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In Lecture 1
 What we discussed

 Time-to-event and censoring
 Parametric methods for analysis of censored time-to-event 

outcomes
 SAS Users

 Allison, P (2010) Survival Analysis Using SAS : A 
Practical Guide, 2nd Ed. Cary, NC: SAS Institute. 

 SAS support web sites: http://support.sas.com
 PROC LIFEREG
 PROC LIFETEST
 PROC PHREG



Censoring
Calendar time

01/2005 01/2006 01/2007 01/2008 01/2009

Enrollment Follow-up

LPLV

FPFV



01/2005 01/2006 01/2007 01/2008 01/2009

Enrollment Follow-up

FPFV

0

0

0

LPLV

0

Time since enrollment/randomization



Some theory: parameter estimation via MLE



Statistical theory of  MLE

 Consistency:

 Normality:



Parametric methods

 Advantages when parametric models are correctly 
specified
 Usually requires less number of parameters
 Usual MLE can be used to obtained parameter estimates
 Statistical properties can be easily established
 Computational routines can be easily adapted

 Major challenges
 Heavily relies on parametric assumptions
 Incorrect model specification can lead to biased estimates 

and wrong inferences
 Less robust to model misspecification



Nonparametric methods

 Features
 Less distributional assumptions
 More robust to model misspecification
 Appealing to data description and model assessment

 Examples
 Summary statistics: sample mean, sample variance, 

median, percentiles
 Distributions: histograms, empirical cumulative distribution 

function (ECDF)
 Rank-based test statistics
 Functional data analysis (FDA)



Kaplan-Meier curves/estimates

 Kaplan-Meier curves
 Nonparametric estimate 
 Survival function for censored time-to-event 

outcomes
 Not rely on any parametric assumptions



Some typical Kaplan-Meier curves

 Features
 Always starts at S(0)=1 
 Monotonic decreasing (non-increasing) 
 Step functions
 May not go down to zero all the way when time progresses
 Shows time-varying profile of absolute risk



Calculate Kaplan-Meier curves

 Easiest way
 All you need to do is to get your data ready and use any 

statistical software that you will learn in the labs
 But it may not help you understand how and why we would 

like to estimate survival functions the Kaplan-Meier’s way
 In particular for those interested in statistical methods 

development, it doesn’t help with you what assumptions 
involved or how to apply the theory underlying the Kaplan-
Meier estimates to other similar settings 



Empirical estimates of  survival function

 What do we want to estimate?
 Population parameter: survival function of an 

event time

 Interpretation
 Percentage of the population not experiencing the 

disease outcomes (those still at risk at time t)
 Absolute risk



 What if there is no censoring?
 Observed data

 ECDF



Variance of  ECDF



95% Confidence interval



Kaplan-Meier estimates

01/1990 01/1991 01/1992

Run-in: 100 subjects

Full study: 1000 subjects

70 deaths 15 deaths

750 deaths



How do we estimate 2-year survival?



Inappropriate approaches



The Kaplan-Meier approach



General Kaplan-Meier algorithm





Example

Ranking the failure times

S(0+)



Remarks



Variance calculation











STATA codes/outputs



The “scary” part 

 Underlying theory
 Nonparametric MLE
 Likelihood function



Nonparametric MLE

 How do we maximize it
 Based on our data
 Can we maximized if the underlying survival functions to be 

continuous at observed failure times?
 Likelihood function would be always zero is underlying 

survival functions are continuous at observed failure times!
 So likelihood function can be only positive when underlying 

survival functions are step functions with positive jumps at 
observed failure times



Modern survival analysis based on counting processes

 Data revisited



Counting processes



At-risk process



Total counting processes



A taste of  modern survival analysis

Odd Aalen: Heart of the 
French school of probability 
theory



 References
 Kaplan & Meier (1958, JASA)
 Kalbfleisch & Prentice (2002)
 Fleming & Harrington (1991)



Example









Cumulative hazard functions



Example of  cumulative hazard functions 
(cumulative incidences)







Kaplan-Meier and Nelson-Aalen



Kernel estimate of  hazard functions











Summary
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