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Lecture 8: Predicting and analyzing
metagenomic composition from 16S
survey data

What can we tell about the taxonomic and
functional stability of microbiota? Why?
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Host histology

Human colon tissue
from healthy (left),
moderate colitis (center),
and severe colitis (right)
conditions

Ring structures are colonic crypts,
which perform critical absorption and
secretion functions within the colon

An escalating immune response results
in infiltration by inflammatory cells
and destruction of colonic crypts

Further infiltration and loss of crypts;
inflamed tissues experience dysregulation,
oxidative stress, and severe barrier defects

Genome Medicine, 2013; 5:65
DOI: 10.1186/gm469
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Functional differentiation in pulsed antibiotic
treatment
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How to measure metagenomes?

* Unlike 16S rRNA gene sequencing, metagenomic sequencing is not
targeted to a specific gene, but does an unbiased sample of the entire
(bacterial) genomic DNA in a specimen.

* Typically shorter sequence reads are used to obtain >5Gb of data per
sample.

* HiSeq instruments are typically more cost effective for metagenomic
sequencing.

* This approach is also called shotgun whole metagenome sequencing
or Wm@GS or WGS.
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Metagenomic processing pipelines

* MG-RAST: BMC Bioinformatics, 2008; 9:38. DOI: 10.1186/1471-2105-
9-386

* SUPER-FOCUS: Bioinformatics, 2016; 32 (3): 354-361. DOI:
10.1093/bioinformatics/btv584

* HUMANN: PLoS Comput Biol, 2012; 8(6):e1002358. DOI:
10.1371/journal.pcbi.1002358
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How is metagenome data representation different
from 16S rRNA gene sequencing data?

* Taxonomic information is typically discarded, only functional data
remain.

* The most fundamental unit of analysis is an individual gene, or
orthologous group of genes.

* Genes may be grouped by pathways, systems, diseases, etc.

» Abundance or presence/absence of genes, pathways, etc. is captured
in the data matrix.

Predicting metagenomes

* Metagenomic sequencing is
considerably more expensive.

* The informatics processing is 2
much more complicated. Focus W
(Sha et al. 2014)
* In the end, we rely on reference
databases of known genes; no 3
true de novo functional

information is discovered.

* Some pipelines (e.g. SUPER ——
FOCUS) require taxonomic
information.
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ldea: We can predict metagenomes from the
16S rRNA gene bacterial identification data

* 16S rRNA gene sequencing allows for indentification of microbiota.
* If we know the organism, we may have gene content of that organism
or a related organism.

* We can use the information to infer the metagenomic content and
use the abundances to reconstruct the metagenomic abundances.

Key issues to address

* 16S rRNA gene may have multiple copies in some genomes
* Solution: normalize the 16S data by multiplicity

* How do we infer metagenomic content of related organisms?
* Solution: ancestral reconstruction

12
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PICRUSt
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Performance of PICRUSt
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How do we analyze the metagenome data?

* Analyses we discussed before are still applicable
* Multivariate analysis
* Hypothesis testing
* Machine learning approaches

* Gene set enrichment analysis:

* Determine if the number of significant genes within a category is greater than

expected by chance.
* Can be accomplished with Fisher-exact test, hypergeometric test

16
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Gene set enrichment analysis (GSEA)

* Derives from univariate ranking of individual genes.

* Assesses the significance of the over-representation of top-ranked
genes in lists of genes a priori grouped (pathways).
* Developed to overcome analytic challenges:
* No significant genes;
* Too many significant genes;

* Inability of univariate methods to assign further meaning to significant genes.

Two versions

* Based on the entire list of effect sizes;
* Based on pre-determined significance threshold.
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Based on pre-determined significance
threshold

t
threshold; — a hada —

Significant

* Create a contingency table of Not 10 999 1009
the number of genes in or out of  significant
the pathway vs the number of 20 s 207D
significant vs non-significant
genes;

* Use a contingency table
association test, like chi-square
or Fisher exact test.

GSEA

* Formally, GSEA considers a pre-defined list of genes and determines
whether the members of this list are over-represented (enriched) at
the top of the ranked list of genes.

* The ranking is based on association to a phenotype of interest.
* Can use effect size (absolute value) as the ranking.
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GSEA_Results
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e Genes on the left side are highly
expressed on the top half (indicated
by red color) and lowly expressed on
the bottom half (indicated by blue
color). The reverse is shown on the
right-most genes

e Created a gradient or ranked list
corresponding to the degree of
correlation with the two phenotypes

Lowly expressed in diseased
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This is depicted nicely by the graph on the bottom of the figure,
where the positive ranks on the left represent the correlation to the
Disease phenotype and the negative ranks on the right signify the
correlation to the Normal phenotype

The graph also generates a rank gradient that represents the order of
the most up-regulated genes for the Disease sample on the left-most,
and the most up-regulated genes for the Normal samples on the right-
most

Diseased |

Normal |

Ranked List Metric

0 2,500 5,000 7,500 10,000 12,500 15,000
Rank in Ordered Dataset

[ eniichment_profile [~ Hits " Ranking metiic scores

17,500

Now, let’ s hide the heatmap and replace the middle
part of the figure with genes from a specific geneset,
say genes from the Glycolysis pathway.

Each vertical blue bars represents a gene from the
pathway, being mapped on the same location as the
whole dataset

Again, genes that are located on the left side are highly
expressed on the Disease samples, and the opposite is
true for the right-most genes
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GSEA_Results
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Now, we are ready to demonstrate the GSEA
algorithm.
The walk down algorithm basically scans the ranked

gene list L, and when a member of S is encountered,
an Enrichment Score (ES) is registered. This is

illustrated on the top part of the figure below; when the

ES started to build upon encountering more genes
from the GeneSet S.
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GSEA_Results
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e But, when no S genes were encountered for a long
walk down, as indicated on the middle section of the
middle plot, the ES will decrease accordingly. In
other words, a high ES relies intimately with the
clustering of S genes in close proximity. In this
example, we would conclude that the S genes have
high degree of correlation with the Disease bets e GeEm oo
phenotype since most of the ES was gained from the [ Dataset
left portion of the plot

pking metric scores

Advantages of GSEA

» Agnostic to the type of gene set and the source of
annotation

* Operates on any ordered gene list

* Does not require the choice of a gene selection
threshold or the explicit definition of a statistically
significant marker set

* Uses distribution-free, non-parametric, permutation-
based test procedures with increased statistical
power

* Incorporates the permutation of phenotype labels
thereby preserving the “biological” correlation
structure of the markers

* Takes into account multiple hypotheses testing of
multiple gene sets
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