∑ 𝑦[ − 𝑦\

2�
[]\ g.
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Pseudo-F	vs	𝑇M2

𝐹 =

1
𝑛A + 𝑛C

∑ 𝑑[\2
SRUSV
[]\
[,\`1

− 1
𝑛A
∑ 𝑑[\2
SR
[]\
[,\`1

− 1
𝑛C
∑ 𝑑[\2
SRUSV

[]\
[,\`SRU1

1
𝑛A
∑ 𝑑[\2
SR
[]\
[,\`1

+ 1
𝑛C
∑ 𝑑[\2
SRUSV

[]\
[,\`SRU1

/(𝑛A − 𝑛C − 2)

𝑇M2 =
𝑛A + 𝑛C
𝑛A𝑛C

×

1
𝑛A + 𝑛C

∑ 𝑑[\2
SRUSV
[]\
[,\`1

− 1
𝑛A
∑ 𝑑[\2
SR
[]\
[,\`1

− 1
𝑛C
∑ 𝑑[\2
SRUSV

[]\
[,\`SRU1

1
𝑛A2(𝑛A − 1)

∑ 𝑑[\2
SR
[]\
[,\`1

+ 1
𝑛C2(𝑛C − 1)

∑ 𝑑[\2
SRUSV

[]\
[,\`SRU1

How	do	these	compare	when	𝑛A = 𝑛C or	
1

SR(SR,1)
∑ 𝑑[\2�
[]\ − 1

SV(SV,1)
∑ 𝑑[\2�
[]\ ?
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Empirical	
performance	of	𝑇M2 vs	
PERMANOVA
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Typical	experimental	scenarios	at	𝑛 ≈ 10 or	𝑛 ≈ 50

Effect: 0 Effect: 4 Effect: 5
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Table 2. Comparison of PERMANOVA and T 2
W on mouse gut microbiome dataset.

Cecal microbiome Fecal microbiome
P-values P-values

Comparison N obs. H !2 d PERMANOVA T 2
W N obs. H !2 d PERMANOVA T 2

W

C. vs. All Abx. 10 vs. 40 1.4 0.22 1.21 0.040 0.0001 10 vs. 36 1.4 0.29 1.34 0.015 0.0014

C. vs. Penicillin 10 vs. 10 0.85 0.12 1.90 0.00001 0.00002 10 vs. 9 1.1 0.07 1.94 0.015 0.015

C. vs. Vancomycin 10 vs. 10 1.8 0.08 2.26 0.00009 0.0001 10 vs. 9 1.6 0.21 2.70 0.00001 0.00002

C. vs. Tetracycline 10 vs. 10 1.2 0.12 2.05 0.00005 0.00005 10 vs. 10 1.0 0.07 1.89 0.007 0.006

C. vs. Van. + Tetr. 10 vs. 10 1.1 0.10 1.97 0.002 0.002 10 vs. 8 1.4 0.11 2.24 0.001 0.002

Table 3. Comparison of PERMANOVA and T 2
W on human skin microbiome dataset.

P-values
Comparison N obs. H !2 d PERMANOVA T 2

W

Control vs. Lesion 49 vs. 51 1.07 0.014 0.77 0.0003 0.0002
Control vs. Unaffected 49 vs. 51 1.04 -0.0006 0.60 0.5 0.5
Lesion vs. Unaffected 51 vs. 51 0.97 0.004 0.62 0.07 0.07

(fecal vs. cecal). The antibiotic vs. control groups are separated along PC2.
Note that for cecal samples the comparison of the controls against each of
the antibiotic treatment groups individually are significant and similar for
both tests. This is expected because the design is balanced in these tests.

4.2.2 Skin microbiome in psoriasis dataset
The skin microbiome dataset consists of observations of skin microbial
abundances from control subjects and from psoriasis subjects, who
contribute two samples from a lesion site and from symmetrical unaffected
site. PERMANOVA and T 2

W tests produce similar significance values and
inferences (Table 3), which is owed to the fact that the multivariate spread
is similar in all conditions, and sample sizes are larger and closer to being
balanced.

5 Discussion
By derivation T 2

W inherits the characteristics of the univariate unequal
variance Welch t-test. That test is recommended as a replacement for
pooled variance t-test in all circumstances. Testing for unequal variances
by methods, such as PERMDISP, is not recommended before a choice
of the primary test is made. The main disadvantage of the Welch’s t-
test compared to ANOVA is potential loss of robustness when violations
of normality are present (Levy, 1978). This issue, however, rests on the
limiting distributions of the tests. In our case, the inference is obtained by
permutation testing, which alleviates this concern. Thus T 2

W should also
become a first line replacement for PERMANOVA in simple two-sample
case.

