Module 18 Multivariate Analysis for Genetic data Session 09 Cluster Analysis I

Jan Graffelman

jan.graffelman@upc.edu
${ }^{1}$ Department of Statistics and Operations Research
Universitat Politècnica de Catalunya
Barcelona, Spain
${ }^{2}$ Department of Biostatistics
University of Washington
Seattle, WA, USA

26th Summer Institute in Statistical Genetics (SISG 2021)

Contents

(1) Introduction
(2) Distance measures
(3) Hierarchical agglomerative clustering
(4) Non-hierarchical K-means clustering
(5) Examples

Objectives

Goals:

- Discover "natural" groups of cases (or variables) in the data.
- Data reduction: from n cases to $m \ll n$ clusters

Considerations:

- The number of clusters may a priori be unkown.
- There is no categorical variable that defines the grouping.
- Cluster analysis is an exploratory tool.

Ingredients

- Distance measure
- In order to cluster item or variables we need a measure of similarity (proximity) or distance (dissimilarity).
- Algorithm
- We cannot consider all possible groupings and need algorithms to produce the grouping.

Algorithms

- Hierarchical methods: cases can not change group
- agglomerative (most common)
- divisive
- Partitioning methods: cases can change group
- K-means
- Model based methods
- Other

Distance measure for quantitative variables

$$
\mathbf{x}^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{p}\right) \quad \mathbf{y}^{\prime}=\left(y_{1}, y_{2}, \ldots, y_{p}\right)
$$

Euclidian distance:
Weighted Euclidian distance:
Mahalanobis distance:
Manhattan distance:
Minkowski distance:
Canberra distance:
Bray-Curtis distance:

$$
\begin{aligned}
& d(\mathbf{x}, \mathbf{y})=\sqrt{(\mathbf{x}-\mathbf{y})^{\prime}(\mathbf{x}-\mathbf{y})} \\
& d(\mathbf{x}, \mathbf{y})=\sqrt{(\mathbf{x}-\mathbf{y})^{\prime} \mathbf{A}(\mathbf{x}-\mathbf{y})} \\
& d(\mathbf{x}, \mathbf{y})=\sqrt{(\mathbf{x}-\mathbf{y})^{\prime} \mathbf{S}^{-1}(\mathbf{x}-\mathbf{y})} \\
& d(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{p}\left|x_{i}-y_{i}\right| \\
& d(\mathbf{x}, \mathbf{y}, \lambda)=\left(\sum_{i=1}^{p}\left|x_{i}-y_{i}\right|^{\lambda}\right)^{1 / \lambda} \\
& d(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{p} \frac{\left|x_{i}-y_{i}\right|}{i_{i}+y_{i}} \\
& d(\mathbf{x}, \mathbf{y})=\frac{1}{P} \frac{\sum_{i=1}^{p}\left|x_{i}-y_{i}\right|}{\sum_{i=1}^{p}\left(x_{i}+y_{i}\right)}
\end{aligned}
$$

Euclidean distance

In two dimensions:

$$
d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sqrt{\left(x_{j 1}-x_{i 1}\right)^{2}+\left(x_{j 2}-x_{i 2}\right)^{2}}=\sqrt{\left(\mathbf{x}_{j}-\mathbf{x}_{i}\right)^{\prime}\left(\mathbf{x}_{j}-\mathbf{x}_{i}\right)}
$$

In p dimensions:

$$
d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sqrt{\left(x_{j 1}-x_{i 1}\right)^{2}+\left(x_{j 2}-x_{i 2}\right)^{2}+\cdots+\left(x_{j p}-x_{i p}\right)^{2}}=\sqrt{\left(\mathbf{x}_{j}-\mathbf{x}_{i}\right)^{\prime}\left(\mathbf{x}_{j}-\mathbf{x}_{i}\right)}
$$

Similarity measures for qualitative variables

case j				
		1	0	
case i	1	a	b	$\mathrm{a}+\mathrm{b}$
	0	c	d	$\mathrm{c}+\mathrm{d}$
		$\mathrm{a}+\mathrm{c}$	$\mathrm{b}+\mathrm{d}$	$\mathrm{p}=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$

$\frac{a+d}{p}$	simple matching coefficient
$\frac{a}{p}$	only one-one matches
$\frac{a}{a+b+c}$	Jaccard's coefficient (0-0 irrelevant)

Example

	indicators					
case 1	1	1	0	0	1	1
case 2	0	1	1	0	0	1

- Compute the squared Euclidean distance between the cases
- What does this distance represent?

