Distance measures

Hierarchical

Non-hierarchical

Examples 0000

Module 18 Multivariate Analysis for Genetic data Session 09 Cluster Analysis I

Jan Graffelman

jan.graffelman@upc.edu

¹Department of Statistics and Operations Research Universitat Politècnica de Catalunya Barcelona, Spain

> ²Department of Biostatistics University of Washington Seattle, WA, USA

26th Summer Institute in Statistical Genetics (SISG 2021)

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Jan Graffelman (SISG 2021)

Cluster Analysis I

July 19, 2021 1 / 31

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000		000000000000	000	0000
Contents				

- 3 Hierarchical agglomerative clustering
- 4 Non-hierarchical K-means clustering

5 Examples

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
●00		0000000000000	000	0000
Objectives				

Goals:

- Discover "natural" groups of cases (or variables) in the data.
- Data reduction: from *n* cases to $m \ll n$ clusters

Considerations:

- The number of clusters may a priori be unkown.
- There is no categorical variable that defines the grouping.
- Cluster analysis is an exploratory tool.

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
0●0	000000	000000000000	000	0000
Ingredients	S			

- Distance measure
 - In order to cluster item or variables we need a measure of similarity (proximity) or distance (dissimilarity).
- Algorithm
 - We cannot consider all possible groupings and need algorithms to produce the grouping.

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000	000000	000000000000	000	0000
Algorithms				

- Hierarchical methods: cases can not change group
 - agglomerative (most common)
 - divisive
- Partitioning methods: cases can change group
 - K-means
- Model based methods
- Other

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000	•00000	000000000000	000	0000
Distance n	neasure for qu	antitative varia	ables	

$$\mathbf{x}' = (x_1, x_2, \dots, x_p) \quad \mathbf{y}' = (y_1, y_2, \dots, y_p)$$

Euclidian distance: Weighted Euclidian distance: Mahalanobis distance: Manhattan distance:

Minkowski distance:

Canberra distance:

Bray-Curtis distance:

$$\begin{split} & \mathsf{d}(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})'(\mathbf{x} - \mathbf{y})} \\ & \mathsf{d}(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})'\mathbf{A}(\mathbf{x} - \mathbf{y})} \\ & \mathsf{d}(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})'\mathbf{S}^{-1}(\mathbf{x} - \mathbf{y})} \\ & \mathsf{d}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{p} |x_i - y_i| \\ & \mathsf{d}(\mathbf{x}, \mathbf{y}, \lambda) = \left(\sum_{i=1}^{p} |x_i - y_i|^{\lambda}\right)^{1/\lambda} \\ & \mathsf{d}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{p} \frac{|x_i - y_i|}{x_i + y_i} \\ & \mathsf{d}(\mathbf{x}, \mathbf{y}) = \frac{1}{p} \frac{\sum_{i=1}^{p} |x_i - y_i|}{\sum_{i=1}^{p} |x_i - y_i|} \end{split}$$

. . .

In two dimensions:

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(x_{j1} - x_{i1})^2 + (x_{j2} - x_{i2})^2} = \sqrt{(\mathbf{x}_j - \mathbf{x}_i)'(\mathbf{x}_j - \mathbf{x}_i)}$$

In p dimensions:

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(x_{j1} - x_{i1})^2 + (x_{j2} - x_{i2})^2 + \dots + (x_{jp} - x_{ip})^2} = \sqrt{(\mathbf{x}_j - \mathbf{x}_i)'(\mathbf{x}_j - \mathbf{x}_i)}$$

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000		000000000000	000	0000
CT 11 11	c	12.00	1.1	

Similarity measures for qualitative variables

case j						
1 0						
case i	1	а	b	a+b		
	0	с	d	c+d		
		a+c	b+d	p=a+b+c+d		

$$\frac{a+d}{p}$$
$$\frac{a}{p}$$
$$\frac{a}{a+b+c}$$

simple matching coefficient only one-one matches Jaccard's coefficient (0-0 irrelevant)

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000		000000000000	000	0000
Example				

	indicators					
case 1	1	1	0	0	1	1
case 2	0	1	1	0	0	1

- Compute the squared Euclidean distance between the cases
- What does this distance represent?