Two-sample scenario is a common experimental design, but a
general solution for k-level factors is still desirable. The behavior of
PERMANOVA under heteroscedastic conditions with k-level factors
have not been examined, but is suspected to suffer from similar
shortcomings as in the two sample case. When heteroscedasticity is
suspected, several remedial strategies can be implemented. First, a
variance stabilizing transformation can be applied to the data to remove
heteroscedasticity (McMurdie and Holmes, 2014). If transformation of
the data is not desirable for any reason, other strategies could include
developing specialized sub-sampling and permutation-based strategies.
For example, the data could be re-sampled m times at balanced
sample sizes and an average PERMANOVA statistic computed FA =
1
m

P
i F

(i)
A . This statistic could then be compared to the null distribution

generated by permuting the sample labels r-times and computing the
re-sampled FA(1), . . . , FA(r), where FA(j) = 1

m

P
i F

(i)
A (j). The

significance can be determined by using regular permutation testing
approach to compare the number of times the obtained statistic is more
extreme than those observed under the null, i.e. p(r) =

Pr
j 1(FA >

FA(j)). This method ensures that the groups are balanced in each
comparison, but may still lead to loss of power due to decreased effective
sample size in each sub-sampled comparison. This approach is reported
here as a suggestion that needs further development and evaluation before
in can be implemented in practice. The final strategy for analysis of data
with arbitrary number of levels could involve the application of T 2

w to
only relevant pairwise comparisons with appropriate multiple comparison
controls in place.
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Welch	distance	
MANOVA	with	Wd

*

• In	univariate case	Wd
* is	equivalent	to	W*.

• Let	𝑥[~𝑁(0, 𝑠[),	
1. 𝑠[2 = 1;	
2. 𝑠12 = 1, 𝑠22 = 0.8, 𝑠m2 = 0.82;	
3. 𝑠12 = 1, 𝑠22 = 0.2, 𝑠m2 = 0.22.

• 𝑛[ ∈ {5, 10, 20, 40}.
• Note	that	univariate	W*	test	based	on	F	distribution	applies	here.	
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multivariate analysis of variance
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Abstract
Background: Community-wide analyses provide an essential means for evaluation of the effect of interventions or
design variables on the composition of the microbiome. Applications of these analyses are omnipresent in
microbiome literature, yet some of their statistical properties have not been tested for robustness towards common
features of microbiome data. Recently, it has been reported that PERMANOVA can yield wrong results in the presence
of heteroscedasticity and unbalanced sample sizes.

Findings: We develop a method for multivariate analysis of variance,W∗
d , based on Welch MANOVA that is robust to

heteroscedasticity in the data. We do so by extending a previously reported method that does the same for two-level
independent factor variables. Our approach can accommodate multi-level factors, stratification, and multiple post hoc
testing scenarios. An R language implementation of the method is available at https://github.com/alekseyenko/
WdStar.

Conclusion: Our method resolves potential for confounding of location and dispersion effects in multivariate
analyses by explicitly accounting for the differences in multivariate dispersion in the data tested. The methods based
onW∗

d have general applicability in microbiome and other ‘omics data analyses.

Keywords: Welch MANOVA, Distance MANOVA, Heteroscedastic test

Introduction
Beta diversity analyses or community-wide ecological
analyses are important tools for understanding the differ-
entiation of the entire microbiome between experimental
conditions, environments, and treatments. For these anal-
yses, specialized distance metrics are used to capture
the multivariate relationships between each pair of sam-
ples in the dataset. Analysis of variance-like techniques,
such as PERMANOVA [1], maythen be used to deter-
mine if an overall difference exists between conditions.
The distances use all of the measured taxa information
simultaneously without the need to explicitly estimate
individual covariances. The utility of these methods is
hard to underestimate as virtually every recent major
microbiome report has used some form of a community-
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Carolina, 135 Cannon Street MSC 200, 29425 Charleston, SC, USA
2Biomedical Informatics Center, Medical University of South Carolina, 135
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Full list of author information is available at the end of the article

wide association analysis. On many occasions, the com-
parison reveals major differences between the groups.
However, one is not guaranteed to find one. For exam-
ple, in Redel et al. [2], the authors have found that there
are significant differences in cutaneous microbiota in dia-
betic vs. non-diabetic subject feet, but not on their hands
(see fig. 5). This lack of difference is an important indi-
cator about the potential pathobiological processes that
lead to diabetic foot ulcers. Therefore, getting the cor-
rect result in such comparisons is important. The Redel
et al. analysis can ultimately be achieved by pairwise com-
parisons only (diabetic vs. non diabetic); however, many
study designs have more than two groups that need to be
considered simultaneously. Dietary intervention studies
among others often include several experimental groups.
For example, Cox et al. [3] analysis of the impact of diet
on the murine gut microbiome included animal groups
receiving low fat, high fat, and high fat with fiber supple-
ment diets. Although it is possible to treat such design
using multi-way comparisons of dietary fat and dietary
fiber, a simultaneous analysis of all three groups can be

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

24Hamidi	et	al.	Wd∗-test:	robust	distance-based	multivariate	analysis	of	variance.	Microbiome.	2019.



