istance measures 00000 Hierarchical

Non-hierarchical

Model-based clustering

Cluster validation

Module 19 Multivariate Analysis for Genetic data Session 08 Cluster Analysis

Jan Graffelman

jan.graffelman@upc.edu

¹Department of Statistics and Operations Research Universitat Politècnica de Catalunya Barcelona, Spain

> ²Department of Biostatistics University of Washington Seattle, WA, USA

28th Summer Institute in Statistical Genetics (SISG 2023)

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Jan Graffelman (SISG 2023)

Cluster Analysis I

July 25, 2023 1 / 45

Non-hierarchical

Model-based clustering

Contents

- 2 Distance measures
- 3 Hierarchical agglomerative clustering
- 4 Non-hierarchical K-means clustering
- 5 Model-based clustering
- 6 Cluster validation

Objectives

Goals:

- Discover "natural" groups of cases (or variables) in the data.
- Data reduction: from *n* cases to $m \ll n$ clusters

Considerations:

- The number of clusters may a priori be unkown.
- There is no categorical variable that defines the grouping.
- Cluster analysis is an exploratory tool.

Ingredients

- Distance measure
 - In order to cluster item or variables we need a measure of similarity (proximity) or distance (dissimilarity).
- Algorithm
 - We cannot consider all possible groupings and need algorithms to produce the grouping.

Algorithms

- Hierarchical methods: cases can not change group
 - agglomerative (most common)
 - divisive
- Partitioning methods: cases can change group
 - K-means
- Model based methods
- Other

Distance measure for quantitative variables

$$\mathbf{x}' = (x_1, x_2, \dots, x_p) \quad \mathbf{y}' = (y_1, y_2, \dots, y_p)$$

Non-hierarchical

Model-based clustering

Euclidian distance: Weighted Euclidian distance: Mahalanobis distance: Manhattan distance:

Distance measures

Minkowski distance:

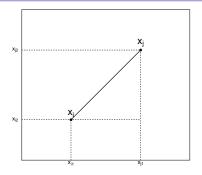
Canberra distance:

Bray-Curtis distance:

$$\begin{aligned} &d(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})'(\mathbf{x} - \mathbf{y})} \\ &d(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})'\mathbf{A}(\mathbf{x} - \mathbf{y})} \\ &d(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})'\mathbf{S}^{-1}(\mathbf{x} - \mathbf{y})} \\ &d(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{p} |x_i - y_i| \\ &d(\mathbf{x}, \mathbf{y}, \lambda) = \left(\sum_{i=1}^{p} \frac{|x_i - y_i|}{x_i + y_i} \\ &d(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{p} \frac{\frac{|x_i - y_i|}{x_i + y_i}}{\sum_{i=1}^{p} |x_i - y_i|} \\ &d(\mathbf{x}, \mathbf{y}) = \frac{1}{P} \frac{\sum_{i=1}^{P} |x_i - y_i|}{\sum_{i=1}^{p} |x_i - y_i|} \end{aligned}$$

. . .

Cluster validation


Distance measures

Hierarchical

Non-hierarchical 000000 Model-based clustering

Cluster validation

Euclidean distance

In two dimensions:

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(x_{j1} - x_{i1})^2 + (x_{j2} - x_{i2})^2} = \sqrt{(\mathbf{x}_j - \mathbf{x}_i)'(\mathbf{x}_j - \mathbf{x}_i)}$$

In p dimensions:

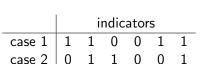
$$d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(x_{j1} - x_{i1})^2 + (x_{j2} - x_{i2})^2 + \dots + (x_{jp} - x_{ip})^2} = \sqrt{(\mathbf{x}_j - \mathbf{x}_i)'(\mathbf{x}_j - \mathbf{x}_i)}$$

Distance measures 00●000 Hierarchical

Non-hierarchical

Model-based clustering

Cluster validation


Similarity measures for qualitative variables

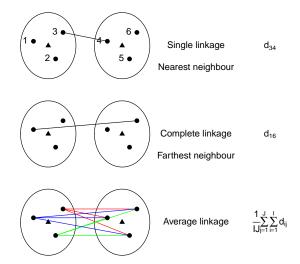
case j								
		1	0					
case i	1	а	b	a+b				
	0	с	d	c+d				
		a+c	b+d	p=a+b+c+d				

 $\frac{a+d}{p}$ $\frac{a}{p}$ $\frac{a}{a+b+c}$

simple matching coefficient only one-one matches Jaccard's coefficient (0-0 irrelevant)

- Compute the squared Euclidean distance between the cases
- What does this distance represent?