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000	0000●0	000000000000	000	0000
Cluster distance				

Criteria f	or joining clust	ers		
Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000	00000●	0000000000000		0000

- single linkage
- complete linkage
- average linkage
- centroid distance $d_{rs}^2 = \sum_{j=1}^{p} (\bar{x}_{rj} \bar{x}_{sj})^2$ (UPGMA, Unweighted Pair Group Method using Averages)
- Ward's incremental sum-of-squares

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000	000000	●000000000000	000	0000
Miniature	example: hier	archical agglom	nerative	

	1	2	3	4	5
1	0	2	6	10	9
2	2	0	5	9	8
3	6	5	0	4	5
4	10	9	4	0	3
5	9	8	5	3	0

Distance	Clusters
0	1,2,3,4,5
2	(1,2),3,4,5
3	(1,2),3,(4,5)
4	(1,2),(3,4,5)
5	(1,2,3,4,5)

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples			
000	000000	o●ooooooooooo	000	0000			
Miniature example: continuation							

D_0	1	2	3	4	5
1	0	2	6	10	9
2	2	0	5	9	8
3	6	5	0	4	5
4	10	9	4	0	3
5	9	8	5	3	0
D_1	(1,2)	3	4	5
(1,2)	0	5	9	8
3		5	0	4	5
4		9	4	0	3
5		8	5	3	0

D_2	(1,2)	3	(4,5)
(1,2)	0	5	8
3	5	0	4
(4,5)	8	4	0
D3	(1,2)	(3,4,5)
(1,2)	0		5
(3,4,5)	5		0

$$\begin{array}{c} D_4 & (1,2,3,4,5) \\ (1,2,3,4,5) & 0 \end{array}$$

Introduction 000	Distance measures	Hierarchical 000000000000	Non-hierarchical	Examples 0000
Exercise				

Given the distance matrix

1	2	3	4	5
0	10	27	15	19
10	0	18	6	8
27	18	0	16	12
15	6	16	0	7
19	8	12	7	0
	10 27 15	1 2 0 10 10 0 27 18 15 6	0 10 27 10 0 18 27 18 0 15 6 16	0 10 27 15 10 0 18 6 27 18 0 16 15 6 16 0

Write down the successive formation of clusters according to the complete linkage criterion

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000	000000	000●00000000	000	0000
Ward's crit	erion			

Given two clusters r and s we have the within-group sums-of-squares

$$WSS_r = \sum_{j=1}^{p} \sum_{i=1}^{n_r} (x_{ij} - \bar{x}_j)^2 \qquad WSS_s = \sum_{j=1}^{p} \sum_{i=1}^{n_s} (x_{ij} - \bar{x}_j)^2$$

On joining, an new cluster *t* is obtained with a new WSS:

$$WSS_t = \sum_{j=1}^{p} \sum_{i=1}^{n_r+n_s} (x_{ij} - \bar{x}_j)^2$$

This gives an increase in WSS:

$$\Delta = WSS_t - (WSS_r + WSS_s) = \frac{n_r n_s}{n_r + n_s} d_{rs}^2$$

Join those two clusters for which Δ is minimal.

Introduction 000		Distance measures	Hierarchical 000000000000	Non-hierarchical 000	Examples 0000
-	1				

