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About the course

What is this course about
o Censored time-to-event analysis

Recommended textbooks

o Kleinbaum, DG (2012) Survival Analysis: A Self Learning Text, 3" Ed.
Springer.

o Hosmer, DW & Lemeshow, S (2008) Applied Survival Analysis, 2" Ed.
Wiley.

Live session hours

o 8:30am - 10:00am, 10:30am — 12:00noon

Student self-evaluation
o Two Problem Sets
o Four Quizzes

Course calendar



https://link.springer.com/book/10.1007/978-1-4419-6646-9#toc
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470258019

Course outlines

Background
o Time-to-event and censoring
o Life tables

Parametric Methods
o Parametric distributions
o Likelihood functions and maximum likelihood

Kaplan-Meier Curves

Log-Rank Tests

Cox Proportional Hazards Model
Additional Topics



Example 1: MACS Study

e Multicenter AIDS Cohort Study (MACS) enrolled more than 3,000

men who were at risk for HIV acquisition.

e A subset of N =479 men were observed to seroconvert.

° infection

—

immune decline

—

AIDS

e Q: Do baseline factors such as CD4 count or viral load predict the

—

Death

subsequent rate at which the immune measures decline?

e Q: Do baseline factors such as CD4 count or viral load predict the

time until AIDS or death?

e (): Do baseline factors such as CD4 count or viral load and

time-varying health measures predict the time until AIDS or

death?

Reference: Kaslow et al. (1987) A.JE, 126: 310-318.
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‘ Example 2: A breast cancer data

Population:

Women aged 20-44
CSS of western Washington, 1983-1992

Subset of n = 253 with diploid tumor

e Median follow-up as of 5/97: 62 months
e Some delays from diagnosis to enrollment (left truncation)
Question(s):

e Tumor characteristics as predictors?

Improved cytometry measurements?
= cytocarotine gating

Reference: Porter et al. (1997) Nature Medicine, 3: 222-225.




‘ How to plot a figure like this?

(a) Survival for %S, Gated
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Example 3: Mayo PBC Data

Study design

o Double-blinded randomized trial in primary biliary cirrhosis of the liver
(PBC)

o 1974-1986: 312 subjects randomized
Endpoints
o Disease and vital status: 125 deaths

Measurements recorded
a  Clinical

o Histological

o Biochemical

o Serological

Scientific questions

o Compare mortalities between D-penicilamine (DPCA) and control
treatment

o ldentify significant prognostic factors in study of natural history
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The ideal mathematical model for predicting survival
for individual patients with primary biliary cirrhosis
should be based on a small number of inexpensive, non-
invasive measurements that are universally available.
Such a model would be useful in medical management
by aiding in the selection of patients for and timing of
orthotopic liver t; 1 i This paper describes

" the development, testing and use of a mathematical
model for predicting survival. The Cox regression
method and comprehensive data from 312 Mayo Clinic
patients with primary biliary cirrhosis were used to
derive a model based on patient’s age, total serum bili-
rubin and serum albumin concentrations, prothrombin
time and severity of edema. When cross-validated on an
independent set of 106 Mayo Clinic primary biliary

- cirrhosis patients, the model predicted survival accu-
rately. Our model was found to be comparable in quality
to two other primary biliary cirrhosis survival models
reported in the literature and to have the advantage of
not requiring liver biopsy.

Orthotopic liver transplantation is considered to be
potentially life-saving for selected patients with ad-
vanced or end-stage primary biliary cirrhosis. The avail-
ability of a model to predict survival probability for an
individual patient would improve selection of patients
for transplantation and the timing of that transplanta-
tion. Also, such a model could be used to help to decide
which patients are appropriate, medically and ethically,

tions, presence of cirrhosis, presence of cholestasis anc
whether or not azathioprine was prescribed. However,
neither model was developed as a medical management
tool, and both models required liver biopsy.