Distance measures 0000●0


Hierarchical

Non-hierarchical

Model-based clustering

Cluster validation

Cluster distance

Hierarchical

Non-hierarchical

Model-based clustering

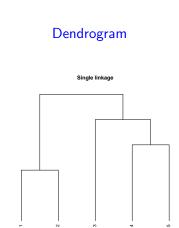
Cluster validation

Criteria for joining clusters

- single linkage
- complete linkage
- average linkage
- centroid distance $d_{rs}^2 = \sum_{j=1}^{p} (\bar{x}_{rj} \bar{x}_{sj})^2$ (UPGMA, Unweighted Pair Group Method using Averages)
- Ward's incremental sum-of-squares

Miniature example: hierarchical agglomerative

•000000000000


Non-hierarchical

Distance

Hierarchical

	1	2	3	4	5
1	0	2	6	10	9
2	2	0	5	9	8
3	6	5	0	4	5
4	10	9	4	0	3
5	9	8	5	3	0

Distance	Clusters
0	1,2,3,4,5
2	(1,2),3,4,5
3	(1,2),3,(4,5)
4	(1,2),(3,4,5)
5	(1,2,3,4,5)

Model-based clustering

Cluster validation

Miniature example: continuation

Hierarchical

D_0	1	2	3	4	5
1	0	2	6	10	9
2 3	2	0	5	9	8
3	6	5	0	4	5
4	10	9	4	0	3
5	9	8	5	3	0
D_1	(1,2)	3	4	5
(1,2)	0	5	9	8
3		5	0	4	5
4		9	4	0	3
5		8	5	3	0

	(1 2)	3	(4,5)
<i>D</i> ₂	(1,2)	5	(4,5)
(1,2)	0	5	8
3	5	0	4
(4,5)	8	4	0
D3	(1,2) ((3,4,5)

D3	(1,2)	(3,4,5)
(1,2)	0	5
(3,4,5)	5	0

D_4	(1,2,3,4,5)
(1,2,3,4,5)	0

Exercise

Given the distance matrix

	1	2	3	4	5
1	0	10	27	15	19
2	10	0	18	6	8
3	27	18	0	16	12
4	15	6	16	0	7
5	19	8	12	7	0

Write down the successive formation of clusters according to the complete linkage criterion

Introduction Distance measures Hierarchical Non-hierarchical Model-based clustering Cluster validation Ward's criterion Ward's criterion Value Value<

Given two clusters r and s we have the within-group sums-of-squares

$$WSS_r = \sum_{j=1}^{p} \sum_{i=1}^{n_r} (x_{ij} - \bar{x}_j)^2 \qquad WSS_s = \sum_{j=1}^{p} \sum_{i=1}^{n_s} (x_{ij} - \bar{x}_j)^2$$

On joining, an new cluster *t* is obtained with a new WSS:

$$WSS_t = \sum_{j=1}^{p} \sum_{i=1}^{n_r+n_s} (x_{ij} - \bar{x}_j)^2$$

This gives an increase in WSS:

$$\Delta = WSS_t - (WSS_r + WSS_s) = \frac{n_r n_s}{n_r + n_s} d_{rs}^2$$

Join those two clusters for which Δ is minimal.