7/16/19

13

Wd*	and	PERMANOVA	on	heteroscedastic	
univariate	data

Hamidi et al. Microbiome            (2019) 7:51 Page 4 of 9

Empirical evaluation ofW∗
d type I error

The principal evaluation that is required to assure
statistical properties of W ∗

d is demonstration of appro-
priate type I error control. For this purpose, we consider
the univariate heteroscedastic case with three groups,{
x(k1)1

}
,
{
x(k2)2

}
,
{
x(k3)3

}
, k1 = 1 . . . , n1, k2 = 1 . . . , n2, and

k3 = 1 . . . , n3, of samples to compare, where n1, n2, n3
are the numbers of observations in each group. We let
x(k1)1

i.i.d.∼ N (0, 1) be the reference group and x(k2)2
i.i.d.∼

N
(
0, s2

)
and x(k3)3

i.i.d.∼ N
(
0, s4

)
be the groups with

different variance s2 and s4, respectively, to introduce het-
eroscedasticity. In our simulation, we let s2 = {1, 0.8, 0.2}
to control the degree of heteroscedasticity in the range
from none to large. Finally, we let the sample sizes n1, n2,
and n3 take values of 5, 10, 20, or 40 to generate data with
varying total sample size and degree of balance. For each
combination of sample sizes and variance, we have per-
formed 1000 simulations of the data for a total of 192,000
datasets. Each dataset has been analyzed using our refer-
ence implementation ofW ∗

d , PERMANOVA (adonis func-
tion in R library vegan), and univariate Welch ANOVA
(oneway.test in R library stats). For distance-based meth-
ods, Euclidean distances have been used. Details of sim-
ulation are available as a knitted R Markdown file in
Additional file 1. The simulation results comprise the
fraction of rejected null hypotheses at α = 0.05 by
each test (Fig. 1a). A test properly controlling the type I

error is expected to have the fraction of rejections equal
to the nominal error rate (0.05). Notice that the pro-
posed W ∗

d test, in fact, produces the expected error rates
over the entire range of simulation parameters. Simi-
larly to our previous observations in the two-group case,
PERMANOVA is not robust to heteroscedasticity when
sample size imbalance is present. Observe that whenever
the number of observations in the reference group (the
one with variance equal to 1) is smaller than that in the
less dispersed groups, the fraction of rejections is overly
inflated, resulting in higher type I error. Also notice that
when there are more observations in the reference group
than in others (e.g., n1 = 40, n2, n3 < 40), it is hard
for PERMANOVA to make the rejections, resulting in
approximately zero type I error.
Interestingly, when we compare the raw p values

obtained from W∗
d to those from the distribution

based asymptotic Welch test, we see a good con-
cordance between the two (Fig. 1b). The variability
around the trendline is most likely due to Monte Carlo
error associated with permutation testing and small
sample size. On the contrary, when PERMANOVA
is compared to the distribution-based asymptotic test,
the fit is clearly much noisier (Fig. 1c). The con-
cordance is much smaller for tests involving groups
with larger degree of heteroscedasticity. The code
used to produce the plots in Fig. 1 is available as
Additional file 2.

Fig. 1 Evaluation of type I errors ofW∗
d and PERMANOVA permutation tests. Simulation under the null hypothesis results for comparison ofW∗

d
(Wstar), PERMANOVA (Permanova), and distribution-based Welch ANOVA F (WelchF) tests are presented. In panel a, we evaluate the fraction of null
hypotheses that have been rejected by each test at α = 0.05. The subpanels of a correspond to simulated datasets with corresponding number of
samples in the non-reference groups, with columns corresponding to the least dispersed and rows corresponding to the most dispersed sample. In
panel b, the raw p values fromW∗

d test are plotted against those for the same data with Welch ANOVA F test. In panel c, we do the same for
PERMANOVA p values and color the points by respective degree of heteroscedasticity in the simulated dataset
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more intuitive. Hence, there is a need for methods that
can compare more than two experimental groups at the
same time. PERMANOVA among other methods allows
for such analyses.
From the statistical stand point, community-wide anal-

yses test the hypothesis that the data from two or more
conditions share the location parameter (centroid or mul-
tivariate mean). Caution, however, needs to be taken to
ensure that potential violations of assumptions do not
lead to adverse statistical behavior of PERMANOVA. Two
such assumptions that are commonly violated are the
multivariate uniformity of variability (homoscedasticity)
and sample size balance. We have previously shown that
simultaneous violation of both assumptions leads to PER-
MANOVA analysis with indiscriminate rejection and type
I error inflation or to significant loss of power up to
inability to make any rejections at all [4]. Unfortunately,
heteroscedasticity across conditions is a very common
feature of microbiome data. Thus, new robust methods
are needed to ensure correct data analysis.
We have previously described a T2

w test, which presents
a robust solution for comparing two groups of micro-
biome samples [4]. The two-group scenario is common,
but not universally satisfying as many study designs often
include many different sample types, e.g., from affected
and unaffected sites of a study subject and from amatched
healthy control [5] and interventions as in the Cox
et al. [3] study mentioned above. Here we describe a
further extension of T2

w to allow for arbitrary number
of groups with possibly different within group variabil-
ity to be compared using an omnibus test for equality
of means. Our method presents an advance to the state-
of-the-art by introducing a way to compare data from
multiple conditions where heteroscedasticity is a nuisance
and only the differences between location of the data are
important.