Example: protein consumption data

Country	Red	White	Eggs	Milk	Fish	Cereals	Starchy	Pulses, Nuts	Fruit
	meat	meat					foods	Oilseeds	Vegetables
Albania	10.1	1.4	0.5	8.9	0.2	42.3	0.6	5.5	1.7
Austria	8.9	14.0	4.3	19.9	2.1	28.0	3.6	1.3	4.3
Belgium	13.5	9.3	4.1	17.5	4.5	26.6	5.7	2.1	4.0
Bulgaria	7.8	6.0	1.6	8.3	1.2	56.7	1.1	3.7	4.2
Czechoslovakia	9.7	11.4	2.8	12.5	2.0	34.3	5.0	1.1	4.0
Denmark	10.6	10.8	3.7	25.0	9.9	21.9	4.8	0.7	2.4
EastGermany	8.4	11.6	3.7	11.1	5.4	24.6	6.5	0.8	3.6
Finland	9.5	4.9	2.7	33.7	5.8	26.3	5.1	1.0	1.4
France	18.0	9.9	3.3	19.5	5.7	28.1	4.8	2.4	6.5
Greece	10.2	3.0	2.8	17.6	5.9	41.7	2.2	7.8	6.5
Hungary	5.3	12.4	2.9	9.7	0.3	40.1	4.0	5.4	4.2
Ireland	13.9	10.0	4.7	25.8	2.2	24.0	6.2	1.6	2.9
Italy	9.0	5.1	2.9	13.7	3.4	36.8	2.1	4.3	6.7
Netherlands	9.5	13.6	3.6	23.4	2.5	22.4	4.2	1.8	3.7
Norway	9.4	4.7	2.7	23.3	9.7	23.0	4.6	1.6	2.7
Poland	6.9	10.2	2.7	19.3	3.0	36.1	5.9	2.0	6.6
Portugal	6.2	3.7	1.1	4.9	14.2	27.0	5.9	4.7	7.9
Romania	6.2	6.3	1.5	11.1	1.0	49.6	3.1	5.3	2.8
Spain	7.1	3.4	3.1	8.6	7.0	29.2	5.7	5.9	7.2
Sweden	9.9	7.8	3.5	24.7	7.5	19.5	3.7	1.4	2.0
Switzerland	13.1	10.1	3.1	23.8	2.3	25.6	2.8	2.4	4.9
UK	17.4	5.7	4.7	20.6	4.3	24.3	4.7	3.4	3.3
USSR	9.3	4.6	2.1	16.6	3.0	43.6	6.4	3.4	2.9
WestGermany	11.4	12.5	4.1	18.8	3.4	18.6	5.2	1.5	3.8
Yugoslavia	4.4	5.0	1.2	9.5	0.6	55.9	3.0	5.7	3.2

Introduction 000	Distance measures	Hierarchical 000000000000	Non-hierarchical	Examples 0000

Dendrogram

single linkage (weighted Euclidean)

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000		000000000000	000	0000
Dendrogra	m			

complete linkage (weighted Euclidean)

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000		0000000●00000	000	0000
Dendrogra	m			

average linkage (weighted Euclidean)

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000		000000000000000	000	0000
Dendrogra	m			

Ward's criterion (weighed Euclidean)

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000	000000	000000000000000	000	0000
A compo	sitional note			

- The protein data set can be seen as a compositional data set
- Apply closure by dividing each row by its sum.
- Transform by taking log-ratios
- Compute the Euclidean distance of the transformed data (Aitchison distance)
- Cluster with this new distance matrix.

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000		000000000000000	000	0000
Dendrogra	m			

Ward's criterion (Aitchison distance)

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000	000000	0000000000000000		0000
C	and the second	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		

Some considerations on cluster distance

single linkage	late inclusion of outliers
	can identify chain-like clusters
	sensitive to outliers
complete linkage	fast inclusion of outliers
	sensitive to outliers
average linkage	less sensitive to outliers
centroid distance	less sensitive to outliers
Ward's criterion	less sensitive to outliers
	tends to form equally sized clusters

- 500,000 SNPs from CHR 20; MAF > 0.05
- Allele sharing distance, Ward's criterion

	CEU	JPT	YRI
1	0	0	107
2	0	104	0
3	99	0	0

single linkage; allele-sharing distance

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000	000000	000000000000	●00	0000
Non-hier	archical Cluster	ring K-means	method	

Б

Algorithm:

- Choose a value for the number of clusters K.
- 2 Partition all items into K initial clusters (at random or using seeds).
- **③** Compute the centroids of each cluster.
- 4 Assign each item to the cluster whose centroid is nearest.
- **o** Go back to 3, until there are no re-assignments.