This paper describes a pragmatic model based on in-
expensive, i i that are univer-
sally and readily available.

meast

PATIENTS AND METHODS
Patient Population

To develop the model, we used natural history data on the
312 primary biliary cirrhgsis patients enrolled in either of two
double-blind, placebo. lled, randomized clinical trials at
the Mayo Clinic evaluating the use of D-penicillamine -for
treating primary biliary cirrhosis. To be eligible for these trials,
patients had to meet well blished clinical, biochemical,
serologic and histologic criteria for primary biliary cirrhosis
(4). Patient accrual took place from January, 1974, through
May, 1984. One clinical trial (unpublished data) involved pa-
tients with histologic Stage 1 or 2 primary biliary cirrhosis; the
other involved Stage 3 and 4 patients (4). Both trials found no
therapeutic differences between control and p-penicillamine-
treated patients. The study protocols required that no patient
be taking any antiinfl t i ive medi-
cation (other than the study d
appropriate to all study particij
natural history of primary biliary cirrhosis.

'y or
le). Therefore, it was d
to determine the

for clinical trials of other treatment modalities. In addi-
tion, the model could be used for education and counsel-
ing of the patient and the family.

Using the Cox proportional hazards regression proce-
dure (1), Roll et al. at Yale (2) and Christensen et al. in
Europe (3) independently developed multivariate sur-
vival models. The Yale model used patient’s age, serum
“ilirubin concentration, hepatomegaly and presence of
portal fibrosis or cirrhosis to predict survival. The Eu-
ropean model used age, bilirubin and albumin concentra-
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In addition, we had available 112 patients who were eligible
for the trials but declined to participate. None of these patients
was taking an i ppressive or antiinfl tory medi-
cation at the time of trial eligibility. These patients were used
for model validation. It is possible that some of the cross-

lidati i were d to antiinfl y or im-

dication during the foll p period. How-
ever, there has been no report of a totally effective regimen for
biliary cirrhosis (5). Therefore, it is unlikely that the natural
course of their disease was altered by any medication.

Data Collection

A comprehensive clinical and laboratory data base was es-
tablished on each patient. The data were collected prospectively
in the trial p , by using standardized forms, definitions,
and study protocols, at entry and at yearly intervals (see Table
1 for the variabl d). For the nontrial -pati the

line data were collected from ’ records.

At entry, a liver biopsy specimen was obtained, and the




How to understand a table like this?

e Prognostic score derived as linear predictor from Cox model:

)\(I'.L- ‘ Xbili:« Xprotime: Xedema:- Xalb: Xagé)

Covariate estimate s.e. L
log(bilirubin) 0.928 0.099 9.401
log(prothrombin time) 0.076 0.111 0.678
edema 0.967 0.300 3.221
albumin -0.961 0.240 -4.001

age 0.036 0.009 4.243




Key words

Time, time, time

Kaplan-Meier for one-sample
Log-rank for two-sample

Cox for multivariate regression

More?

o Censoring

a Truncation

o Recurrent events

o Case-cohort, nested case-control
o Length-bias



What's so special about time?

A logical reflection of repetition of events

Ordering and Uni-directional
o Natural history
o Causality

The ultimate health outcome?



How to measure time?

Measuring time

o Length of time or time-to-event
Time zero/time origin/starting time
Event time/endpoint

o Notation
T : a non-negative random variable

0 Issues
Staggered entry
Length-bias or Truncation
Censoring



Censoring

Censoring happens

o When full length of time is not observable
Notation

o C': censoring time

Types of censoring

o Right and left censoring

o Interval (doubly) censoring

o Current status
a

Examples
Lost-to-followup
Competing risks
Administrative censoring



Censoring

Calendar time
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Time since enrollment/randomization
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Survival datasets

How to organize our data?
3 (XvaA’LvZ’L)aZ: 1,2,.,n
What to do with a survival dataset?

o Estimate the distribution of time-to-event
outcomes

o Model distributions to identify association



How to deal with censoring?