UnivariateWelchMANOVA
Univariate solutions for a heteroscedastic test to compare
k-means deal with finding asymptotic distributions for∑wj(x̄j − µ̂)2, as defined later in Eqs. (2) and (3). Welch’s
solution [6] is perhaps the most known and well adopted
in statistical literature. Next we briefly describe it, as we
will build on extending this statistic to multivariate data.
Suppose we observe data from k populations xj =(
x(1)j , . . . , x(nj)j

)
with potentially unequal number of obser-

vations, nj for j = 1, . . . , k, in each. Let x̄j and s2j denote the
means and variances for each sample. TheWelch ANOVA
statistic is:

W ∗ =
∑wj(x̄j − µ̂)2/(k − 1)

1+
[
2(k − 2)/(k2 − 1)

]∑ hj
, (1)

where

wj = nj/s2j , (2)
µ̂ =

∑
wjx̄j/W , (3)

W =
∑

wj, and (4)
hj = (1 − wj/W )2/(nj − 1). (5)

The Welch test uses F(k − 1, f ), for f =(
k2 − 1

)
/
(
3/∑ hj

)
distribution to draw inference with

W∗ [6].

Calculation of multivariateWelchW-statistic on
distances
To derive a Welch W ∗ statistic suitable for analysis of
microbiome data,W ∗

d , we follow the same approach as we
did in our derivation of T2

w. We first demonstrate that in
the univariate case,W ∗

d can be expressed in terms of sums
of pairwise square differences. Next we observe that these
sums represent the squares of the univariate Euclidean
distances, which allows for a direct extension of the W∗

d
statistic computation for multivariate Euclidean distances
and in fact any arbitrary distance or dissimilarity metric.
The derivation of the statistic in terms of dissimilarities
makes it suitable for analysis of microbiome data via a
permutation test.
We have previously shown [4] that the sample variances

can be written as:

s2j=
1

nj (nj − 1)

nj∑

p<q
p,q=1

(
x(p)j −x(q)j

)2

= 1
nj (nj − 1)

nj∑

p<q
p,q=1

d(j)pq
2
,

(6)

where x(p)j and x(q)j denote p-th and q-th observations in
the j-th level, d(j)pq is the distance between them. Hence:

wj = nj/s2j = (nj − 1)n2j

⎛

⎝
∑

p<q
d(j)pq

2
⎞

⎠
−1

. (7)

Now consider:
k∑

j=1
wj(x̄j − µ̂)2 =

k∑

j=1
wj(x̄j −

k∑

i=1
wix̄i/W )2 (8)

=
k∑

j=1

wj
W 2

⎛

⎝Wx̄j −
k∑

i=1
wix̄i

⎞

⎠
2

(9)

=
k∑

j=1

wj
W 2

⎛

⎜⎝W 2x̄2j −2Wx̄j
k∑

i=1
wix̄i+

⎡

⎣
k∑

i=1
wix̄i

⎤

⎦
2⎞

⎟⎠ (10)
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more intuitive. Hence, there is a need for methods that
can compare more than two experimental groups at the
same time. PERMANOVA among other methods allows
for such analyses.
From the statistical stand point, community-wide anal-

yses test the hypothesis that the data from two or more
conditions share the location parameter (centroid or mul-
tivariate mean). Caution, however, needs to be taken to
ensure that potential violations of assumptions do not
lead to adverse statistical behavior of PERMANOVA. Two
such assumptions that are commonly violated are the
multivariate uniformity of variability (homoscedasticity)
and sample size balance. We have previously shown that
simultaneous violation of both assumptions leads to PER-
MANOVA analysis with indiscriminate rejection and type
I error inflation or to significant loss of power up to
inability to make any rejections at all [4]. Unfortunately,
heteroscedasticity across conditions is a very common
feature of microbiome data. Thus, new robust methods
are needed to ensure correct data analysis.
We have previously described a T2

w test, which presents
a robust solution for comparing two groups of micro-
biome samples [4]. The two-group scenario is common,
but not universally satisfying as many study designs often
include many different sample types, e.g., from affected
and unaffected sites of a study subject and from amatched
healthy control [5] and interventions as in the Cox
et al. [3] study mentioned above. Here we describe a
further extension of T2

w to allow for arbitrary number
of groups with possibly different within group variabil-
ity to be compared using an omnibus test for equality
of means. Our method presents an advance to the state-
of-the-art by introducing a way to compare data from
multiple conditions where heteroscedasticity is a nuisance
and only the differences between location of the data are
important.

