Module 18 Multivariate Analysis for Genetic data Session 12 Discriminant Analysis II

Jan Graffelman

jan.graffelman@upc.edu

¹Department of Statistics and Operations Research Universitat Politècnica de Catalunya Barcelona, Spain

> ²Department of Biostatistics University of Washington Seattle, WA, USA

26th Summer Institute in Statistical Genetics (SISG 2021)

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Jan Graffelman (SISG 2021)

Discriminant Analysis II

July 19, 2021 1 / 18

Cross validation

Error rates and Confusion matrix

- It is of interest to evaluate the performance of a classification rule.
- There are several criteria to do so.
- Actual error rate (AER, density dependent)

$$\mathsf{AER} = p_1 \int_{\hat{R}_2} f_1(\mathbf{x}) d\mathbf{x} + p_2 \int_{\hat{R}_1} f_2(\mathbf{x}) d\mathbf{x}$$

 Apparent error rate (APER, not density dependent) based on the confusion matrix

		Predicted class		
		π_1	π_2	
True	π_1	<i>n</i> ₁₁	<i>n</i> ₁₂	
Class	π_2	<i>n</i> ₂₁	<i>n</i> ₂₂	

APER obtained as

$$\mathsf{APER} = \frac{n_{12} + n_{21}}{n_1 + n_2}$$

APER underestimates the AER.

Jackknife or hold-one-out

Procedure:

- Take the data from group π_1 . Omit the *i*th observation, build the classifier with $n_1 1 + n_2$ observations.
- Classify the *i*th observation using the classifier.
- Repeat for all observations in π_1 .
- Calculate n_{1M}^H , the number of observations that were held out and misclassified.
- Do the same for group π_2 and calculate n_{2M}^H .
- Obtain an estimate of the expected actual error rate

$$E(AER) = \frac{n_{1M}^H + n_{2M}^H}{n_1 + n_2}$$

Allele intensities revisited

LDA

QDA

	non T carrier	T carrier
non T carrier	46	0
T carrier	0	52

$$APER = \frac{0+0}{46+52} = 0$$

With cross-validation

$$E(AER) = 0$$

	non T carrier	T carrier
non T carrier	46	0
T carrier	0	52

$$\mathsf{APER} = \frac{0+0}{46+52} = 0$$

With cross-validation

E(AER) = 0.0102

Visualisation

LDA with multiple groups

- The ECM rule can be extended to k groups
- Fisher's discriminant analysis

ECM rule with k groups (equal costs) Assign x to π_k if

$$p_k f_k(\mathbf{x}) > p_i f_i(\mathbf{x}) \quad \forall \quad i \neq k$$

Fisher's linear discriminant analysis

• Searches for an optimal linear combination:

$$Z_1 = a_1 X_1 + a_2 X_2 + \cdots + a_p X_p$$

- Maximizes the ratio of variability between groups to variability within groups
- Objective function

$\frac{a'Ba}{a'Wa}$

- W is the matrix with within-group sums-of-squares
- For a single group *i*

$$\mathbf{W}_i = (\mathbf{X}_i - \mathbf{1}\mathbf{m}_i')'(\mathbf{X}_i - \mathbf{1}\mathbf{m}_i')$$

- $\mathbf{W} = \sum_{i=1}^{k} \mathbf{W}_i$
- **B** is the matrix with between-group sums-of-squares
- T is the matrix with total sums-of-squares

$$\mathbf{T} = (\mathbf{X} - \mathbf{1}\mathbf{m}')'(\mathbf{X} - \mathbf{1}\mathbf{m}') \qquad \mathbf{T} = \mathbf{W} + \mathbf{B}$$

• The optimal weights are found by solving an eigenvector-eigenvalue problem

$$\mathbf{W}^{-1}\mathbf{B}\mathbf{a} = \lambda \mathbf{a}$$

• The number of dimensions *d* in the solution is given by min (*k* - 1, *p*)

$$\mathbf{W}^{-1}\mathbf{B}\mathbf{A} = \mathbf{A}\mathbf{D}_{\lambda}$$

- Eigenvectors scaled to satisfy $\mathbf{A}'\mathbf{S}_{p}\mathbf{A} = \mathbf{I}$
- Selecting the first two eigenvalues and eigenvectors allows for dimension reduction

NIST autosomal STR data revisited

The data:

- 29 autosomal STRs
- Consider individuals with African-American, Asian and Caucasian ancestry
- Sample sizes balanced by subsampling

Prior to discriminant analysis:

- STRs coded as binary variables
- Quantification of the data by MDS based on Jaccard metric

Can we predict ancestry from an STR profile?

MDS map

STR data in discriminant space

LD1 (73.89%)

Numerical output

	1	2
Eigenvalue	550.38	194.45
Fraction	0.74	0.26
Cumulative	0.74	1.00

					Princi	pal axis					
	prior	1	2	3	4	5	6	7	8	9	10
Afr. Ame.	0.333	0.108	-0.063	-0.001	-0.001	0.002	0.001	0.002	0.010	0.010	0.009
Asian	0.333	-0.132	-0.029	0.007	-0.002	0.010	0.005	-0.007	-0.002	-0.011	0.003
Caucasian	0.333	0.024	0.092	-0.006	0.003	-0.012	-0.006	0.006	-0.009	0.002	-0.012

Confusion matrix

LDA					
	Afr. Ame.	Asian	Caucasian		
Afr. Ame.	86	0	11		
Asian	1	92	4		
Caucasian	5	6	86		

QDA							
	Afr. Ame. Asian Caucasian						
Afr. Ame.	91	0	6				
Asian	2	93	2				
Caucasian	5	3	89				

$$APER = 0.093$$

 $\mathsf{APER} = 0.062$

NIST STR data revisited

Cross validation

Multi-group LDA

More complex...

Alternative statistical techniques

- An alternative technique for two-group DA is logistic regression
- An alternative technique for multi-group DA is the multinomial logit model

- Hand, D.J. (1981) Discrimination and Classification. Wiley, New York.
- Johnson & Wichern, (2002) Applied Multivariate Statistical Analysis, 5th edition, Prentice Hall, Chapter 11.
- Lachenbruch, P.A. (1975) Discriminant Analysis. Hafner Press, New York.
- James, G., Witten, D., Hastie, T. & Tibshirani, R. (2013) An Introduction to Statistical Learning. Springer, New York.