Module 18 Multivariate Analysis for Genetic data Session 13 Multivariate Normal Distribution

Jan Graffelman

jan.graffelman@upc.edu
${ }^{1}$ Department of Statistics and Operations Research
Universitat Politècnica de Catalunya
Barcelona, Spain
${ }^{2}$ Department of Biostatistics
University of Washington
Seattle, WA, USA

26th Summer Institute in Statistical Genetics (SISG 2021)

UNIVERSITAT POLITÈCNICA
DE CATALUNYA
BARCELONATECH

Contents

(1) Univariate normal
(2) Bivariate normal
(3) Multivariate normal

Multivariate Normal Distribution

Some normal data (Height UK girls in 1903)

Height of 1375 UK Girls

Normal probability plot

N N* Mean Stdev Med Q1 Q3 Min Max
Height $1375063.751 \quad 2.6 \quad 63.6 \quad 6265.6 \quad 55.1 \quad 73.1$

Normal probability plot

i	1	2	3	4	5	6	7	8	9	\ldots
Height	172	174	183	175	176	184	177	169	172	\ldots
Sorted	165	169	170	170	171	172	172	172	172	\ldots
Rank i	1	2	3	4	5	6	7	8	9	\ldots
$\frac{i-0.5}{n}$	0.02	0.06	0.10	0.14	0.18	0.22	0.26	0.30	0.34	\ldots
$z_{(i-0.5) / n}$	-2.05	-1.55	-1.28	-1.08	-0.92	-0.77	-0.64	-0.52	-0.41	\ldots

Normal Q-Q Plot

Some bivariate normal distributions

bivariate normal

Density multivariate normal

$$
f(x \mid \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

Exponent univariate normal

$$
-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}=-\frac{1}{2}(x-\mu)\left(\sigma^{2}\right)^{-1}(x-\mu)
$$

Exponent multivariate normal

$$
-\frac{1}{2}(\mathbf{x}-\mu)^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mu)
$$

Multivariate normal distribution

$$
f(\mathbf{x})=\frac{1}{(2 \pi)^{p / 2}|\boldsymbol{\Sigma}|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mu)}
$$

Parameters:

- Population mean vector:

$$
\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{p}\right)
$$

- Population variance-covariance matrix:

$$
\operatorname{Cov}(\mathbf{X})=\boldsymbol{\Sigma}_{p \times p}=E\left((\mathbf{X}-\mu)(\mathbf{X}-\mu)^{\prime}\right)=\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 p} \\
\sigma_{21} & \sigma_{22} & \cdots & \sigma_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{p 1} & \sigma_{p 2} & \cdots & \sigma_{p p}
\end{array}\right]
$$

Bivariate normal distribution

$$
\rho=0 \quad \rho=0.5
$$

Parameter estimation

Maximum likelihood estimator for μ :

$$
\hat{\mu}=\overline{\mathbf{x}}=\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{p}\right)
$$

Maximum likelihood estimator for $\boldsymbol{\Sigma}$:

$$
\hat{\boldsymbol{\Sigma}}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\prime}=\mathbf{S}_{n}
$$

In practice, \mathbf{S}_{n-1} is often used to estimate $\boldsymbol{\Sigma}$:

$$
\mathbf{S}_{n-1}=\frac{n}{n-1} \mathbf{S}_{n}
$$

Some Properties of MVN random variates

Let \mathbf{X} be a $p \times 1$ random vector, and $\mathbf{X} \sim N_{p}(\mu, \boldsymbol{\Sigma})$.

- Linear combinations of the components of \mathbf{X} are normally distributed.
- Basic result: if $\mathbf{X} \sim N_{p}(\mu, \boldsymbol{\Sigma})$ and $\mathbf{A} q \times p$, then $\mathbf{A X} \sim N_{q}\left(\mathbf{A} \mu, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}\right)$
- Subsets of components have a (multivariate) normal distribution.
- Components with covariance zero \Leftrightarrow components are independent.
- Conditional distributions of components are (multivariate) normal.

Contours of normal densities (0.50 and 0.95)

$\Sigma=(10.75 ; 0.751)$

$\Sigma=(30 ; 01)$

$$
\Sigma=(1-0.75 ;-0.751)
$$

Contours for empirical data

Assessing multivariate normality

Some basic ideas:

- Individual variables (marginal distributions) should have bell-shaped (normal) histograms
- Bivariate scatterplots should have clouds of points with an elliptic shape
- Some outliers can be expected, in particular in larger samples

χ^{2} plot for multivariate normality

$$
(\mathbf{x}-\mu)^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mu) \sim \chi_{p}^{2}
$$

The ellipsoid traced by x described by

$$
(\mathbf{x}-\mu)^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mu) \leq \chi_{\boldsymbol{p}}^{2}(1-\alpha)
$$

should contain $100 \cdot(1-\alpha) \%$ of the observations.
For sample data:
(1) Calculate $d_{i}^{2}=\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\prime} \mathbf{S}^{-1}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)$
(2) Order the distances from small to large
(3) Calculate the rank $\left(i-\frac{1}{2}\right) / n$
(4) Calculate corresponding quantiles q_{i} according to a χ_{p}^{2} distribution.
(5) Plot $\left(d_{i}^{2}, q_{i}\right)$
(6) Compare with a reference line with intercept 0 and slope 1

Example χ^{2} plot for multivariate normality

Normality of the NIST STR data

The data:

- 29 autosomal STRs
- Consider individuals with African-American, Asian and Caucasian ancestry
- Sample sizes balanced by subsampling
- STRs coded as binary variables
- Quantification of the data by MDS based on Jaccard metric

The multivariate normality of the MDS principal axis was seen to be important for:

- Model-based clustering
- Linear and quadratic discriminant analysis
-

Normality of the NIST STR data

Multivariate normal?

Normality of the NIST STR data

Normality of the NIST STR data

Stratifying

Bivariate exploration

with 0.95 and 0.50 ellipses

Multivariate exploration $\left(\chi^{2}\right.$ plots for $\left.p=10\right)$

Bibliography

- Johnson \& Wichern, (2002) Applied Multivariate Statistical Analysis, Chapters 4 and 5, 5th edition, Prentice Hall.

