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Discriminant analysis: Aims

Group separation

Dimension reduction: from p variables to k discriminators
with k < p.

Classification of new cases
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Discriminant Analysis: the data matrix

Ind. X1 X2 · · · Xp Group
1 X11 X12 · · · X1p 1
2 X21 X22 · · · X2p 1
...

...
...

...
...

...
n1 Xn11 Xn12 · · · Xn1p 1
1 X11 X12 · · · X1p 2
2 X21 X22 · · · X2p 2
...

...
...

...
...

...
n2 Xn21 Xn22 · · · Xn2p 2
1 X11 X12 · · · X1p m
2 X21 X22 · · · X2p m
...

...
...

...
...

...
nm Xnm1 Xnm2 · · · Xnmp m
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Some examples

Given various biochemical measurements, is this person
healthy or diseased?

Given the variables of this wheat kernel, to which of the
known varieties does it belong?

...

One can distinguish between two-group and multiple group
problems.

Jan Graffelman (SISG 2023) Discriminant Analysis July 25, 2023 5 / 38



Introduction Two-group LDA Example Two-group QDA Error rate Cross validation Multi-group LDA

Two-group linear discriminant analysis

Criteria for designing a classification rule:

small probability of misclassification

take prevalence into account (prior probabilities)

take the cost of misclassification into account
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Two-group linear discriminant analysis

Some basic definitions:

π1 and π2 represent population 1 and 2.

f1(x) and f2(x) represent the multivariate probability densities for each
population.

Ω = R1 ∪ R2 is the partitioned sample space for outcome x.

If x falls in R1, the case is classified as π1, else in π2.

p1 is the prior probability of pertaining to π1, p2 the prior probability of
pertaining to π2 (prevalence)

Misclassification probabilities:

1 P (2|1) = P (X ∈ R2|π1) =
∫
R2

f1(x)dx

2 P (1|2) = P (X ∈ R1|π2) =
∫
R1

f2(x)dx
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Cost matrix

Predicted class
π1 π2

True π1 0 c(2|1)
Class π2 c(1|2) 0

c(1|2) and c(2|1) are not necessarily equal

ECM = Expected Cost of Misclassification

P (from π1 ∩ classified π2) = P (2|1) · p1

P (from π2 ∩ classified π1) = P (1|2) · p2

ECM = c(1|2)P(1|2)p2 + c(2|1)P(2|1)p1
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Classification rule: minimizing ECM

f1(x) f2(x)

P(2|1)P(1|2)

R2R1
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ECM Rule

The regions that minimize the ECM are:

R1 :
f1(x)

f2(x)
≥ 1 R2 :

f1(x)

f2(x)
< 1

If there is differential prevalence:

R1 :
f1(x)

f2(x)
≥

p2

p1
R2 :

f1(x)

f2(x)
<

p2

p1

If there is differential cost:

R1 :
f1(x)

f2(x)
≥

c(1|2)
c(2|1)

R2 :
f1(x)

f2(x)
<

c(1|2)
c(2|1)

And if we have both differential prevalence and differential cost:

R1 :
f1(x)

f2(x)
≥

c(1|2)
c(2|1)

·
p2

p1
R2 :

f1(x)

f2(x)
<

c(1|2)
c(2|1)

·
p2

p1
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Two normal populations with equal covariance matrices

For continuous X, we assume multivariate normality:

f1(x) =
1

(2π)p/2|Σ|
1
2

e−
1
2
(x−µ1)′Σ−1(x−µ1)

f2(x) =
1

(2π)p/2|Σ|
1
2

e−
1
2
(x−µ2)′Σ−1(x−µ2)
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Two-group linear discriminant analysis

Sample based ECM Rule: assign observation x to population 1 if

(x̄1− x̄2)
′S−1

p x− 1

2
(x̄1− x̄2)

′S−1
p (x̄1+ x̄2) ≥ ln

((
c(1|2)
c(2|1)

)(
p2
p1

))
where Sp is the pooled covariance matrix:

Sp =
n1 − 1

n1 + n2 − 2
S1 +

n2 − 1

n1 + n2 − 2
S2
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Two-group linear discriminant analysis

Define:

a = S−1
p (x̄1 − x̄2) y = a′x

Note that:

yi = a′xi y 1 = a′x̄1 y 2 = a′x̄2

With equals costs and priors, the ECM
rule for R1 boils down to the univariate
rule:

yi >
1

2
(y 1 + y 2)

y is the classifier or linear discriminant
function.