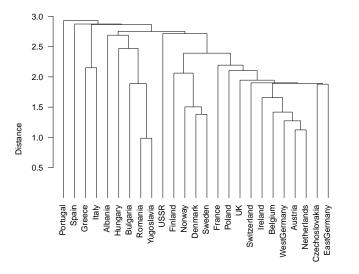
stance measures

Hierarchical 00000000000

Non-hierarchic

Model-based clustering

Cluster validation


Example: protein consumption data

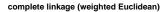
Country	Red	White	Eggs	Milk	Fish	Cereals	Starchy	Pulses, Nuts	Fruit
	meat	meat					foods	Oilseeds	Vegetables
Albania	10.1	1.4	0.5	8.9	0.2	42.3	0.6	5.5	1.7
Austria	8.9	14.0	4.3	19.9	2.1	28.0	3.6	1.3	4.3
Belgium	13.5	9.3	4.1	17.5	4.5	26.6	5.7	2.1	4.0
Bulgaria	7.8	6.0	1.6	8.3	1.2	56.7	1.1	3.7	4.2
Czechoslovakia	9.7	11.4	2.8	12.5	2.0	34.3	5.0	1.1	4.0
Denmark	10.6	10.8	3.7	25.0	9.9	21.9	4.8	0.7	2.4
EastGermany	8.4	11.6	3.7	11.1	5.4	24.6	6.5	0.8	3.6
Finland	9.5	4.9	2.7	33.7	5.8	26.3	5.1	1.0	1.4
France	18.0	9.9	3.3	19.5	5.7	28.1	4.8	2.4	6.5
Greece	10.2	3.0	2.8	17.6	5.9	41.7	2.2	7.8	6.5
Hungary	5.3	12.4	2.9	9.7	0.3	40.1	4.0	5.4	4.2
Ireland	13.9	10.0	4.7	25.8	2.2	24.0	6.2	1.6	2.9
Italy	9.0	5.1	2.9	13.7	3.4	36.8	2.1	4.3	6.7
Netherlands	9.5	13.6	3.6	23.4	2.5	22.4	4.2	1.8	3.7
Norway	9.4	4.7	2.7	23.3	9.7	23.0	4.6	1.6	2.7
Poland	6.9	10.2	2.7	19.3	3.0	36.1	5.9	2.0	6.6
Portugal	6.2	3.7	1.1	4.9	14.2	27.0	5.9	4.7	7.9
Romania	6.2	6.3	1.5	11.1	1.0	49.6	3.1	5.3	2.8
Spain	7.1	3.4	3.1	8.6	7.0	29.2	5.7	5.9	7.2
Sweden	9.9	7.8	3.5	24.7	7.5	19.5	3.7	1.4	2.0
Switzerland	13.1	10.1	3.1	23.8	2.3	25.6	2.8	2.4	4.9
UK	17.4	5.7	4.7	20.6	4.3	24.3	4.7	3.4	3.3
USSR	9.3	4.6	2.1	16.6	3.0	43.6	6.4	3.4	2.9
WestGermany	11.4	12.5	4.1	18.8	3.4	18.6	5.2	1.5	3.8
Yugoslavia	4.4	5.0	1.2	9.5	0.6	55.9	3.0	5.7	3.2

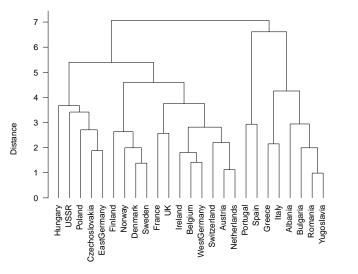
Hierarchical

Dendrogram

single linkage (weighted Euclidean)

stance measures


Hierarchical <u>00</u>0000●000000


Non-hierarchica

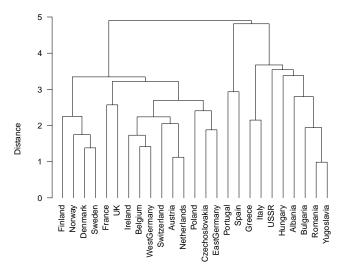
Model-based clustering

Cluster validation

Dendrogram

on Distance measures

Hierarchical


Non-hierarchica

Model-based clustering

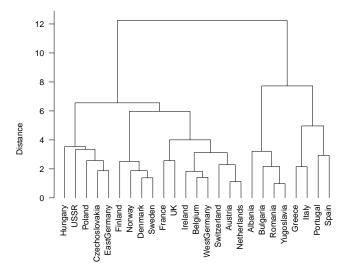
Cluster validation

Dendrogram

average linkage (weighted Euclidean)

