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Before the lectures

 Instructors
 Ying Qing Chen, Ph.D.

 yqchensu@stanford.edu
 Nina Galanter

 galanter@uw.edu

 Students

https://research.fhcrc.org/chen-ying/en.html?_ga=2.264923462.894124746.1595404830-1480701557.1558261028
mailto:galanter@uw.edu


About the course

 What is this course about
 Censored time-to-event analysis

 Recommended textbooks
 Kleinbaum, DG (2012) Survival Analysis: A Self Learning Text, 3rd Ed.

Springer.
 Hosmer, DW & Lemeshow, S (2008) Applied Survival Analysis, 2nd Ed.

Wiley.
 Live session hours

 8:30am – 10:00am, 10:30am – 12:00noon
 Student self-evaluation

 Two Problem Sets
 Four Quizzes

 Course calendar

https://link.springer.com/book/10.1007/978-1-4419-6646-9#toc
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470258019


Course outlines

 Background
 Time-to-event and censoring
 Life tables

 Parametric Methods
 Parametric distributions 
 Likelihood functions and maximum likelihood

 Kaplan-Meier Curves
 Log-Rank Tests
 Cox Proportional Hazards Model
 Additional Topics



Example 1: MACS Study







Example 2: A breast cancer data



How to plot a figure like this?



Example 3: Mayo PBC Data
 Study design

 Double-blinded randomized trial in primary biliary cirrhosis of the liver 
(PBC)

 1974-1986: 312 subjects randomized
 Endpoints

 Disease and vital status: 125 deaths
 Measurements recorded

 Clinical
 Histological
 Biochemical
 Serological

 Scientific questions
 Compare mortalities between D-penicilamine (DPCA) and control 

treatment
 Identify significant prognostic factors in study of natural history





How to understand a table like this?



Key words

 Time, time, time
 Kaplan-Meier for one-sample
 Log-rank for two-sample
 Cox for multivariate regression
 More?

 Censoring
 Truncation
 Recurrent events
 Case-cohort, nested case-control
 Length-bias



What’s so special about time?

 A logical reflection of repetition of events
 Ordering and Uni-directional
 Natural history
 Causality

 The ultimate health outcome? 



How to measure time?

 Measuring time
 Length of time or time-to-event

 Time zero/time origin/starting time
 Event time/endpoint

 Notation
 : a non-negative random variable

 Issues
 Staggered entry
 Length-bias or Truncation 
 Censoring



Censoring

 Censoring happens
 When full length of time is not observable

 Notation
 : censoring time

 Types of censoring
 Right and left censoring
 Interval (doubly) censoring
 Current status
 Examples

 Lost-to-followup
 Competing risks
 Administrative censoring



Censoring
Calendar time

01/2005 01/2006 01/2007 01/2008 01/2009

Enrollment Follow-up

LPLV

FPFV



01/2005 01/2006 01/2007 01/2008 01/2009

Enrollment Follow-up

FPFV

0

0

0

LPLV

0

Time since enrollment/randomization



Survival datasets

 How to organize our data?




 What to do with a survival dataset?
 Estimate the distribution of time-to-event 

outcomes
 Model distributions to identify association



How to deal with censoring?

 Naïve approaches
 Ignoring them: simply remove them from our analysis 

dataset
 Keeping them: assume every censored subject would fail at 

the end of study
 Better approaches

 Impute censoring: can we impute a failure time for the 
censored subject, and then analyze dataset based on both 
imputed and observed failure times?

 Not impute but treat censoring as if it were “nuisance”



Life-tables

 Data Example  Question
 How do we estimate 5-

year survival?

 Naïve estimates
 1-76/146=47.9%
 1-76/(146-29)=35%



Life-tables

 Better Approaches (1)
 Assume censoring occurred at the right end of interval



Life-tables

 Better Approaches (2)
 Assume censoring occurred immediately prior to the left 

end of interval



Life-tables

 Better Approaches (3)
 Assume half of censoring occurred immediately prior to the 

left end of interval and half of censoring occurred at the 
right end of interval



Life-tables

 Plot of life-table estimates of survival function



Life-tables

 Why better approaches
 Bias reduction

 What’s next?
 Error bound
 Variance calculation

 Determine how reliable a life-table estimate is
 This may need heavy theory development



Variance of  life-table estimate



Variance of  life-table estimates

 This life table is not finished
 See Problem Set 1, Exercise 1
 STATA: ltable



Life-tables 100 years ago



Life-tables of  modern time



Modern survival analysis

 Modern survival analysis
 Post-1958

 1958: Kaplan-Meier estimator (Kaplan & Meier, Journal 
of the American Statistical Association)

 1966: Log-rank test (Mantel, Cancer Chemo. Rep.)
 1972: Cox proportional hazards model (Cox, Journal of 

the Royal Statistical Society, Series B)



Parametric Methods

 Functions to be studied?
 Histogram: density function

 Area under the curve
 Probability of an event



 Cumulative distribution (survival) function



 Hazard function



 Hazard function
 When times are discrete



 Hazard function
 When times are continuous



 Cumulative hazard functions



Summary of  functions



Relationship of  functions



Summary



Examples







Parametric methods

 What’s common in these distributions?
 Distribution are completely defined by a fixed number of 

parameters. They are often called parametric distributions.
 Parametric distributions are the critical core of the 

parametric methods. 
 If these distributions are correctly assumed, it means that

 We may need relatively smaller sample size to estimate these 
parameters.

 We may use the estimated parametric models in prediction, 
including extrapolation (certainly we shall be always cautious 
about it!) 



Maximum likelihood estimation (MLE)

 Rationale of MLE
 When we estimate a parameter, the estimate we 

would obtain should maximize the probability of 
what we actually observe 
 Even the true value of a parameter may not necessarily 

maximize the probability of what we actually observe
 It is just one of the methods to estimate 

parameters



Algorithm of  MLE



MLE for survival data

 No censoring



 With censoring



Key assumptions



Parameter estimation via MLE



Statistical theory of  MLE

 Consistency:

 Normality:





 What if there is censoring?
 Problem Set 1, Exercise 2
 STATA: streg; R/S+: survreg



Parametric methods

 Advantages when parametric models are correctly 
specified
 Usually requires less number of parameters
 Usual MLE can be used to obtained parameter estimates
 Statistical properties can be easily established
 Computational routines can be easily adapted

 Major challenges
 Heavily relies on parametric assumptions
 Incorrect model specification can lead to biased estimates 

and wrong inferences
 Less robust to model misspecification



Software
 Stata
 R
 SAS Users

 Allison, P (2010) Survival Analysis Using SAS : A 
Practical Guide, 2nd Ed. Cary, NC: SAS Institute. 

 SAS support web sites: http://support.sas.com
 PROC LIFEREG
 PROC LIFETEST
 PROC PHREG
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