UnivariateWelchMANOVA
Univariate solutions for a heteroscedastic test to compare
k-means deal with finding asymptotic distributions for∑wj(x̄j − µ̂)2, as defined later in Eqs. (2) and (3). Welch’s
solution [6] is perhaps the most known and well adopted
in statistical literature. Next we briefly describe it, as we
will build on extending this statistic to multivariate data.
Suppose we observe data from k populations xj =(
x(1)j , . . . , x(nj)j

)
with potentially unequal number of obser-

vations, nj for j = 1, . . . , k, in each. Let x̄j and s2j denote the
means and variances for each sample. TheWelch ANOVA
statistic is:

W ∗ =
∑wj(x̄j − µ̂)2/(k − 1)

1+
[
2(k − 2)/(k2 − 1)

]∑ hj
, (1)

where

wj = nj/s2j , (2)
µ̂ =

∑
wjx̄j/W , (3)

W =
∑

wj, and (4)
hj = (1 − wj/W )2/(nj − 1). (5)

The Welch test uses F(k − 1, f ), for f =(
k2 − 1

)
/
(
3/∑ hj

)
distribution to draw inference with

W∗ [6].

Calculation of multivariateWelchW-statistic on
distances
To derive a Welch W ∗ statistic suitable for analysis of
microbiome data,W ∗

d , we follow the same approach as we
did in our derivation of T2

w. We first demonstrate that in
the univariate case,W ∗

d can be expressed in terms of sums
of pairwise square differences. Next we observe that these
sums represent the squares of the univariate Euclidean
distances, which allows for a direct extension of the W∗

d
statistic computation for multivariate Euclidean distances
and in fact any arbitrary distance or dissimilarity metric.
The derivation of the statistic in terms of dissimilarities
makes it suitable for analysis of microbiome data via a
permutation test.
We have previously shown [4] that the sample variances

can be written as:

s2j=
1

nj (nj − 1)

nj∑

p<q
p,q=1

(
x(p)j −x(q)j

)2

= 1
nj (nj − 1)

nj∑
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d(j)pq
2
,
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where x(p)j and x(q)j denote p-th and q-th observations in
the j-th level, d(j)pq is the distance between them. Hence:

wj = nj/s2j = (nj − 1)n2j

⎛

⎝
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p<q
d(j)pq

2
⎞

⎠
−1

. (7)

Now consider:
k∑

j=1
wj(x̄j − µ̂)2 =

k∑

j=1
wj(x̄j −

k∑

i=1
wix̄i/W )2 (8)

=
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wj
W 2

⎛

⎝Wx̄j −
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i=1
wix̄i

⎞

⎠
2

(9)

=
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j=1

wj
W 2

⎛

⎜⎝W 2x̄2j −2Wx̄j
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⎡

⎣
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wix̄i

⎤

⎦
2⎞

⎟⎠ (10)
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more intuitive. Hence, there is a need for methods that
can compare more than two experimental groups at the
same time. PERMANOVA among other methods allows
for such analyses.
From the statistical stand point, community-wide anal-

yses test the hypothesis that the data from two or more
conditions share the location parameter (centroid or mul-
tivariate mean). Caution, however, needs to be taken to
ensure that potential violations of assumptions do not
lead to adverse statistical behavior of PERMANOVA. Two
such assumptions that are commonly violated are the
multivariate uniformity of variability (homoscedasticity)
and sample size balance. We have previously shown that
simultaneous violation of both assumptions leads to PER-
MANOVA analysis with indiscriminate rejection and type
I error inflation or to significant loss of power up to
inability to make any rejections at all [4]. Unfortunately,
heteroscedasticity across conditions is a very common
feature of microbiome data. Thus, new robust methods
are needed to ensure correct data analysis.
We have previously described a T2

w test, which presents
a robust solution for comparing two groups of micro-
biome samples [4]. The two-group scenario is common,
but not universally satisfying as many study designs often
include many different sample types, e.g., from affected
and unaffected sites of a study subject and from amatched
healthy control [5] and interventions as in the Cox
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further extension of T2

w to allow for arbitrary number
of groups with possibly different within group variabil-
ity to be compared using an omnibus test for equality
of means. Our method presents an advance to the state-
of-the-art by introducing a way to compare data from
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and only the differences between location of the data are
important.
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k-means deal with finding asymptotic distributions for∑wj(x̄j − µ̂)2, as defined later in Eqs. (2) and (3). Welch’s
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with potentially unequal number of obser-
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statistic is:
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where
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µ̂ =
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W =
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wj, and (4)
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The Welch test uses F(k − 1, f ), for f =(
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)
distribution to draw inference with
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Calculation of multivariateWelchW-statistic on
distances
To derive a Welch W ∗ statistic suitable for analysis of
microbiome data,W ∗

d , we follow the same approach as we
did in our derivation of T2

w. We first demonstrate that in
the univariate case,W ∗

d can be expressed in terms of sums
of pairwise square differences. Next we observe that these
sums represent the squares of the univariate Euclidean
distances, which allows for a direct extension of the W∗

d
statistic computation for multivariate Euclidean distances
and in fact any arbitrary distance or dissimilarity metric.
The derivation of the statistic in terms of dissimilarities
makes it suitable for analysis of microbiome data via a
permutation test.
We have previously shown [4] that the sample variances

can be written as:

s2j=
1

nj (nj − 1)

nj∑

p<q
p,q=1

(
x(p)j −x(q)j

)2

= 1
nj (nj − 1)

nj∑

p<q
p,q=1

d(j)pq
2
,

(6)

where x(p)j and x(q)j denote p-th and q-th observations in
the j-th level, d(j)pq is the distance between them. Hence:

wj = nj/s2j = (nj − 1)n2j
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d(j)pq