Nailve approaches

o Ignoring them: simply remove them from our analysis
dataset

o Keeping them: assume every censored subject would fail at
the end of study
Better approaches

o Impute censoring: can we impute a failure time for the
censored subject, and then analyze dataset based on both
imputed and observed failure times?

o Not impute but treat censoring as if it were “nuisance”



Life-tables

Data Example Question
2 How do we estimate 5-

Years Alive at beginning Deaths Censored . )
o1 A6 5= 3 year survival*
1-2 116 18 10
2-3 88 21 10
3-4 57 9 3 S(5) =Pr(T > 5)
4-5 45 1 3

76 29
5-6 41 2 1 o Nailve estimates
i o ; X 1-76/146=47.9%
7-8 20 1 8 - —4/.970
8-9 11 2 1 _
010 5 5 § 1-76/(146-29)=35%




Life-tables

Better Approaches (1)

o Assume censoring occurred at the right end of interval

t n d w ¢ =d/n pr=1-—4q" ST:HPT

0-1 146 27 3 0.185 0.815 0.815
-2 116 18 10 0.155 0.845 0.689
2-3 88 21 10 0.239 0.761 0.524
34 57 9 3 0.158 0.842 0.441

4-5 45 1 3 0.022 0.972 0.432




Life-tables

Better Approaches (2)

o Assume censoring occurred immediately prior to the left
end of interval

t n d w ¢d=d/n—-w) p=1-¢ gl:le

0-1 146 27 3 0.189 0.811 0.811
-2 116 18 10 0.170 0.830 0.673
2-3 88 21 10 0.269 0.731 0.492
34 57 9 3 0.167 0.833 0.410

4-5 45 1 3 0.024 0.977 0.400




Life-tables

Better Approaches (3)

o Assume half of censoring occurred immediately prior to the
left end of interval and half of censoring occurred at the
right end of interval

t n d w gqg=d/(n—w/2) p=1-—gq SZHP

0-1 146 27 3 0.187 0.813 0.813
-2 116 18 10 0.162 0.838 0.681
2-3 88 21 10 0.253 0.747 0.509
34 57 9 3 0.162 0.838 0.426

4-5 45 1 3 0.023 0.977 0.417




‘ Life-tables

= Plot of life-table estimates of survival function

Life-table estimates

Median Survival Time=3.1 yeeirs




Life-tables

Why better approaches

o Bias reduction

What's next?

o Error bound

o Variance calculation

Determine how reliable a life-table estimate is
This may need heavy theory development



Variance of life-table estimate

1.
2.
3.

N o B

St)=[][p=1logS(t) =S logp == === === = = = >

var(p) = pg/(n —w/2)

var(logp) ~ {(logp);,}*var(p) = ¢/{p(n — w/2)} = = = = - >

var{log S(t)} ~ 32, d;/{(n; —w;/2)(n; — dj —w;/2)}
S(t) = exp{log S(t)} = exp{—A(t)}, where A(t) = —log S(¢)

var{S(t)} = (lexp{—A(t)}]})*var{A(t)}

Standard errors for life-table estimates: Greenwood’s formula

This is the usual technique
to deal with products

This 1s called Delta-method

. 95% confidence intervals for S(t) is S(t) + 1.96 x se[S(¢t)]




Variance of life-table estimates

Life-table example

t n d w S var(log p) se
0-1 146 27 3 0.813 0.00159 0.0324
-2 116 18 10 0.681 0.00174  0.0392
2-3 88 21 10 0.509 0.00408 0.0438
3-4 57 9 3 0426 0.00349 0.0444
4-5 45 1 3 0417 0.00054  0.0445

95% confidence interval for S(5):

0.417 4+ 1.96 x 0.0445 = (0.331,0.503)

This life table is not finished

a
a

See Problem Set 1, Exercise 1
STATA: Itable




Life-tables 100 years ago
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‘ Life-tables of modern time

National Vital
Statistics Reporis

B ’/'a':g‘

Volume 57, Number 1

August 5, 2008

U.S. Decennial Life Tables for 1999-2001,

United States Life Tables

by Bizabeth Anas, Ph.D.; Lestar R. Curtin, Ph.D; Rong Wi, Pn.D.; &nd Robert N. Andarson, Pho.

Abstract

Oljacfives—This rapart presents pariad lifa tables for the Unitad
Stalss based on age-speciic death rates for e period 1898-2001.
Thesa tablas &n tha most recent i & 100-year sefies of decannial
life talbles for the United States.