OOOOOO OO

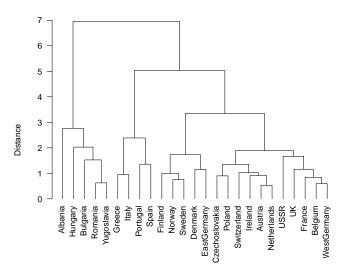

Hierarchical


Non-hierarchica

Model-based clustering

Cluster validation

Dendrogram



A compositional note

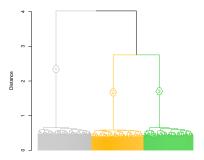
- The protein data set can be seen as a compositional data set
- Apply closure by dividing each row by its sum.
- Transform by taking log-ratios
- Compute the Euclidean distance of the transformed data (Aitchison distance)
- Cluster with this new distance matrix.

Dendrogram

Ward's criterion (Aitchison distance)

Hierarchical 0000000000000000 Non-hierarchical

Model-based clustering


Some considerations on cluster distance

single linkage	late inclusion of outliers can identify chain-like clusters
	sensitive to outliers
	Sensitive to outliers
complete linkage	fast inclusion of outliers
	sensitive to outliers
average linkage	less sensitive to outliers
centroid distance	less sensitive to outliers
Ward's criterion	less sensitive to outliers
	tends to form equally sized clusters

Genetic examples: 1,000 genomes populations

- Subset of 1,000 Genomes individuals (CEU, JPT and YRI).
- 500,000 SNPs from CHR 20; MAF > 0.05
- Allele sharing distance, Ward's criterion

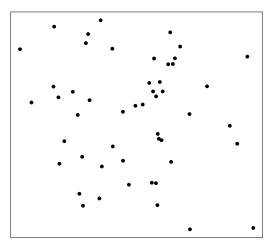
	CEU	JPT	YRI
1	0	0	107
2	0	104	0
3	99	0	0

single linkage; allele-sharing distance

Algorithm:

- Choose a value for the number of clusters K.
- 2 Partition all items into K initial clusters (at random or using seeds).
- Ompute the centroids of each cluster.
- Assign each item to the cluster whose centroid is nearest.
- **o** Go back to 3, until there are no re-assignments.

