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Lecture	8:	Predicting	and	analyzing	
metagenomic composition	from	16S	

survey	data

What	can	we	tell	about	the	taxonomic	and	
functional	stability	of	microbiota?	Why?

Figure 2. Carriage of microbial taxa varies while metabolic pathways remain stable within a 
healthy population
Vertical bars represent microbiome samples by body habitat in the seven locations with both 
shotgun and 16S data; bars indicate relative abundances colored by A) microbial phyla from 
binned OTUs and B) metabolic modules. Legend indicates most abundant phyla/pathways 
by average within one or more body habitats; RC = retroauricular crease. A plurality of most 
communities’ memberships consists of a single dominant phylum (and often genus; see 
Supp. Fig. 2), but this is universal neither to all body habitats nor to all individuals. 
Conversely, most metabolic pathways are evenly distributed and prevalent across both 
individuals and body habitats.
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A	model	of	functional	
dysbiosis in	the	
human	gut	
microbiome	during	
initiation	and	
progression	of	
complex	disease.

Genome	Medicine,	2013;	5:65
DOI:	10.1186/gm469
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Functional	differentiation	in	pulsed	antibiotic	
treatment

Nature	Communications.	2015.	6,	Article	
number:	7486.	doi:10.1038/ncomms8486 4
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Functional	differentiation	in	pulsed	antibiotic	
treatment
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How	to	measure	metagenomes?

• Unlike	16S	rRNA gene	sequencing,	metagenomic sequencing	is	not	
targeted	to	a	specific	gene,	but	does	an	unbiased	sample	of	the	entire	
(bacterial)	genomic	DNA	in	a	specimen.
• Typically	shorter	sequence	reads	are	used	to	obtain	>5Gb	of	data	per	
sample.
• HiSeq instruments	are	typically	more	cost	effective	for	metagenomic
sequencing.
• This	approach	is	also	called	shotgun	whole	metagenome	sequencing	
or	WmGS or	WGS.
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Metagenomic processing	pipelines

• MG-RAST:	BMC	Bioinformatics,	2008;	9:38.	DOI:	10.1186/1471-2105-
9-386
• SUPER-FOCUS:	Bioinformatics,	2016;	32	(3):	354-361.	DOI:	
10.1093/bioinformatics/btv584
• HUMAnN:	PLoS Comput Biol, 2012;	8(6):e1002358.	DOI:	
10.1371/journal.pcbi.1002358
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Example	
pipeline:	
HUMAnN
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How	is	metagenome	data	representation	different	
from	16S	rRNA gene	sequencing	data?
• Taxonomic	information	is	typically	discarded,	only	functional	data	
remain.
• The	most	fundamental	unit	of	analysis	is	an	individual	gene,	or	
orthologous	group	of	genes.
• Genes	may	be	grouped	by	pathways,	systems,	diseases,	etc.
• Abundance	or	presence/absence	of	genes,	pathways,	etc.	is	captured	
in	the	data	matrix.

9

Predicting	metagenomes

• Metagenomic sequencing	is	
considerably	more	expensive.
• The	informatics	processing	is	
much	more	complicated.
• In	the	end,	we	rely	on	reference	
databases	of	known	genes;	no	
true	de	novo	functional	
information	is	discovered.
• Some	pipelines	(e.g.	SUPER	
FOCUS)	require	taxonomic	
information.
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Idea:	We	can	predict	metagenomes	from	the	
16S	rRNA gene	bacterial	identification	data
• 16S	rRNA gene sequencing allows for indentification of	microbiota.
• If we	know the organism,	we	may have gene content of	that organism
or a	related organism.
• We	can use the information to infer the metagenomic content and	
use the abundances to reconstruct the metagenomic abundances.
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Key	issues	to	address

• 16S	rRNA gene	may	have	multiple	copies	in	some	genomes
• Solution:	normalize	the	16S	data	by	multiplicity

• How	do	we	infer	metagenomic content	of	related	organisms?
• Solution:	ancestral	reconstruction
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Ancestral	
reconstruction

Ancestral state: 
0 or 1
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PICRUSt
workflow

Nature Biotechnology.	2013;	31,	814–821. 14
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Performance	of	PICRUSt

Nature Biotechnology.	2013;	31,	814–821. 15

How	do	we	analyze	the	metagenome	data?

