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Nonparametric methods

Features

o Less distributional assumptions

o More robust to model misspecification

o Appealing to data description and model assessment

Examples

o Summary statistics: sample mean, sample variance,
median, percentiles

o Distributions: histograms, empirical cumulative distribution
function (ECDF)

o Rank-based test statistics
o Functional data analysis (FDA)



Kaplan-Meier curves/estimates

Kaplan-Meier curves
o Nonparametric estimate

o Survival function for censored time-to-event
outcomes

o Not rely on any parametric assumptions



Some typical Kaplan-Meier curves
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Features

o Always starts at S(0)=1

Monotonic decreasing (non-increasing)

Step functions

May not go down to zero all the way when time progresses
Shows time-varying profile of absolute risk
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Calculate Kaplan-Meter curves

Easiest way

o All you need to do is to get your data ready and use any
statistical software that you will learn in the labs

o But it may not help you understand how and why we would
like to estimate survival functions the Kaplan-Meier’s way

o In particular for those interested in statistical methods
development, it doesn’t help with you what assumptions
iInvolved or how to apply the theory underlying the Kaplan-
Meier estimates to other similar settings



Empirical estimates of survival function

What do we want to estimate?

o Population parameter: survival function of an
event time
Sty = P >t)
= Population fraction surviving beyvond ¢
o Interpretation

Percentage of the population not experiencing the
disease outcomes (those still at risk at time t)

Absolute risk



What if there is no censoring?
0 Observed data

t1.to, . ..ty

o ECDF




‘ Variance of ECDF

Define

B(t)

B(t)
E[S(t)]

Var[S(t)]

When n is large.

S(t)

qppra:{

T
Z I(T; > t) = a Binomial variable
1=1
Binomial(n,p = S(1))

1
—np=p= S(t)
1 1

—y Var(B(t)) = —npq
S(f)(l —5(t))

T

T

Normal (S(f) S = SW) |




‘ 95% Confidence interval

A 95% confidence interval for S(t) is

S(t) _L%.\/S(t)(l —S(f_)): gmﬂigﬁ_\/S(ﬁ)(l—S(f))

n i

e If 1 is small (n < 20), it is more appropriate to find confidence
intervals using the binomial distribution tables (see Mood,
Graybill and Boes, Chapter 8).

e If 1 is large (n > 30). use the normal approximation to derive

confidence intervals.

e The normal approximation works better when 0 << S(t) << 1
(that is, S(#) is not close to 0 or 1). When S(t) is close to 0 or

1. the Poisson approximation technique is better.




‘ Kaplan-Meier estimates

Example. A prospective study recruited 100 patients in January,
1990 and recruited 1000 patients in January, 1991. The study
ended in January, 1992, Survival time 7' = time from treatment
(enrollment) to death. Suppose 70 patients died in year 1 and 15
patients died in year 2 from the first cohort (recruited in 90), and

750 patients died in vear 1 from the second cohort.

01/1990 01/1991 01/1992
! >
Run-in: 100 subjects . 70 deaths . 15 deaths
Full study: 1000 subjects | . 750 deaths

I—'




‘ How do we estimate 2-year survival?

01/1990 01/1991 01/1992
| >
Run-in: 100 subjects 70 deaths . 15 deaths
Full study: 1000 subjects . 750 deaths

Approach 1 Reduced sample estimate

Only use mformation from individuals who had been followed for at
least two years. That is, use only group 1 data to derive
5'(2) _ 100 - 70 — 15 _ 15 015
100 100
This estimate is statistically appropriate but inefficient. It is
appropriate in the sense that 9(2) is very close to S(2) when nq is

large. It is inefficient because only part of the data is used. Here

S - 5(2)

var(S(2)) = 00




Inappropriate approaches

01/1990 01/1991 01/1992
Run-in: 100 subjects .70 deaths . 15 deaths
Full study: 1000 subjects — 750 deaths

Assume 250 individuals from group 2 died in year 2.