istance measures 00000

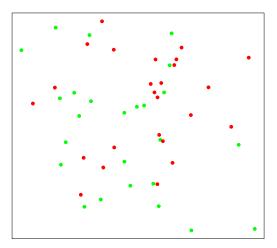

ures Hierarch 00000

nical 0000000 0

Non-hierarchical ○●○○○○

Model-based clustering

Cluster validation

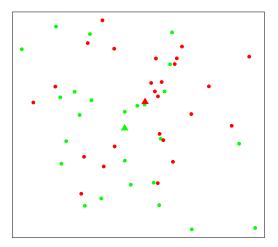

ance measures

Hierarchical

Non-hierarchical

Model-based clustering

Cluster validation

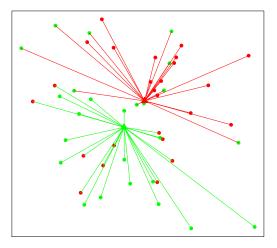

ance measures

Hierarchical

Non-hierarchical ○●○○○○

Model-based clustering

Cluster validation

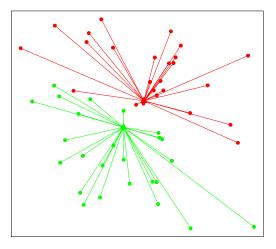

ance measures

Hierarchical

Non-hierarchical ○●○○○○

Model-based clustering

Cluster validation

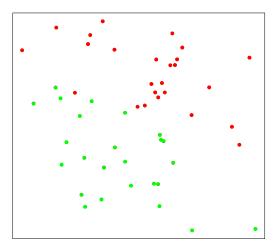

ance measures

Hierarchical

Non-hierarchical ○●○○○○

Model-based clustering

Cluster validation

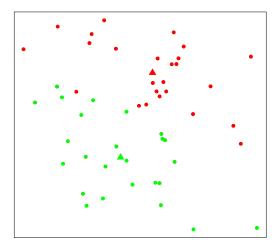

stance measures

Hierarchical

Non-hierarchical

Model-based clustering

Cluster validation

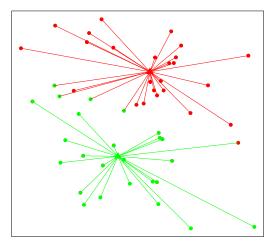

ance measures

Hierarchical

Non-hierarchical ○●○○○○

Model-based clustering

Cluster validation

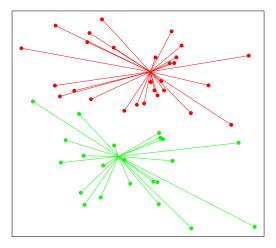

stance measures

s Hierarchica

Non-hierarchical ○●○○○○

Model-based clustering

Cluster validation

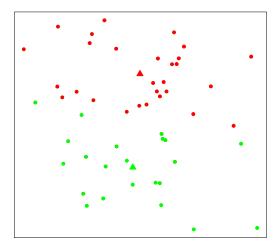

stance measures

s Hierarchica

Non-hierarchical ○●○○○○

Model-based clustering

Cluster validation

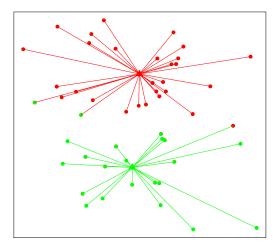

stance measures

Hierarchical

Non-hierarchical ○●○○○○

Model-based clustering

Cluster validation


stance measures

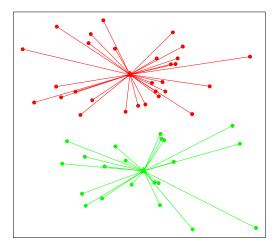
Hierarchical

Non-hierarchical ○●○○○○

Model-based clustering

Cluster validation

stance measures


Hierarchical

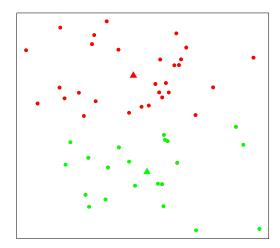
Non-hierarchical ○●○○○○

Model-based clustering

Cluster validation

K means graphical illustration

stance measures


Hierarchical

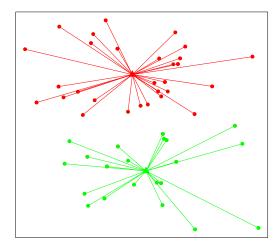
Non-hierarchical ○●○○○○

Model-based clustering

Cluster validation

K means graphical illustration

stance measures


Hierarchical

Non-hierarchical ○●○○○○

Model-based clustering

Cluster validation

K means graphical illustration

K-means

After convergence, it is recommended to

- Try different initial clusters, and compare the final clusters obtained.
- Try different numbers of clusters K.
- Compare cluster means and within-cluster variances.

Ward's criterion (Aitchison distance)

ierarchical 00000000000 Non-hierarchical

Model-based clustering

Cluster validation

Example: K-means of protein consumption data

District Marking in Properties Constrained Properties Properi

We tentatively try k = 4

_	Redm	Whim	Eggs	Milk	Fish	Cereals	Starchy	Nuts	FruVeg
1	0.46	0.21	-1.12	0.84	-2.03	2.47	-0.77	0.22	-0.29
2	0.46	0.21	-0.62	1.31	0.21	1.34	-0.21	-1.75	-0.96
3	0.55	0.38	-0.64	1.08	-0.79	1.43	-0.32	-1.21	-0.48
4	0.20	-0.56	-1.04	0.43	0.03	1.63	-0.61	-0.16	0.08

	1	2	3	4
Size	5.00	5.00	11.00	4.00
SS	7.24	2.96	6.81	4.22
Var	1.81	0.74	0.68	1.41

	SS	%
WSS	21.2	33.4
BSS	42.4	66.6
TSS	63.6	100.0

	Dendrogram							
K-means	1	2	3	4				
1	5	0	0	0				
2	0	0	5	0				
3	0	11	0	0				
4	0	0	0	4				

		Cluster	
	1	2	3
Size	107	104	99
SS	2259563	1582909	1659549
Var	21317	15368	16934

- Subset of 1,000 Genomes individuals (CEU, JPT and YRI).
- 500,000 SNPs from CHR 20; MAF > 0.05
- mind missing values