Cluster distance

Average linkage $\quad \frac{1}{\mid} \sum_{j=1}^{J} \sum_{i=1}^{1} \mathrm{~d}_{\mathrm{ij}}$

Criteria for joining clusters

- single linkage
- complete linkage
- average linkage
- centroid distance $d_{r s}^{2}=\sum_{j=1}^{p}\left(\bar{x}_{r j}-\bar{x}_{s j}\right)^{2}$ (UPGMA, Unweighted Pair Group Method using Averages)
- Ward's incremental sum-of-squares

Miniature example: hierarchical agglomerative

	1	2	3	4	5
1	0	2	6	10	9
2	2	0	5	9	8
3	6	5	0	4	5
4	10	9	4	0	3
5	9	8	5	3	0

Distance	Clusters
0	$1,2,3,4,5$
2	$(1,2), 3,4,5$
3	$(1,2), 3,(4,5)$
4	$(1,2),(3,4,5)$
5	$(1,2,3,4,5)$

Miniature example: continuation

D_{0}	1	2	3	4	5
1	0	2	6	10	9
2	2	0	5	9	8
3	6	5	0	4	5
4	10	9	4	0	3
5	9	8	5	3	0

D_{1}	$(1,2)$	3	4	5
$(1,2)$	0	5	9	8
3	5	0	4	5
4	9	4	0	3
5	8	5	3	0

D_{2}	$(1,2)$	3	$(4,5)$
$(1,2)$	0	5	8
3	5	0	4
$(4,5)$	8	4	0

D3	$(1,2)$	$(3,4,5)$
$(1,2)$	0	5
$(3,4,5)$	5	0

D_{4}	$(1,2,3,4,5)$
$(1,2,3,4,5)$	0

Exercise

Given the distance matrix

	1	2	3	4	5
1	0	10	27	15	19
2	10	0	18	6	8
3	27	18	0	16	12
4	15	6	16	0	7
5	19	8	12	7	0

Write down the successive formation of clusters according to the complete linkage criterion

Ward's criterion

Given two clusters r and s we have the within-group sums-of-squares

$$
W S S_{r}=\sum_{j=1}^{p} \sum_{i=1}^{n_{r}}\left(x_{i j}-\bar{x}_{j}\right)^{2} \quad W^{2} S_{s}=\sum_{j=1}^{p} \sum_{i=1}^{n_{s}}\left(x_{i j}-\bar{x}_{j}\right)^{2}
$$

On joining, an new cluster t is obtained with a new WSS:

$$
W S S_{t}=\sum_{j=1}^{p} \sum_{i=1}^{n_{r}+n_{s}}\left(x_{i j}-\bar{x}_{j}\right)^{2}
$$

This gives an increase in WSS:

$$
\Delta=W S S_{t}-\left(W S S_{r}+W S S_{s}\right)=\frac{n_{r} n_{s}}{n_{r}+n_{s}} d_{r s}^{2}
$$

Join those two clusters for which Δ is minimal.

Example: protein consumption data

Country	Red meat	White meat	Eggs	Milk	Fish	Cereals	Starchy foods	Pulses, Nuts Oilseeds	$\begin{array}{r} \text { Fruit } \\ \text { Vegetables } \\ \hline \end{array}$
Albania	10.1	1.4	0.5	8.9	0.2	42.3	0.6	5.5	1.7
Austria	8.9	14.0	4.3	19.9	2.1	28.0	3.6	1.3	4.3
Belgium	13.5	9.3	4.1	17.5	4.5	26.6	5.7	2.1	4.0
Bulgaria	7.8	6.0	1.6	8.3	1.2	56.7	1.1	3.7	4.2
Czechoslovakia	9.7	11.4	2.8	12.5	2.0	34.3	5.0	1.1	4.0
Denmark	10.6	10.8	3.7	25.0	9.9	21.9	4.8	0.7	2.4
EastGermany	8.4	11.6	3.7	11.1	5.4	24.6	6.5	0.8	3.6
Finland	9.5	4.9	2.7	33.7	5.8	26.3	5.1	1.0	1.4
France	18.0	9.9	3.3	19.5	5.7	28.1	4.8	2.4	6.5
Greece	10.2	3.0	2.8	17.6	5.9	41.7	2.2	7.8	6.5
Hungary	5.3	12.4	2.9	9.7	0.3	40.1	4.0	5.4	4.2
Ireland	13.9	10.0	4.7	25.8	2.2	24.0	6.2	1.6	2.9
Italy	9.0	5.1	2.9	13.7	3.4	36.8	2.1	4.3	6.7
Netherlands	9.5	13.6	3.6	23.4	2.5	22.4	4.2	1.8	3.7
Norway	9.4	4.7	2.7	23.3	9.7	23.0	4.6	1.6	2.7
Poland	6.9	10.2	2.7	19.3	3.0	36.1	5.9	2.0	6.6
Portugal	6.2	3.7	1.1	4.9	14.2	27.0	5.9	4.7	7.9
Romania	6.2	6.3	1.5	11.1	1.0	49.6	3.1	5.3	2.8
Spain	7.1	3.4	3.1	8.6	7.0	29.2	5.7	5.9	7.2
Sweden	9.9	7.8	3.5	24.7	7.5	19.5	3.7	1.4	2.0
Switzerland	13.1	10.1	3.1	23.8	2.3	25.6	2.8	2.4	4.9
UK	17.4	5.7	4.7	20.6	4.3	24.3	4.7	3.4	3.3
USSR	9.3	4.6	2.1	16.6	3.0	43.6	6.4	3.4	2.9
WestGermany	11.4	12.5	4.1	18.8	3.4	18.6	5.2	1.5	3.8
Yugoslavia	4.4	5.0	1.2	9.5	0.6	55.9	3.0	5.7	3.2