• Analyses	we	discussed	before	are	still	applicable
• Multivariate	analysis
• Hypothesis	testing
• Machine	learning	approaches

• Gene	set	enrichment	analysis:
• Determine	if	the	number	of	significant	genes	within	a	category	is	greater	than	
expected	by	chance.

• Can	be	accomplished	with	Fisher-exact	test,	hypergeometric	test
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Gene	set	enrichment	analysis	(GSEA)

• Derives	from	univariate	ranking	of	individual	genes.
• Assesses	the	significance	of	the	over-representation	of	top-ranked	
genes	in	lists	of	genes	a	priori	grouped	(pathways).
• Developed	to	overcome	analytic	challenges:
• No	significant	genes;
• Too	many	significant	genes;
• Inability	of	univariate	methods	to	assign	further	meaning	to	significant	genes.

Two	versions

• Based	on	the	entire	list	of	effect	sizes;
• Based	on	pre-determined	significance	threshold.
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Based	on	pre-determined	significance	
threshold
• Determine	a	significance	
threshold;
• Create	a	contingency	table	of	
the	number	of	genes	in	or	out	of	
the	pathway	vs	the	number	of	
significant	vs	non-significant	
genes;
• Use	a	contingency	table	
association	test,	like	chi-square	
or	Fisher	exact	test.

In	pathway Not	in	
pathway

Significant 10 1 11

Not	
significant

10 999 1009

20 1000 1020

GSEA

• Formally,	GSEA	considers	a	pre-defined	list	of	genes	and	determines	
whether	the	members	of	this	list	are	over-represented	(enriched)	at	
the	top	of	the	ranked	list	of	genes.
• The	ranking	is	based	on	association	to	a	phenotype	of	interest.
• Can	use	effect	size	(absolute	value)	as	the	ranking.
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The rows represent the samples or 
chips, and the columns represent 
the genes

Samples

Genes

• Genes on the left side are highly 
expressed on the top half (indicated 
by red color) and lowly expressed on 
the bottom half (indicated by blue 
color).  The reverse is shown on the 
right-most genes 

• Created a gradient or ranked list 
corresponding to the degree of 
correlation with the two phenotypes

Diseased

Normal

Highly expressed in diseased

Lowly expressed in diseased
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• This is depicted nicely by the graph on the bottom of the figure, 
where the positive ranks on the left represent the correlation to the 
Disease phenotype and the negative ranks on the right signify the 
correlation to the Normal phenotype

• The graph also generates a rank gradient that represents the order of 
the most up-regulated genes for the Disease sample on the left-most, 
and the most up-regulated genes for the Normal samples on the right-
most

Diseased

Normal

• Now, let’s hide the heatmap and replace the middle 
part of the figure with genes from a specific geneset, 
say genes from the Glycolysis pathway.  

• Each vertical blue bars represents a gene from the 
pathway, being mapped on the same location as the 
whole dataset 

• Again, genes that are located on the left side are highly 
expressed on the Disease samples, and the opposite is 
true for the right-most genes
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• Now, we are ready to demonstrate the GSEA 
algorithm.

• The walk down algorithm basically scans the ranked 
gene list L, and when a member of S is encountered, 
an Enrichment Score (ES) is registered.  This is 
illustrated on the top part of the figure below; when the 
ES started to build upon encountering more genes 
from the GeneSet S.

• The more S genes is found, the higher the ES
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• But, when no S genes were encountered for a long 
walk down, as indicated on the middle section of the 
middle plot, the ES will decrease accordingly. In 
other words, a high ES relies intimately with the 
clustering of S genes in close proximity. In this 
example, we would conclude that the S genes have 
high degree of correlation with the Disease 
phenotype since most of the ES was gained from the 
left portion of the plot

Advantages	of	GSEA
• Agnostic	to	the	type	of	gene	set	and	the	source	of	
annotation
• Operates	on	any	ordered	gene	list
• Does	not	require	the	choice	of	a	gene	selection	
threshold	or	the	explicit	definition	of	a	statistically	
significant	marker	set
• Uses	distribution-free,	non-parametric,	permutation-
based	test	procedures	with	increased	statistical	
power
• Incorporates	the	permutation	of	phenotype	labels	
thereby	preserving	the	“biological” correlation	
structure	of	the	markers
• Takes	into	account	multiple	hypotheses	testing	of	
multiple	gene	sets