	SS	%
WSS	5502021	83.2
BSS	1109336	16.8
TSS	6611357	100.0

	1	2	3
CEU	0	0	99
JPT	0	104	0
YRI	107	0	0

	<i>k</i> = 2	%	<i>k</i> = 3	%	<i>k</i> = 4	%
WSS	6085198	92.0	5502021	83.2	5469181	82.7
BSS	526159	8.0	1109336	16.8	1142176	17.3
TSS	6611357	100.0	6611357	100.0	6611357	100.0

K-means issues

- The result depends on the initial random assignment
- The result is not necessarily optimal
- Perform multiple runs, and choose the best run

Model-based clustering

Introduction

- Previous approaches do not make any distributional assumptions
- Probabilistic models can be used in clustering and this is called model-based clustering
- Finite mixture model

$$g(x|\boldsymbol{\pi},\boldsymbol{\theta}) = \pi_1 f_1(x|\boldsymbol{\theta}_1) + \pi_2 f_2(x|\boldsymbol{\theta}_2) + \cdots \pi_k f_k(x|\boldsymbol{\theta}_k)$$

Non-hierarchical

Model-based clustering

00000

• With
$$\pi_i > 0$$
 and $\sum_{i=1}^k \pi_i = 1$

• Each *f_i* is a probability distribution for the *i*th cluster.

Hierarchical

- Usually $f_i \sim N(\mu, \Sigma)$, but not necessarily so.
- The posterior probabilities that observation x_j pertains to the *i*th cluster can be calculated

$$\frac{\pi_i f_i(x_j | \boldsymbol{\theta}_i)}{\sum_{i=1}^k \pi_i f_i(x_j | \boldsymbol{\theta}_i)}$$

Cluster validation

Procedure

- A value or estimate of the number of clusters k is needed
- The finite mixture model is estimated by maximum likelihood
- For each observation, the posterior probabilities of pertaining to *j* cluster are calculated
- Each observation is assigned to the cluster for which it has the largest posterior probability

ance measures

Hierarchical 000000000000 Non-hierarchical

Model-based clustering

Cluster validation

NIST autosomal STRs

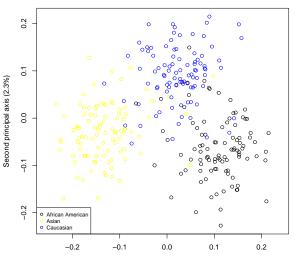
	CSF1PO		D10S1248		D12S391		D13S317		D16S539		D18S51		D195433		D1S1656	
1	11	12	14	14	17	21	11	12	11	11	17	18	14	14	12	
2	9	11	12	13	16	16	11	13	11	12	16	16	11	15	14	
3	10	12	14	15	16	20	12	12	11	12	12	17	13	13	16	
4	11	12	11	14	16	19	12	13	9	12	15	17	14	16	10	
5	8	12	14	14	15	18	11	12	9	11	17	19	14	14	14	
6	12	12	14	16	18	19	11	13	11	12	15	16	14	15	14	
											-					

Hill, C. et al. (2013) U.S. population data for 29 autosomal STR loci. Forensic science international: Genetics 497 7(3):e82–3.

The data:

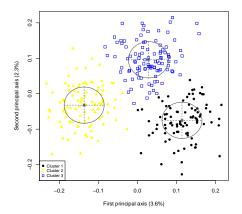
- 29 autosomal STRs
- Consider individuals with African-American, Asian and Caucasian ancestry
- Sample sizes balanced by subsampling

Prior to model-based clustering:


- STRs coded as binary variables
- Quantification of the data by MDS based on Jaccard metric

MDS map of NIST STRs

MDS map NIST STRs


Model-based clustering

00000

First principal axis (3.6%)

