Lecture 8: Predicting and analyzing metagenomic composition from 16S survey data

1

How to measure metagenomes? Unlike 16S rRNA gene sequencing, metagenomic sequencing is not targeted to a specific gene, but does an unbiased sample of the entire (bacterial) genomic DNA in a specimen. Typically shorter sequence reads are used to obtain >5Gb of data per sample. HiSeq instruments are typically more cost effective for metagenomic sequencing. This approach is also called shotgun whole metagenome sequencing or WmGS or WGS.

How is metagenome data representation different from 16S rRNA gene sequencing data?

- Taxonomic information is typically discarded, only functional data remain.
- The most fundamental unit of analysis is an individual gene, or orthologous group of genes.
- Genes may be grouped by pathways, systems, diseases, etc.
- Abundance or presence/absence of genes, pathways, etc. is captured in the data matrix.

Idea: We can predict metagenomes from the 16S rRNA gene bacterial identification data

- 16S rRNA gene sequencing allows for indentification of microbiota.
- If we know the organism, we may have gene content of that organism or a related organism.
- We can use the information to infer the metagenomic content and use the abundances to reconstruct the metagenomic abundances.

Key issues to address

- 16S rRNA gene may have multiple copies in some genomes
 - Solution: normalize the 16S data by multiplicity
- How do we infer metagenomic content of related organisms?
 - Solution: ancestral reconstruction

8

Two versions

- Based on the entire list of effect sizes;
- Based on pre-determined significance threshold.

Based on pre-determined significance threshold

- Determine a significance threshold;
- Create a contingency table of the number of genes in or out of the pathway vs the number of significant vs non-significant genes;
- Use a contingency table association test, like chi-square or Fisher exact test.

	In pathway	Not in pathway	
Significant	10	1	11
Not significant	10	999	1009
	20	1000	1020

GSEA

- Formally, GSEA considers a pre-defined list of genes and determines whether the members of this list are over-represented (enriched) at the top of the ranked list of genes.
- The ranking is based on association to a phenotype of interest.
- Can use effect size (absolute value) as the ranking.