Matfhods—This report prasents complete life tables by age, race
(white and black), and sex. Also presanted are standard amors of the
probeability of dying and The data
life tables are populafion estimaies based on fhe 2000 decernial
cansus, deafhs occuming in the United States to U.S. resdents in the
3 years 1898-2001, counts of LU.S. resident births in the years
1987-2001, and poputafion and deaf counts from the Medicare pro-
gram for years 1898-2001.

Rasuits—In 1989-2001, e expectancy at birh was 76.83 years
for the total LS. populafion, reprasanting an increase of 27.58 years
from & e expectancy of 4824 years in 1900. Batwean 1800 and 2000,
ifa axpectancy increased by 40.08 years for black famales (from 35.04
b0 75.12), by 35.54 years for biack males (from 32.54 to 68.08), by 28.80
years for whita famales (from 51.08 fo 79.97), and by 2651 years for
whits males (from 48.23 10 74.74).

Introduction

The lifie tables prasented in this report are the most recent in &
sanes of decennial iifa tables for the United States that dates to the
baginning of the 20th century. Tha 1888-2001 lifa tables ars the 11ih
in tha decannial series. Tha reporiing of deaths af the national level
bagan in 1900 with 10 stales and the District of Columbia. As the
qualty of the reporting improved, states ware added to the death-
registration area. Beginning with fia period 19281831, the decannial
life tablias wera producad using data for all of the cotarminous United
States. Mlaske and Hawsi were incuded begiming with the
1958-1961 decannial e tables. Each sat of e tables is based on
population data from a decannial censis and reporied deaths of the
3year panod sumounding the cansus year (Mie census year is the

middie year i al but the first in the series, in which deaths for
1800-1802 wers used because death reports for 1888 were not
collactad (1)). The decenmial e tables difiar in ona main respec
fram e Iifa tables prepared and published annugly in the Cantars
for Diseasa Control and Prevenfion's Nafional Cender for Health
Stafistics’ (NCHS) Mafinal Vita! Stafistics Repars. The annual tables
ane based on doathe in a singla year and, excapt for cansus years,
on posicensal popuiafion esfimates rather than on the dala from a
decannial census.

‘This rapart is the first of a series of repors containing e tables
Iu1m—m]lxﬂdfnrrlu'mdmrdﬁmlnhdemrnlﬁam

fables, a report on nafional e tables analyzed by major groups of
causas of daath, and a report containing Iifa tables for individual states.

and the District of Columbia, including a desaripfion of fhe methods
usad ip esfmate individual stats life tables.

Data and Methods

Mortality rates for a spediiic pariod may be summarized by fhe
lifia tabie method to obtain measures of comparative longewity. There
are two fypes of ifa tables—the cohort (or generaiion) ife table and
the period (or curment) iife iable. The cofor life table provides a
longitudinal parspeciive in that it follows the maortally axperiance of
an aciual cohori—for example, &l persons bom in fhe year
1945—from the moment of bith through consscutive ages in
succassive years. On the bass of ape-spaciic death rates obsarved
during consecufive years, the cohort e table reflects the moralty
auparience of & cohort from birth undl no ives remain in tha group. To
pmpmjldamﬂemrrplelemhndifetd:hm ovar
years. Construcing cohort §e tables entirely on the basis of
otaarvaddﬂaluradmmrksmlymtfmsmmedﬁh
unavaiability or incompiataness (2-4).
In conirast, the period e table does not represant the moralty
exparience of n actual birth cohort. Rather, the perod lie table

I’

O, BEFARTRENT OF HEALTE ARG HUMAMN SERVECEN l'
LA, CHPTTHE M MNALTE ST

CEATE S FRE DIKEAYE CONTEOL ANE FETERTION
PLATHERES, WOTAL FTSTUIT FTRTEE

Nafional Vil Statisics Reports, Volume 57, Number 1, August 5, 2008

Table 1. Life table for the total population: United States, 1999-2001
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Modern survival analysis

Modern survival analysis
0 Post-1958

1958: Kaplan-Meier estimator (Kaplan & Meier, Journal
of the American Statistical Association)

1966: Log-rank test (Mantel, Cancer Chemo. Rep.)