S(2) = —

) 1100

Assume 250 individuals from group 2 remained alive in year 2
: 15 + 250

JST 2 — — 72
(2) 1100 0244

Exclude 250 patients from the analyzed data (Watch out! A

common mistake!)

S(2)=-— " = 0.018.



“The Kaplan-Meier approach

Approach 3 (A simple case of the Kaplan-Meier estimate).

Decompose the survival function into conditional probabilities.

| PrT >2) Pr(T >3)
i 2 — 2 — .
°(2) =P >2) PrT>1) Pr(T >2)
— Pr(T >2T>1)Pr(T =3|T > 2)

30 4250 280
1100 1100

15
PrilT' =23|1">2) = —
30
Thus
280 15

= 0.127.

S\r 2 — *
(2) 1100 30

This estinator is more efficient than the reduced sample estimate.




‘ General Kaplan-Meter algorithm

Suppose Y1y <t < yuy- A principle of nonparametric estimation

of S is to assign positive probability to and only to uncensored

failure times. Therefore, we try to estimate

S(t) ~ Pril’ = yg) Pril = ys) Pril” 2 y)
T Pr(T 2 yay) Pr(T 2yw) " Pr(T > ya-1y)

How to estimate S(t)? Define

Ry = ok : vk >ye)
dijy = # of failures at y
N{j} — # of individuals at risk at Y = #R(j)
: ' —_— |
Y(1) Y(i—1) : Yi)
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Kaplan-Meier estimate is thus

S(t) = (1— d“}) (1_ d@)... (1_ dﬁ“})
N N2 Ni—1)




‘ Example

5

/111

- | Ranking the failure times

Example Using the previous example 3 27 01 5% 3!
;'?\"T“) = T, i"T{Q} — (} J?\'T{g) = 4, ;'?\'T(,_:l} = 2
(‘E[:lj = ]_._ CE{Q} = J_ (3(3:] = 2._ (!r[:,_l} = 1.
3, 2%, 0,1, 5%, 3, 5
d
uncensored -7
P e
times 0 1 3 5H#
diy 11 2 1 S(0)
N 76 4 2 o7
e S(1)
e
r
S(0+) S(3)
S(5)




‘ Remarks

Remark In general. it the largest observed time is uncensored. the
Kaplan-Meier estimate will reach the value 0 as ¢ > the largest
observed time. if the largest observed time is censored, the
Kaplan-Meier estimate will not go down to 0 and is unreliable for
t > largest y;. In this case, we say that ;Sh*{t) is undetermined for

t > the largest uncensored time.




‘ Variance calculation

Greenwood’s formula

The next question is how to identify the variance of the
Kaplan-Meier estimate. The idea is sketched for grouped data.
First group the data using the uncensored times

Yay = Y@y < - <Yk

For each risk set Ry = {5 : vi =y }. counting the number of
failures is a binomial experiment. Thus

d¢jy ~ Binomial (Njy. A¢jy), where A¢;) is the hazard at y(;). Let
gy = 1 = Ay, For y—1) <t <y,

var(log S(t)) = var(log{¢d). - du-1)})
= var(log gy +log gy + ... +logqu_1))
i—1

— Z var(log ¢(;)

i=1




The variances are additive because the risk sets at y1y, y@). ...
Yy are nested (K1) D Ry D ...). Thus, by statistical theory, we

can treat log gy, log ) ... as uncorrelated terms.