2
⎞

⎠
−1
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=
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wj
W 2

⎛

⎝Wx̄j −
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i=1
wix̄i

⎞

⎠
2

(9)
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wj
W 2
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⎜⎝W 2x̄2j −2Wx̄j
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wix̄i+

⎡

⎣
k∑

i=1
wix̄i
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⎦
2⎞

⎟⎠ (10)
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=
k∑

j=1
wjx̄2j − 2

W

k∑

i,j=1
wiwjx̄ix̄j +

k∑

j=1

wj
W 2

⎡

⎣
k∑

i=1
wix̄i

⎤

⎦
2

(11)

=
k∑

j=1
wjx̄2j − 2

W

k∑

i,j=1
wiwjx̄ix̄j +

k∑

j=1

1
W

k∑

i,j=1
wiwjx̄ix̄j (12)

= 1
2W

⎛

⎝2W
k∑

j=1
wjx̄2j − 2

k∑

i,j=1
wiwjx̄ix̄j

⎞

⎠ (13)

= 1
2W

⎛

⎝
k∑

i,j=1
wiwjx̄2j −2

k∑

i,j=1
wiwjx̄ix̄j +

k∑

i,j=1
wiwjx̄2i

⎞

⎠ (14)

= 1
2W

k∑

i,j=1
wiwj(x̄i − x̄j)2 (15)

= 1
W

∑

i<j
wiwj(x̄i − x̄j)2. (16)

Equation (16) means that ∑
j wj(x̄j − µ̂)2 can be

expressed as weighted sum of squares of pairwise inter-
group mean differences, which makes for a convenient
expression to compute. Finally, we have previously shown
that squares of mean differences can be expressed in terms
of squares of pairwise sample differences [4], i.e:

(
x̄i − x̄j

)2 = ni + nj
ninj

⎡

⎢⎢⎣
1

ni + nj

ni+nj∑

i<j
i,j=1

(
z(i,j)i − z(i,j)j

)2

−

⎛

⎜⎜⎝
1
ni

ni∑

p<q
p,q=1

(
x(p)i − x(q)i

)2
+ 1

nj

nj∑

p<q
p,q=1

(
x(p)j − x(q)j

)2

⎞

⎟⎟⎠

⎤

⎥⎥⎦ ,

(17)

where z(i,j) =
(
z(i,j)1 , . . . , z(i,j)ni+nj

)
=

(
x(1)i , . . . , x(ni)i ,

x(1)j , . . . , x(nj)j
)
. The squares of the pairwise differences

under the summations in Eq. (17) can be thought of as the
squares of the pairwise Euclidean distances in one dimen-
sion. This allows us to generalize the univariate Euclidean
Welch ANOVA to MANOVA with arbitrary distances,
where the distances can be suitably defined for the data
at hand, including all of common distances used with
microbiome data.
Note that in contrast to the PERMANOVA statistic, the

distance-based T2
w and W ∗

d explicitly account for poten-
tially unbalanced number of observations and differences
in multivariate spread in the two samples. Finally, observe
that W ∗

d reduces to T2
w when k = 2, as W ∗ reduces to

Welch t-statistic.
As with T2

w, the exact distribution of the multivariate
distance-basedW ∗

d statistic is dependent onmany factors,

such as the dimensionality of underlying data, distribu-
tions of the random variables comprising the data, the
exact distance metric used, and the number of groups
compared k. To make a practical general test, we use
permutation testing to establish the significance. To do
so, we compute W ∗

d (i) on m permutations of the origi-
nal data, for i = 1, . . . ,m, and estimate the significance
as the fraction of times the permuted statistic is greater
than or equal to Wd, i.e., p = 1

m
∑m

i 1
(
W ∗

d ≤ W∗
d (i)

)
.

Here, 1(.) designates the indicator function. Larger p
values are more easily estimated with permutations as
the number of more extreme permuted statistics will
be quite large. For smaller, p values often, the precise
p value is not necessary, but only an indication if it
is smaller than a particular threshold (e.g., 0.01). As a
rule of thumb, to conclude that a p value is less than
a threshold α, we recommend performing at least 5/α
permutations.
Confounder modeling and repeated measures are often

key elements of microbiome study design. These can be
accounted for in permutation testing procedures using
restricted permutation. For example, the effect of a dis-
crete valued confounder can be removed from the p value
calculation by restricting permutations to only within
the levels of the confounding variable. This amounts to
an application of stratified analysis of variance. Similarly,
restricting permutations to within individual subjects
only results in a repeated measures analysis. Notice that
the test statistic under restricted permutations
remains the same, but the null distribution is
changed to reflect the desired comparison. Methods
for W ∗