1972: Cox proportional hazards model (Cox, Journal of
the Royal Statistical Society, Series B)



Parametric Methods

Functions to be studied?
o Histogram: density function
, 1
ft) = Alir_rgo EPr{t <T <t+ At}

Probability Dist.

fit)

o Area under the curve | r\

Probability of an event

Age



Cumulative distribution (survival) function

Fit) = P <1 S = P (T >Y)
= 1-P(T'>t) =1-S(t) - Prst) = 1= F()

- ff(_s)(-zs _ / £(s
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Hazard function

1
Y = lim —Pt<T <t T >t
A(t) Jdim AtP(f <T <t+At|T >t)
— f(z‘)/S(z‘) Hazard Function
5 - /
5 % i

Age




Hazard function
o When times are discrete




Hazard function
a2 When times are continuous

At = lim Pr(Failure {:}ccurring in [t,t+ At)|[T" > t)
At—0TF Af‘

= Instantaneous failure rate at t given survival up to t

A(t)At ~ the proportion of individuals experiencing

failure in [t,t + At) to those surviving up to ¢




Cumulative hazard functions

At) = fu | A(s)ds

Cumulative Hazard Fnx

Lambdait)

Age

80




Summary of tunctions

Probability Dist. Cumulative Dist.
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‘Relationship of functions

S(t)

| e »

Ft)=1—-S() «=-=-=» A(t) = /{) ANu)du = 0

—1—e a1 1AW} =AQ)

Pr=
At) = L0 |= == A1) = <_‘f):

S(u)




‘ Summary

e Density function: f(t) = limat_o Pr{t <T <T 4 At}
1. [ f(u)du =1
2. F(t) = [ f(u)du, S(t) = [ f(u)du
3. u(t) = [1S(u)du, p = ET = [5° S(u)du

4. Denominator: all the subjects

e Hazard function: A(t) = limar_oPr{t <T <T 4+ At |T >t} /AL
1. A®) = f(#)/S(t)

2. Denominator: subjects survival up to ¢

e Mean residual life function: m(t) = E(T —t | T > t)
1. Residual time: Ry (t) = (T — ) (T >t) = (T —t)T =(T - ) v 0
2. m(t) = LMIS(u)du/S(t)




‘ Examples

Example: Weibull distribution. The Weibull distribution with the

parameters # > 0 and 3 > 0 assumes the parameterized survival

function
S(t) = e ",

for t > 0. The density function is

 dSg 5(t)

= 39 .91- £g—1 ?_(gt),ﬁ
dt pO(6t)" e

) =
The hazard function is

)\(f-) — % = 39(915)':9_1 .

Note that the hazard function A(¢) is constant if 3 = 1, increasing

in tif 3 > 1, and decreasing in t if 3 < 1.




Example: Gamma distribution. The Gamma distribution with the

parameters A > 0 and r > 0 is a continuous distribution with the

density function

}\r‘
o)

, o0 1 .
for t > 0, where I'(r) = [, 2" 'e “dx. The survival and hazard

IL_'r—lf,—)\a!:

() =

functions can be derived from the density function. The mean of

the Gamma distribution is /) and the variance is r/\?.




Example: Log-normal distribution. A random variable 71" is said to

have a lognormal distribution with parameters —oc < p < oo and

o > 0. The probability density function of 1" is

fE) = 5(2;)

for t > 0, from which the survival and hazard functions can be

7 t~texp{—(logt — j)?/20°} .

derived.




Parametric methods

What’'s common in these distributions?

Q

Distribution are completely defined by a fixed number of
parameters. They are often called parametric distributions.

Parametric distributions are the critical core of the
parametric methods.

If these distributions are correctly assumed, it means that

We may need relatively smaller sample size to estimate these
parameters.

We may use the estimated parametric models in prediction,
including extrapolation (certainly we shall be always cautious
about it!)