●● ●

y1

R1

y2

R2
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Example: SNP intensities and called genotypes

SNP iG iT
1 TT 641 1037
2 GT 1207 957
3 TT 1058 1686
4 GG 1348 466
5 GT 1176 948
6 GG 1906 912

.
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Calling algorithm assigns missings to ”difficult” genotypes

Could we reasonably predict if these are carriers of the T allele?
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Re-plotting
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Two-group LDA output

Model: Carrier status ∼ iT + iG

group means
Prior iT iG

non T carrier 0.47 691.59 1758.78
T carrier 0.53 1133.56 1037.44

Linear discriminant function:

LD1 = 0.002525858 iT -0.002951084 iG
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Graphical representation

−2 0 2 4

Linear discriminant
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Prediction of missings

Posterior prob.
Prediction LD1 non.T.carrier T.carrier

12 T carrier 1.25 0.01 0.99
20 non T carrier -0.25 0.59 0.41
21 non T carrier -0.98 0.94 0.06
27 T carrier 1.15 0.02 0.98
28 T carrier 0.22 0.24 0.76
29 non T carrier -1.83 1.00 0.00

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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Two-group QDA

Under the assumption of multivariate normality with Σ1 ̸= Σ2, using the
same ECM principle, a quadratic classification rule is obtained.

Sample based ECM Rule: assign observation x to population 1 if

−1

2
x′(S−1

1 − S−1
2 )x+ (x1

′S−1
1 − x2

′S−1
2 )x− k ≥ ln

((
c(1|2)
c(2|1)

)(
p2
p1

))
with

k =
1

2
ln

(
|S1|
|S2|

)
+

1

2
(x′1S

−1
1 x1 − x′2S

−1
2 x2)
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Sample covariance matrices

Non-carriers
iG iT

iG 71677.24 24891.89
iT 24891.89 20914.78

Carriers
iG iT

iG 77553.35 -23117.55
iT -23117.55 81695.66
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Predictions for missings

LDA QDA

Prediction LD1 non.T.carrier T.carrier Prediction non.T.carrier.1 T.carrier.1

12 T carrier 1.25 0.01 0.99 T carrier 0.00 1.00

20 non T carrier -0.25 0.59 0.41 T carrier 0.00 1.00

21 non T carrier -0.98 0.94 0.06 non T carrier 0.79 0.21

27 T carrier 1.15 0.02 0.98 T carrier 0.00 1.00

28 T carrier 0.22 0.24 0.76 T carrier 0.00 1.00

29 non T carrier -1.83 1.00 0.00 non T carrier 0.99 0.01

32 T carrier 0.10 0.31 0.69 T carrier 0.00 1.00

35 non T carrier -0.64 0.83 0.17 non T carrier 0.54 0.46

41 T carrier 0.87 0.04 0.96 T carrier 0.00 1.00

47 T carrier 0.83 0.04 0.96 T carrier 0.00 1.00

48 T carrier 0.99 0.02 0.98 T carrier 0.00 1.00

52 T carrier 0.04 0.36 0.64 T carrier 0.03 0.97

58 non T carrier -0.95 0.93 0.07 non T carrier 0.84 0.16

62 non T carrier -0.52 0.78 0.22 T carrier 0.09 0.91

65 non T carrier -0.80 0.90 0.10 non T carrier 0.69 0.31

69 non T carrier -0.71 0.87 0.13 non T carrier 0.74 0.26

72 non T carrier -0.70 0.86 0.14 non T carrier 0.71 0.29

75 non T carrier -0.67 0.85 0.15 T carrier 0.17 0.83

76 T carrier 1.24 0.01 0.99 T carrier 0.00 1.00

80 non T carrier -0.18 0.53 0.47 T carrier 0.13 0.87

81 T carrier 0.44 0.13 0.87 T carrier 0.00 1.00

83 T carrier -0.08 0.45 0.55 T carrier 0.00 1.00

87 T carrier -0.01 0.40 0.60 T carrier 0.23 0.77

89 T carrier 0.35 0.17 0.83 T carrier 0.00 1.00

92 T carrier 1.04 0.02 0.98 T carrier 0.00 1.00

95 non T carrier -1.28 0.98 0.02 non T carrier 0.93 0.07

101 T carrier 1.07 0.02 0.98 T carrier 0.00 1.00

102 T carrier 0.89 0.03 0.97 T carrier 0.00 1.00

104 T carrier 0.96 0.03 0.97 T carrier 0.00 1.00

106 T carrier 1.18 0.01 0.99 T carrier 0.00 1.00

108 non T carrier -1.09 0.96 0.04 non T carrier 0.92 0.08

110 T carrier 1.05 0.02 0.98 T carrier 0.00 1.00

115 T carrier 0.40 0.15 0.85 T carrier 0.00 1.00

118 non T carrier -1.19 0.97 0.03 non T carrier 0.68 0.32

121 T carrier 1.16 0.01 0.99 T carrier 0.00 1.00

122 T carrier -0.08 0.46 0.54 T carrier 0.03 0.97

123 non T carrier -0.59 0.82 0.18 T carrier 0.45 0.55

126 T carrier 0.34 0.18 0.82 T carrier 0.00 1.00

127 T carrier 0.79 0.05 0.95 T carrier 0.00 1.00

128 T carrier 0.85 0.04 0.96 T carrier 0.00 1.00

129 T carrier -0.10 0.47 0.53 T carrier 0.00 1.00

131 T carrier 0.40 0.15 0.85 T carrier 0.00 1.00

134 T carrier -0.05 0.43 0.57 T carrier 0.00 1.00

135 T carrier -0.06 0.44 0.56 T carrier 0.00 1.00

138 T carrier 1.16 0.01 0.99 T carrier 0.00 1.00

139 T carrier 0.76 0.05 0.95 T carrier 0.00 1.00

144 non T carrier -0.44 0.73 0.27 T carrier 0.44 0.56

145 non T carrier -0.23 0.58 0.42 T carrier 0.00 1.00
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Error rates and Confusion matrix

It is of interest to evaluate the performance of a classification rule.