d and these restricted permutation methods
are available in our reference implementation at
https://github.com/alekseyenko/WdStar.
When multiple means are compared with W ∗

d , a statis-
tically significant result may prompt the question about
attribution of the differences to a specific group or
groups. Post hoc testing procedures are used to perform
that kind of analysis. There are many possible ways to
design the post hoc testing procedures, but the guiding
principle due to potential for loss of power to multi-
ple testing should be to minimize the number of tests
performed. For this reason, in addition to all possible
pairwise (one versus one) tests, it may be interesting
and relevant to test one group versus all others. In this
scenario, samples from one experimental group are com-
pared to pooled samples from the remaining groups.
The statistical test for this comparison can equivalently
be either T2

w or W∗
d on two level factors. We illustrate

the use of one versus all post hoc procedure in our
application example in “Application example: colorectal
cancer disparity and microbiome” section and provide
corresponding computation routines in our reference
implementation.
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more intuitive. Hence, there is a need for methods that
can compare more than two experimental groups at the
same time. PERMANOVA among other methods allows
for such analyses.
From the statistical stand point, community-wide anal-

yses test the hypothesis that the data from two or more
conditions share the location parameter (centroid or mul-
tivariate mean). Caution, however, needs to be taken to
ensure that potential violations of assumptions do not
lead to adverse statistical behavior of PERMANOVA. Two
such assumptions that are commonly violated are the
multivariate uniformity of variability (homoscedasticity)
and sample size balance. We have previously shown that
simultaneous violation of both assumptions leads to PER-
MANOVA analysis with indiscriminate rejection and type
I error inflation or to significant loss of power up to
inability to make any rejections at all [4]. Unfortunately,
heteroscedasticity across conditions is a very common
feature of microbiome data. Thus, new robust methods
are needed to ensure correct data analysis.
We have previously described a T2

w test, which presents
a robust solution for comparing two groups of micro-
biome samples [4]. The two-group scenario is common,
but not universally satisfying as many study designs often
include many different sample types, e.g., from affected
and unaffected sites of a study subject and from amatched
healthy control [5] and interventions as in the Cox
et al. [3] study mentioned above. Here we describe a
further extension of T2

w to allow for arbitrary number
of groups with possibly different within group variabil-
ity to be compared using an omnibus test for equality
of means. Our method presents an advance to the state-
of-the-art by introducing a way to compare data from
multiple conditions where heteroscedasticity is a nuisance
and only the differences between location of the data are
important.

UnivariateWelchMANOVA
Univariate solutions for a heteroscedastic test to compare
k-means deal with finding asymptotic distributions for∑wj(x̄j − µ̂)2, as defined later in Eqs. (2) and (3). Welch’s
solution [6] is perhaps the most known and well adopted
in statistical literature. Next we briefly describe it, as we
will build on extending this statistic to multivariate data.
Suppose we observe data from k populations xj =(
x(1)j , . . . , x(nj)j

)
with potentially unequal number of obser-

vations, nj for j = 1, . . . , k, in each. Let x̄j and s2j denote the
means and variances for each sample. TheWelch ANOVA
statistic is:

W ∗ =
∑wj(x̄j − µ̂)2/(k − 1)

1+
[
2(k − 2)/(k2 − 1)

]∑ hj
, (1)

where

wj = nj/s2j , (2)
µ̂ =

∑
wjx̄j/W , (3)

W =
∑

wj, and (4)
hj = (1 − wj/W )2/(nj − 1). (5)

The Welch test uses F(k − 1, f ), for f =(
k2 − 1

)
/
(
3/∑ hj

)
distribution to draw inference with

W∗ [6].

Calculation of multivariateWelchW-statistic on
distances
To derive a Welch W ∗ statistic suitable for analysis of
microbiome data,W ∗

d , we follow the same approach as we
did in our derivation of T2

w. We first demonstrate that in
the univariate case,W ∗

d can be expressed in terms of sums
of pairwise square differences. Next we observe that these
sums represent the squares of the univariate Euclidean
distances, which allows for a direct extension of the W∗

d
statistic computation for multivariate Euclidean distances
and in fact any arbitrary distance or dissimilarity metric.
The derivation of the statistic in terms of dissimilarities
makes it suitable for analysis of microbiome data via a
permutation test.
We have previously shown [4] that the sample variances

can be written as:

s2j=
1

nj (nj − 1)

nj∑

p<q
p,q=1

(
x(p)j −x(q)j

)2

= 1
nj (nj − 1)

nj∑

p<q
p,q=1

d(j)pq
2
,

(6)

where x(p)j and x(q)j denote p-th and q-th observations in
the j-th level, d(j)pq is the distance between them. Hence:

wj = nj/s2j = (nj − 1)n2j

⎛

⎝
∑

p<q
d(j)pq

2
⎞

⎠
−1

. (7)

Now consider:
k∑

j=1
wj(x̄j − µ̂)2 =

k∑

j=1
wj(x̄j −

k∑

i=1
wix̄i/W )2 (8)

