Module 18 Multivariate Analysis for Genetic data Session 12 Discriminant Analysis II

Jan Graffelman

jan.graffelman@upc.edu
${ }^{1}$ Department of Statistics and Operations Research
Universitat Politècnica de Catalunya
Barcelona, Spain
${ }^{2}$ Department of Biostatistics
University of Washington
Seattle, WA, USA

26th Summer Institute in Statistical Genetics (SISG 2021)

Contents

(1) Error rate and cross validation
(2) Multi-group LDA

Error rates and Confusion matrix

- It is of interest to evaluate the performance of a classification rule.
- There are several criteria to do so.
- Actual error rate (AER, density dependent)

$$
\mathrm{AER}=p_{1} \int_{\hat{R}_{2}} f_{1}(\mathbf{x}) d \mathbf{x}+p_{2} \int_{\hat{R}_{1}} f_{2}(\mathbf{x}) d \mathbf{x}
$$

- Apparent error rate (APER, not density dependent) based on the confusion matrix

		Predicted class	
		π_{1}	π_{2}
True	π_{1}	n_{11}	n_{12}
Class	π_{2}	n_{21}	n_{22}

- APER obtained as

$$
\mathrm{APER}=\frac{n_{12}+n_{21}}{n_{1}+n_{2}}
$$

- APER underestimates the AER.

Jackknife or hold-one-out

Procedure:

- Take the data from group π_{1}. Omit the i th observation, build the classifier with $n_{1}-1+n_{2}$ observations.
- Classify the ith observation using the classifier.
- Repeat for all observations in π_{1}.
- Calculate $n_{1 M}^{H}$, the number of observations that were held out and misclassified.
- Do the same for group π_{2} and calculate $n_{2 M}^{H}$.
- Obtain an estimate of the expected actual error rate

$$
E(\mathrm{AER})=\frac{n_{1 M}^{H}+n_{2 M}^{H}}{n_{1}+n_{2}}
$$

Allele intensities revisited

LDA

	non T carrier	T carrier
non T carrier	46	0
T carrier	0	52

$$
\mathrm{APER}=\frac{0+0}{46+52}=0
$$

With cross-validation
$E(A E R)=0$

QDA

	non T carrier	T carrier
non T carrier	46	0
T carrier	0	52

$$
\mathrm{APER}=\frac{0+0}{46+52}=0
$$

With cross-validation

$$
E(A E R)=0.0102
$$

Visualisation

LDA with multiple groups

- The ECM rule can be extended to k groups
- Fisher's discriminant analysis

ECM rule

ECM rule with k groups (equal costs)
Assign \mathbf{x} to π_{k} if

$$
p_{k} f_{k}(\mathbf{x})>p_{i} f_{i}(\mathbf{x}) \quad \forall \quad i \neq k
$$

Fisher's linear discriminant analysis

- Searches for an optimal linear combination:

$$
Z_{1}=a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{p} X_{p}
$$

- Maximizes the ratio of variability between groups to variability within groups
- Objective function

$$
\frac{a^{\prime} \mathrm{Ba}}{\mathbf{a}^{\prime} \mathbf{W a}}
$$

- \mathbf{W} is the matrix with within-group sums-of-squares
- For a single group i

$$
\mathbf{W}_{i}=\left(\mathbf{X}_{i}-\mathbf{1} \mathbf{m}_{i}^{\prime}\right)^{\prime}\left(\mathbf{X}_{i}-\mathbf{1} \mathbf{m}_{i}^{\prime}\right)
$$

- $\mathbf{W}=\sum_{i=1}^{k} \mathbf{W}_{i}$
- \mathbf{B} is the matrix with between-group sums-of-squares
- \mathbf{T} is the matrix with total sums-of-squares

$$
\mathbf{T}=\left(\mathbf{X}-\mathbf{1} \mathbf{m}^{\prime}\right)^{\prime}\left(\mathbf{X}-\mathbf{1} \mathbf{m}^{\prime}\right) \quad \mathbf{T}=\mathbf{W}+\mathbf{B}
$$

Solution

- The optimal weights are found by solving an eigenvector-eigenvalue problem

$$
\mathbf{W}^{-1} \mathbf{B a}=\lambda \mathbf{a}
$$

- The number of dimensions d in the solution is given by $\min (k-1, p)$

$$
\mathbf{W}^{-1} \mathbf{B A}=\mathbf{A} \mathbf{D}_{\lambda}
$$

- Eigenvectors scaled to satisfy $\mathbf{A}^{\prime} \mathbf{S}_{p} \mathbf{A}=\mathbf{I}$
- Selecting the first two eigenvalues and eigenvectors allows for dimension reduction

NIST autosomal STR data revisited

The data:

- 29 autosomal STRs
- Consider individuals with African-American, Asian and Caucasian ancestry
- Sample sizes balanced by subsampling

Prior to discriminant analysis:

- STRs coded as binary variables
- Quantification of the data by MDS based on Jaccard metric

Can we predict ancestry from an STR profile?

STR data in discriminant space

LDA

Numerical output

	1	2
Eigenvalue	550.38	194.45
Fraction	0.74	0.26
Cumulative	0.74	1.00

		Principal axis									
	prior	1	2	3	4	5	6	7	8	9	10
Afr. Ame.	0.333	0.108	-0.063	-0.001	-0.001	0.002	0.001	0.002	0.010	0.010	0.009
Asian	0.333	-0.132	-0.029	0.007	-0.002	0.010	0.005	-0.007	-0.002	-0.011	0.003
Caucasian	0.333	0.024	0.092	-0.006	0.003	-0.012	-0.006	0.006	-0.009	0.002	-0.012

Confusion matrix

LDA			
	Afr. Ame.	Asian	Caucasian
Afr. Ame.	86	0	11
Asian	1	92	4
Caucasian	5	6	86

$\mathrm{APER}=0.093$

QDA			
	Afr. Ame.	Asian	Caucasian
Afr. Ame.	91	0	6
Asian	2	93	2
Caucasian	5	3	89

$\mathrm{APER}=0.062$

QDA

More complex...

Alternative statistical techniques

- An alternative technique for two-group DA is logistic regression
- An alternative technique for multi-group DA is the multinomial logit model

References

- Hand, D.J. (1981) Discrimination and Classification. Wiley, New York.
- Johnson \& Wichern, (2002) Applied Multivariate Statistical Analysis, 5th edition, Prentice Hall, Chapter 11.
- Lachenbruch, P.A. (1975) Discriminant Analysis. Hafner Press, New York.
- James, G., Witten, D., Hastie, T. \& Tibshirani, R. (2013) An Introduction to Statistical Learning. Springer, New York.