There are several criteria to do so.

Actual error rate (AER, density dependent)

AER = p1

∫
R̂2

f1(x)dx+ p2

∫
R̂1

f2(x)dx

Apparent error rate (APER, not density dependent) based on the confusion
matrix

Predicted class
π1 π2

True π1 n11 n12
Class π2 n21 n22

APER obtained as

APER =
n12 + n21

n1 + n2

APER underestimates the AER.
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Error rates and Confusion matrix

It is of interest to evaluate the performance of a classification rule.

There are several criteria to do so.

Actual error rate (AER, density dependent)

AER = p1

∫
R̂2

f1(x)dx+ p2

∫
R̂1

f2(x)dx

Apparent error rate (APER, not density dependent) based on the confusion
matrix

Predicted class
π1 π2

True π1 n11 n12
Class π2 n21 n22

APER obtained as

APER =
n12 + n21

n1 + n2

APER underestimates the AER.
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Jackknife or hold-one-out

Procedure:

Take the data from group π1. Omit the ith observation, build
the classifier with n1 − 1 + n2 observations.

Classify the ith observation using the classifier.

Repeat for all observations in π1.

Calculate nH1M , the number of observations that were held out
and misclassified.

Do the same for group π2 and calculate nH2M .

Obtain an estimate of the expected actual error rate

E (AER) =
nH1M + nH2M
n1 + n2
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Allele intensities revisited

LDA

non T carrier T carrier
non T carrier 46 0
T carrier 0 52

APER =
0 + 0

46 + 52
= 0

With cross-validation

E(AER) = 0

QDA

non T carrier T carrier
non T carrier 46 0

T carrier 0 52

APER =
0 + 0

46 + 52
= 0

With cross-validation

E(AER) = 0.0102
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Visualisation
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LDA with multiple groups

The ECM rule can be extended to k groups

Fisher’s discriminant analysis
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ECM rule

ECM rule with k groups (equal costs)

Assign x to πk if

pk fk(x) > pi fi (x) ∀ i ̸= k
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Fisher’s linear discriminant analysis

Searches for an optimal linear combination:

Z1 = a1X1 + a2X2 + · · ·+ apXp

Maximizes the ratio of variability between groups to variability within groups

Objective function

a′Ba

a′Wa

W is the matrix with within-group sums-of-squares

For a single group i

Wi = (Xi − 1m′
i )

′(Xi − 1m′
i )

W =
∑k

i=1 Wi

B is the matrix with between-group sums-of-squares

T is the matrix with total sums-of-squares

T = (X− 1m′)′(X− 1m′) T = W + B
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Solution

The optimal weights are found by solving an eigenvector-eigenvalue
problem

W−1Ba = λa

The number of dimensions d in the solution is given by
min (k − 1, p)

W−1BA = ADλ

Eigenvectors scaled to satisfy A′SpA = I

Selecting the first two eigenvalues and eigenvectors allows for
dimension reduction
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NIST autosomal STR data revisited

The data:

29 autosomal STRs

Consider individuals with African-American,
Asian and Caucasian ancestry

Sample sizes balanced by subsampling

Prior to discriminant analysis:

STRs coded as binary variables

Quantification of the data by MDS based on
Jaccard metric
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Can we predict ancestry from an STR profile?
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STR data in discriminant space
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Numerical output

1 2
Eigenvalue 550.38 194.45

Fraction 0.74 0.26
Cumulative 0.74 1.00

Principal axis
prior 1 2 3 4 5 6 7 8 9 10

Afr. Ame. 0.333 0.108 -0.063 -0.001 -0.001 0.002 0.001 0.002 0.010 0.010 0.009
Asian 0.333 -0.132 -0.029 0.007 -0.002 0.010 0.005 -0.007 -0.002 -0.011 0.003

Caucasian 0.333 0.024 0.092 -0.006 0.003 -0.012 -0.006 0.006 -0.009 0.002 -0.012
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Confusion matrix

LDA
Afr. Ame. Asian Caucasian

Afr. Ame. 86 0 11
Asian 1 92 4

Caucasian 5 6 86

APER = 0.093

QDA
Afr. Ame. Asian Caucasian

Afr. Ame. 91 0 6
Asian 2 93 2

Caucasian 5 3 89

APER = 0.062
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NIST STR data revisited
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More complex...
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Alternative statistical techniques

An alternative technique for two-group DA is logistic
regression

An alternative technique for multi-group DA is the
multinomial logit model
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