=
k∑

j=1

wj
W 2

⎛

⎝Wx̄j −
k∑

i=1
wix̄i

⎞

⎠
2

(9)

=
k∑

j=1

wj
W 2

⎛

⎜⎝W 2x̄2j −2Wx̄j
k∑

i=1
wix̄i+

⎡

⎣
k∑

i=1
wix̄i

⎤

⎦
2⎞

⎟⎠ (10)
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Fig. 2 PCoA plot of the JSD distances between CRC microbiome samples. African-American distal (red) samples appear to be separated on PC1
from the samples in the proximal AA (black) and Caucasian (gray) and Caucasian distal (orange) samples. Likewise, the plot suggest that the
multivariate spread may differ dramatically in the compared groups with AA distal samples being most concentrated relative to the other groups

may not be sufficient to deem the observed effect sizes
significant.
Nonetheless, the race and location interaction model

achieves significance (p < 0.05) with W ∗
d test (Table 2).

Observe that as expected the difference between the dis-
tal and proximal cancers alone is not significant, but in
combination with race suggest existence of differential
interaction. These nuances are not captured by the anal-
yses with PERMANOVA, which yields unremarkable p
values. Interestingly, there is a discrepancy in test results
for the primary effect of the race at 0.05 significance
threshold, which is well within the gray zone of being
notable. However, the discrepancy of PERMANOVA and
W ∗

d in the interaction term is a clear illustration for
utility of our method. In the presence of heteroscedastic-
ity and sample size imbalance, one might doubt the result
by PERMANOVA. Next, we demonstrate the application
of the post hoc procedures described in the methods
section. Significance of the interaction term may dic-
tate additional questions about which groups differ from

Table 2 Significance of the primary and interaction effects by
PERMANOVA andW∗

d tests

Covariate PERMANOVA p value W∗
d p value

Race 0.064 0.047

Location 0.907 0.908

Race and location 0.282 0.037

the rest. We demonstrate the use of one versus all post
hoc testing by comparing each group with the rest of
the samples (Table 3). As expected, these indicate a sig-
nificant difference (p < 0.05) in the microbiome of
the AA distal CRC samples from the rest, and a trend
for difference of the Caucasian distal samples. Note that
the interpretations of these results might differ if mul-
tiple comparison issues are taken into account. Due to
the pilot nature of these data, we do not perform any
formal corrections, as our goal is to determine the plau-
sibility of significant differences, which are to be evalu-
ated in appropriately sized datasets where power is not
a concern.
Epidemiological literature indicates that AA and CA

have notable differences in the prevalence of colorec-
tal neoplasia in the proximal and distal colorectum
at both the precancerous [21–24] and invasive stages
[25]. Numerous lifestyle and dietary factors associ-
ated with dysbiosis (e.g., red-meat intake, sedentary

Table 3 One versus all post hoc comparisons of the interaction
terms

Group T2w statistic W∗
d p value

AA distal 8.88 0.039

CA distal 1.93 0.075

AA proximal 0.36 0.936

CA proximal 0.70 0.665
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PERMANOVA-S:	
accommodates	
multiple	distances

• Based	on	Tang	et	al.	Bioinformatics 2016.
• Suppose	we	want	to	consider	K	distances	simultaneously,	𝑫1,… ,𝑫r.
• We	would	like	to	know	the	significance	of	the	entire	ensemble	
• Determine	which	individual	distance	performs	best	
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Abstract

Motivation: Recent advances in sequencing technology have made it possible to obtain high-
throughput data on the composition of microbial communities and to study the effects of dysbiosis
on the human host. Analysis of pairwise intersample distances quantifies the association between
the microbiome diversity and covariates of interest (e.g. environmental factors, clinical outcomes,
treatment groups). In the design of these analyses, multiple choices for distance metrics are avail-
able. Most distance-based methods, however, use a single distance and are underpowered if the
distance is poorly chosen. In addition, distance-based tests cannot flexibly handle confounding
variables, which can result in excessive false-positive findings.
Results: We derive presence-weighted UniFrac to complement the existing UniFrac distances for
more powerful detection of the variation in species richness. We develop PERMANOVA-S, a new
distance-based method that tests the association of microbiome composition with any covariates
of interest. PERMANOVA-S improves the commonly-used Permutation Multivariate Analysis of
Variance (PERMANOVA) test by allowing flexible confounder adjustments and ensembling mul-
tiple distances. We conducted extensive simulation studies to evaluate the performance of different
distances under various patterns of association. Our simulation studies demonstrate that the
power of the test relies on how well the selected distance captures the nature of the association.
The PERMANOVA-S unified test combines multiple distances and achieves good power regardless
of the patterns of the underlying association. We demonstrate the usefulness of our approach by
reanalyzing several real microbiome datasets.
Availability and Implementation: miProfile software is freely available at https://medschool.vander
bilt.edu/tang-lab/software/miProfile.
Contact: z.tang@vanderbilt.edu or g.chen@vanderbilt.edu
Supplementary information: Supplementary data are available at Bioinformatics online.
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