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000		000000000000	○●○	0000
K means	graphical illust	tration		

000	oooooo		000	0000
Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples

	, granhiaal illua	tuation		
			000	
Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples

K maana	ميرال: المعاطمة مستع			
000	000000	000000000000	000	0000
Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples

K maana	ميرال: المعاطمة مستع			
000	000000	000000000000	000	0000
Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000		0000000000000	○●○	0000
K means	graphical illust	tration		

K maan	araphical illus	tration		
			000	
Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000		0000000000000	○●○	0000
K means	graphical illust	tration		

K maana	araphical illus	tration		
			000	
Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000	000000	000000000000	○●○	0000
K means	graphical illust	tration		

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000		0000000000000	○●○	0000
K means	graphical illust	tration		

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000	000000	000000000000	○●○	0000
K means	graphical illust	tration		

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000		0000000000000	○●○	0000
K means	graphical illust	tration		

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000		0000000000000	○●○	0000
K means	graphical illust	tration		

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000	000000	000000000000	00●	0000
K-means				

After convergence, it is recommended to

- Try different initial clusters, and compare the final clusters obtained.
- Try different numbers of clusters K.
- Compare cluster means and within-cluster variances.

Examples	K manage of m		ntion data	
000	000000	000000000000	000	0000
Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples

Example: K-means of protein consumption data

We tentatively try k = 4

_	Redm	Whim	Eggs	Milk	Fish	Cereals	Starchy	Nuts	FruVeg
1	0.46	0.21	-1.12	0.84	-2.03	2.47	-0.77	0.22	-0.29
2	0.46	0.21	-0.62	1.31	0.21	1.34	-0.21	-1.75	-0.96
3	0.55	0.38	-0.64	1.08	-0.79	1.43	-0.32	-1.21	-0.48
4	0.20	-0.56	-1.04	0.43	0.03	1.63	-0.61	-0.16	0.08

	1	2	3	4
Size	5.00	5.00	11.00	4.00
SS	7.24	2.96	6.81	4.22
Var	1.81	0.74	0.68	1.41

	SS	%
WSS	21.2	33.4
BSS	42.4	66.6
TSS	63.6	100.0

		Dendro	ogram	
K-means	1	2	3	4
1	5	0	0	0
2	0	0	5	0
3	0	11	0	0
4	0	0	0	4

Ward's criterion (Aitchison distance)

000	000000	000000000000	000	0000
K_maana	1.000 Cenome	e individuale ((FIL IPT and	4 VRI)

		Cluster	
	1	2	3
Size	107	104	99
SS	2259563	1582909	1659549
Var	21317	15368	16934

- Subset of 1,000 Genomes individuals (CEU, JPT and YRI).
- 500,000 SNPs from CHR 20; MAF > 0.05
- mind missing values

	SS	%
WSS	5502021	83.2
BSS	1109336	16.8
TSS	6611357	100.0

	1	2	3
CEU	0	0	99
JPT	0	104	0
YRI	107	0	0

	<i>k</i> = 2	%	<i>k</i> = 3	%	<i>k</i> = 4	%
WSS	6085198	92.0	5502021	83.2	5469181	82.7
BSS	526159	8.0	1109336	16.8	1142176	17.3
TSS	6611357	100.0	6611357	100.0	6611357	100.0

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000	000000	0000000000000		0000
K-means	issues			

- The result depends on the initial random assignment
- The result is not necessarily optimal
- Perform multiple runs, and choose the best run

Introduction	Distance measures	Hierarchical	Non-hierarchical	Examples
000		000000000000	000	000●
References				

- Manly, B.F.J. (1989) Multivariate statistical methods: a primer. 3rd edition. Chapman and Hall, London.
- Johnson & Wichern (2002) Applied Multivariate Statistical Analysis. 5th edition. Prentice Hall, Chapter 12.
- Everitt, B.S., Landau, S., Lees, M. & Stahl, D. (2011) Cluster Analysis. 5th edition. Wiley.