Dendrogram

single linkage (weighted Euclidean)

Dendrogram

complete linkage (weighted Euclidean)

Dendrogram

average linkage (weighted Euclidean)

Dendrogram

Ward's criterion (weighed Euclidean)

A compositional note

- The protein data set can be seen as a compositional data set
- Apply closure by dividing each row by its sum.
- Transform by taking log-ratios
- Compute the Euclidean distance of the transformed data (Aitchison distance)
- Cluster with this new distance matrix.

Dendrogram

Ward's criterion (Aitchison distance)

Some considerations on cluster distance

single linkage
complete linkage
average linkage centroid distance
Ward's criterion
late inclusion of outliers
can identify chain-like clusters
sensitive to outliers
fast inclusion of outliers
sensitive to outliers
less sensitive to outliers
less sensitive to outliers
less sensitive to outliers
tends to form equally sized clusters

Genetic examples: 1,000 genomes populations

single linkage; allele-sharing distance

- Subset of 1,000 Genomes individuals (CEU, JPT and YRI).
- 500,000 SNPs from CHR 20; MAF >0.05
- Allele sharing distance, Ward's criterion

	CEU	JPT	YRI
1	0	0	107
2	0	104	0
3	99	0	0

Non-hierarchical Clustering: K-means method

Algorithm:
(1) Choose a value for the number of clusters K.
(2) Partition all items into K initial clusters (at random or using seeds).
(3) Compute the centroids of each cluster.
(9) Assign each item to the cluster whose centroid is nearest.
(6) Go back to 3, until there are no re-assignments.

K means graphical illustration

K-means

After convergence, it is recommended to

- Try different initial clusters, and compare the final clusters obtained.
- Try different numbers of clusters K.
- Compare cluster means and within-cluster variances.

Example: K-means of protein consumption data

We tentatively try $k=4$

Ward's criterion (Aitchison distance)

	Redm	Whim	Eggs	Milk	Fish	Cereals	Starchy	N	ruVeg
1	0.46	0.21	-1.12	0.84	-2.03	2.47	-0.77	0.22	-0.29
2	0.46	0.21	-0.62	1.31	0.21	1.34	-0.21	-1.75	-0.96
3	0.55	0.38	-0.64	1.08	-0.79	1.43	-0.32	-1.21	-0.48
4	0.20	-0.56	-1.04	0.43	0.03	1.63	-0.61	-0.16	0.08

	1	2	3	4
Size	5.00	5.00	11.00	4.00
SS	7.24	2.96	6.81	4.22
Var	1.81	0.74	0.68	1.41

	SS	$\%$
WSS	21.2	33.4
BSS	42.4	66.6
TSS	63.6	100.0

	Dendrogram			
K-means	1	2	3	4
1	5	0	0	0
2	0	0	5	0
3	0	11	0	0
4	0	0	0	4

K-means 1,000 Genomes individuals (CEU, JPT and YRI).

	Cluster		
	1	2	3
Size	107	104	99
SS	2259563	1582909	1659549
Var	21317	15368	16934

- Subset of 1,000 Genomes individuals (CEU, JPT and YRI).
- 500,000 SNPs from CHR 20; MAF > 0.05
- mind missing values

	SS	$\%$
WSS	5502021	83.2
BSS	1109336	16.8
TSS	6611357	100.0

	1	2	3
CEU	0	0	99
JPT	0	104	0
YRI	107	0	0

	$k=2$	$\%$	$k=3$	$\%$	$k=4$	$\%$
WSS	6085198	92.0	5502021	83.2	5469181	82.7
BSS	526159	8.0	1109336	16.8	1142176	17.3
TSS	6611357	100.0	6611357	100.0	6611357	100.0

K-means issues

- The result depends on the initial random assignment
- The result is not necessarily optimal
- Perform multiple runs, and choose the best run

References

- Manly, B.F.J. (1989) Multivariate statistical methods: a primer. 3rd edition. Chapman and Hall, London.
- Johnson \& Wichern (2002) Applied Multivariate Statistical Analysis. 5th edition. Prentice Hall, Chapter 12.
- Everitt, B.S., Landau, S., Lees, M. \& Stahl, D. (2011) Cluster Analysis. 5th edition. Wiley.