Model-based clustering with NIST STRs

		cluster	
	1	2	3
Prob	0.31	0.36	0.33
x1	0.11	0.03	-0.14
x2	-0.07	0.10	-0.03

Model-based clustering

0000

Non-hierarchical

Ancestry	Cluster			
	1	2	3	
Afr. Am.	85	10	2	
Asian	1	6	90	
Caucasian	4	87	6	

Cluster validity indices

- Choose the optimal number of clusters according to some (numerical) criterion
- Several criteria have been developed
- Some popular criteria:
 - Total within-cluster sum-of-squares (WSS)
 - Pseudo F-statistics (Calinski-Harabasz, 1974)
 - Silhouette coefficient (Rousseeuw, 1987)
 -
- Multiple indices can be calculated and used together to decide upon a number of clusters

measures Hie

Hierarchical

Non-hierarchical

Model-based clustering

Cluster validation

Pseudo F statistics

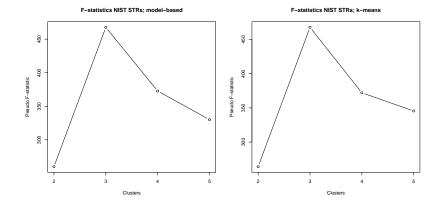
$$F = rac{GSS/(K-1)}{WSS/(N-1)}$$

with:

- K = number of groups
- N = sample size
- *GSS* = between-group sum-of-squares
- *WSS* = within-group sum-of-squares

Choose the number of clusters that maximizes F

ance measures


Hierarchical

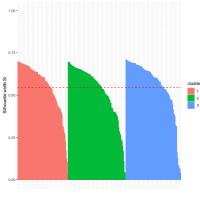
Non-hierarchica

Model-based clustering

Cluster validation

Example *F* statistics

Silhouette scores and sihouette coefficient


- Let a_i be the average distance between observation i and all other points in the same cluster.
- Let b_i be the minimal average distance between observation i and all other points in another cluster.
- The silhouette score is defined as

$$s_i = rac{b_i - a_i}{\max{(a_i, \, b_i)}}$$
 and satisfies $-1 \leq s_i \leq 1$

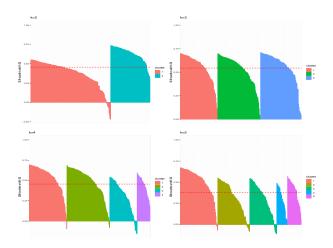
- s_i measures how well a case matches its own cluster.
- Note $a_i > 0$ and $b_i > 0$, and $s_i \approx 0$ means the case is on the boundary of two clusters.
- s_i < 0 means the case matches another cluster better.</p>
- s_i can be averaged over all observations to give the average silhouette score.
- Choose the number of clusters that maximizes this average.

Introduction Distance measures Hierarchical Non-hierarchical Model-based clustering Cluster validation

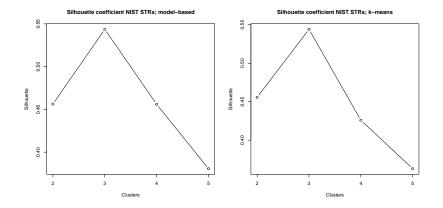
Silhouette scores NIST data (k = 3 with model-based clustering)

	All	1	2	3
s	0.54	0.55	0.52	0.56

OOOOOOO


Hierarchical

Non-hierarchical


Model-based clustering

Cluster validation

For varying k

Average silhouette scores for varying k

Non-hierarchical

Model-based clustering

Cluster validation

After a cluster analysis

After obtaining the clusters:

- Are the clusters really different? (manova/anova)
- How homogeneous is each cluster?
- Which variables discriminate the clusters? (descriptive statistics per group, LDA/QDA)

Final remarks

In cluster analysis, the user has to make several choices:

- the variables to include
- 2 possible transformations
- 3 the algorithm to use (hierarchical, divisive, model-based, ...)
- the distance measure to use (Euclidean, City-Block, Mahalanobis, ...)
- a measure of distance between clusters
- 6 metrics to assess the obtained clustering
- **()**

References

- Manly, B.F.J. (1989) Multivariate statistical methods: a primer. 3rd edition. Chapman and Hall, London.
- Johnson & Wichern (2002) Applied Multivariate Statistical Analysis. 5th edition. Prentice Hall, Chapter 12.
- Everitt, B.S., Landau, S., Lees, M. & Stahl, D. (2011) Cluster Analysis. 5th edition. Wiley.