Maximum likelthood estimation (MLE)

Rationale of MLE

o When we estimate a parameter, the estimate we
would obtain should maximize the probability of
what we actually observe

Even the true value of a parameter may not necessarily
maximize the probability of what we actually observe

o It is just one of the methods to estimate
parameters



‘ Algorithm ot MLE

choose a parametric family of distributions: f(t | Z;; 8)

\ 4

likelihood function

\ 4

maximum likelihood




‘ MILE for survival data

= No censoring

If no censoring, {(71;.7;);i=1,2,...,n}
— likelihood function based on observed T; = ¢; is

20) =[] 11250
i=1




= With censoring

if censored, survival data become {(X;, A, Z;); i =1,2,...,n}

— likelihood contribution is Pr{X; = =;, A; = 6;, Z; = z;}

- A; =1= X, =t;, likelihood contribution is fr(t; | Z;; 6)Sc(t; | Z;)
- A, = 0= X, = ¢, likelihood contribution is f(e; | Z;,)Sy(c; | Z;; 6)

— likelihood function based on observed data is then

2(0) =[] fla:i | Z:;0)"S(as | Zi; 0)*"
i=1




Key assumptions

'2‘0('9) — H f(;'t?;; | Zh 9)5‘5(;131- | Z?,: 9)1—5:‘

i=1

What are the key assumptions?
— Z; do not have information about &

— conditional independence: given Z;, T; and C; are independent

— examples
+ clinical trials

+ Z;. treatment assignment

+ (. censoring due to side-effects




Parameter esttmation via MLE

Parameter estimation: maximum likelihood estimation (MLE)
— likelihood function:

L(0) = H o | Zi;0)5S (g | Zi; 0)1% < This means we are taking
=1 / “arguments,’ to maximize
" 5 / it for an estimate
= HA(;I; | Zi:0)%S (| Zi3 0) /
i=1 /
" /
— parameter estimation: ¢ = argmaxg £ (6) = argmaxgl(6) 7/
[(0) =109 L(0) = = = = = e e e === = It is equivalent to
— maximizing the log of
= Z [0:1og A(x; | Zi; 0) + 109 S(z; | Z;; 6)] likelihood function
i=1
= [610g X(w; | Zi;0) — N(=i | Zi: 0)]
i=1

el
i=1

dilog \(x; | Z;;0) — / =)\.(u | Z;; ﬂ}du]
0

Solve !’ (6) = 0 for the MLE 6




Statistical theory of MLE

Consistency:
é—> 80

Normality: 0 — 0;
var(6)

~ Normal(0, 1)

Fat

where var(0) can be estimated by observed Fisher information

(&)



Example. T ~ exp(#). The density function is

f(t:0)=0e %It > 0).

L) = JJoe "
1=1

n

log L(A) = ) [logf — 6t,]
Ul) = %logL(@) = Z [; - fé] = g - Zf

Thus 6 =n/ S t; is the mle.

Note that the Fisher information is

1(6) = E [—%mgL(@)] — 1/62. Thus

R R 62 .
6 — g TR N (O, —) when n is large

T




or

— Aapprox 92
o PR N (9 —)
11

Thus Prob (9 ~1.96-% <9 <6+ 1.96%) ~ 95%.

An asymptotic 95% confidence interval for # is

(9 .06+ 1.9(‘}#) |
vn vn

What if there is censoring?
o Problem Set 1, Exercise 2
o STATA: streg; R/S+: survreg



Parametric methods

Advantages when parametric models are correctly
specified

o Usually requires less number of parameters

o Usual MLE can be used to obtained parameter estimates
o Statistical properties can be easily established

o Computational routines can be easily adapted

Major challenges
o Heavily relies on parametric assumptions

o Incorrect model specification can lead to biased estimates
and wrong inferences

o Less robust to model misspecification



Software

Stata
R

SAS Users

o Allison, P (2010) Survival Analysis Using SAS : A
Practical Guide, 2" Ed. Cary, NC: SAS Institute.

o SAS support web sites: http://support.sas.com
PROC LIFEREG
PROC LIFETEST
PROC PHREG
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