Multivariate normal

Module 18 Multivariate Analysis for Genetic data Session 13 Multivariate Normal Distribution

Jan Graffelman

jan.graffelman@upc.edu

¹Department of Statistics and Operations Research Universitat Politècnica de Catalunya Barcelona, Spain

> ²Department of Biostatistics University of Washington Seattle, WA, USA

26th Summer Institute in Statistical Genetics (SISG 2021)

Jan Graffelman (SISG 2021)

Multivariate Normal

July 19, 2021 1 / 24

Bivariate normal

Multivariate normal

Multivariate Normal Distribution

$$X \sim N(\mu, \sigma)$$
$$(x|\mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$
$$E(X) = \mu$$
$$V(X) = \sigma^2$$

f

Bivariate normal

Multivariate normal

Some normal data (Height UK girls in 1903)

N N* Mean Stdev Med Q1 Q3 Min Max Height 1375 0 63.751 2.6 63.6 62 65.6 55.1 73.1

Normal probability plot

i	1	2	3	4	5	6	7	8	9	 25
Height	172	174	183	175	176	184	177	169	172	 172
Sorted	165	169	170	170	171	172	172	172	172	 184
Rank i	1	2	3	4	5	6	7	8	9	 25
$\frac{i-0.5}{n}$	0.02	0.06	0.10	0.14	0.18	0.22	0.26	0.30	0.34	 0.98
$\frac{z}{(i-0.5)}/n$	-2.05	-1.55	-1.28	-1.08	-0.92	-0.77	-0.64	-0.52	-0.41	 2.05

Normal Q-Q Plot

Some bivariate normal distributions

bivariate normal

Bivariate normal

Density multivariate normal

$$f(x|\mu,\sigma) = rac{1}{\sqrt{2\pi\sigma}} e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

Exponent univariate normal

$$-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2} = -\frac{1}{2}(x-\mu)(\sigma^{2})^{-1}(x-\mu)$$

Exponent multivariate normal

$$-\frac{1}{2}(\mathbf{x}-\mu)'\mathbf{\Sigma}^{-1}(\mathbf{x}-\mu)$$

Multivariate normal

Multivariate normal distribution

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x}-\mu)'\mathbf{\Sigma}^{-1}(\mathbf{x}-\mu)}$$

Parameters:

• Population mean vector:

$$\mu = (\mu_1, \mu_2, \ldots, \mu_p)$$

• Population variance-covariance matrix:

$$Cov(\mathbf{X}) = \mathbf{\Sigma}_{p \times p} = E\left((\mathbf{X} - \mu)(\mathbf{X} - \mu)'\right) = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_{pp} \end{bmatrix}$$

Multivariate normal

Bivariate normal distribution

 $\rho = 0$ $\rho = 0.5$ $\rho = 0.75$ $\rho = -0.75$

Parameter estimation

Maximum likelihood estimator for μ :

$$\hat{\mu} = \bar{\mathbf{x}} = (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_p)$$

Maximum likelihood estimator for Σ :

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})' = \mathbf{S}_n$$

In practice, S_{n-1} is often used to estimate Σ :

$$\mathbf{S}_{n-1} = \frac{n}{n-1} \mathbf{S}_n$$

Some Properties of MVN random variates

Let **X** be a $p \times 1$ random vector, and **X** ~ $N_p(\mu, \Sigma)$.

- Linear combinations of the components of X are normally distributed.
- Basic result: if $\mathbf{X} \sim N_p(\mu, \mathbf{\Sigma})$ and $\mathbf{A}q \times p$, then $\mathbf{A}\mathbf{X} \sim N_q(\mathbf{A}\mu, \mathbf{A}\mathbf{\Sigma}\mathbf{A}')$
- Subsets of components have a (multivariate) normal distribution.
- Components with covariance zero ⇔ components are independent.
- Conditional distributions of components are (multivariate) normal.

Multivariate normal

Contours of normal densities (0.50 and 0.95)

Multivariate normal

Contours for empirical data

HeightMother

Assessing multivariate normality

Some basic ideas:

- Individual variables (marginal distributions) should have bell-shaped (normal) histograms
- Bivariate scatterplots should have clouds of points with an elliptic shape
- Some outliers can be expected, in particular in larger samples

χ^2 plot for multivariate normality

$$(\mathbf{x} - \mu)' \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu) \sim \chi_p^2$$

The ellipsoid traced by \mathbf{x} described by

$$(\mathbf{x} - \mu)' \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu) \le \chi_p^2 (1 - \alpha)$$

should contain $100 \cdot (1 - \alpha)\%$ of the observations.

For sample data:

- **1** Calculate $d_i^2 = (\mathbf{x}_i \bar{\mathbf{x}})' \mathbf{S}^{-1} (\mathbf{x}_i \bar{\mathbf{x}})$
- Order the distances from small to large
- 3 Calculate the rank $(i \frac{1}{2})/n$
- **4** Calculate corresponding quantiles q_i according to a χ^2_p distribution.

5 Plot
$$(d_i^2, q_i)$$

6 Compare with a reference line with intercept 0 and slope 1

Bivariate normal

Multivariate normal

Example χ^2 plot for multivariate normality

Normality of the NIST STR data

The data:

- 29 autosomal STRs
- Consider individuals with African-American, Asian and Caucasian ancestry
- Sample sizes balanced by subsampling
- STRs coded as binary variables
- Quantification of the data by MDS based on Jaccard metric

The multivariate normality of the MDS principal axis was seen to be important for:

- Model-based clustering
- Linear and quadratic discriminant analysis
-

Bivariate normal

Multivariate normal

Normality of the NIST STR data

Multivariate normal?

Bivariate normal

Multivariate normal

Normality of the NIST STR data

Bivariate normal

Multivariate normal

Normality of the NIST STR data

Stratifying

Bivariate exploration

with 0.95 and 0.50 ellipses

Bivariate normal

Multivariate normal

Multivariate exploration (χ^2 plots for p = 10)

• Johnson & Wichern, (2002) Applied Multivariate Statistical Analysis, Chapters 4 and 5, 5th edition, Prentice Hall.