Use the delta method. for a transtormation ¢ of an estimate #, we

have
var(¢(6)) ~ [¢(0)]*var(9).
Thus
17 1 Aa) AG)
var(log ¢¢jy) =~ [—] var(q(;)) = o =
) 4(5) ) a;y  Noy 4N
1—1

ey }\ I
var(log S(t)) = Zva.r(leg 1)) =~ Z (i>

j=1 (i <t 46)N )




Use the delta method again.

o(t)® = var(S(1)) = var( exp (logS(1)) )
o 0
~ [S(t)]? - var(log S(f))

Nijy—dig,

Plug in j‘{j} = djy /Ny and gy = . The Greenwood’s

N
formula, for estimating the variance of the Kaplan-Meier estimate,

1S

ar(S() = [SOP Y, <« "=




e The Greenwood standard errors can generate a confidence interval

that extends below 0.0 or above 1.0.

e | Alternative:

provide a Cl for a transformation of S(t) and then

“back-transform.”

o Kalbfleisch & Prentice (1980) suggest

SE(log{—log[S(t)]}) = ,\_ / > log(Si/N;)

1 t{z}{:t 0 tf?,:l{t

= SEkp




Confidence interval: for log{— log[S(#)]}
log{—log[S ()]} + Zi—ay2 - SEkp
Confidence interval: for S(t)

Cl : exp|—exp(upper above)], exp|— exp(lower above)]

( [F;?( )]exp (+Z1—a/2 SExp) [;@(t)]e}fp{_zl—afg-SEI{PJ)

This interval is implemented in STATA.

This interval lies within [0,1].




'STATA codes /outputs

*** set the outcome

stset rectime, failure(censor)

*** create output table

ste list

*** create graph(s)

sts graph, gwood

graph export c:\courses\survival\km\HerpesKMplot.eps, as(eps)

sts graph, by(group)

graph export c:\courses\survival\km\HerpesKMgroup.eps, as(eps)

Kaplan—Meier survival estimate
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Theoretical foundation

Underlying theory
o Nonparametric MLE
o Likelihood function

L x H ui (1)1~ ai]




Nonparametric MLE

How do we maximize it

o Based on our data

o Can we maximized if the underlying survival functions to be
continuous at observed failure times?

Likelihood function would be always zero is underlying
survival functions are continuous at observed failure times!

So likelihood function can be only positive when underlying
survival functions are step functions with positive jumps at
observed failure times



Modern survival analysis based on counting processes

= Data revisited
(Xi7 Aiv ZZ)
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‘ Counting processes

Counting Processes: N;(t)
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‘ At-risk process

At-risk process: Y (t) =

I(X >t)
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Total counting processes

Counting process: N(t) = > N;(¢)
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A taste of modern survival analysis

Assume T'is continuous = d; = 1 mostly
1. dj = N(t;) = N(t;—) = dN(t;)
2. nj=Y(t;)>0

3. Y= [, I(Y (u) > 0)dN (u)/Y (u)

~ | Odd Aalen: Heart of the
e Example: calculate E[dN(t) | #;_] Pid French school of probability
] e theory
1. dN(t) =0or 1 ,

2. E[dN(t) | & ] =Pr{dN(t) =1 |%_} .~
3. ifY(t) = 0= Y(¢t—) = 0, then Pr{dﬁ‘{t} =1|% 1=0
4. ifY(t) = 1= Y (t—) = 1, then
Pr{dN(t) =1|Z_}=Prit< X <t4+dt.A=1|X >t}
X=min(T,.C) >t=T=>1t,C >t if T and C are independent, then
Pr{dN(t) =1 | F_} =Prit<T <t+dt|T =t} = A(t)dt
5. E[dN(t) | #_] =Y (t)A\(t)dt
6. M(t) = N(t) — [3Y (u)A(u)du is a martingale




L —[ [_f[“,ff.é.}ai IST{,UHI_&} = H { {;:ﬂ } {S(y:)}

1=1 =1
(
™
di) ‘- diy ;. Ny —d;
L (2) =1y <u; (2)

Thus, the unique mle of /\‘am 15 fflfi:,_.,.f"IJ-"\-'Tl:.imj and the Kaplan-Meier

estimate is the unique mle.

References

o Kaplan & Meier (1958, JASA)
o Kalbfleisch & Prentice (2002)
o Fleming & Harrington (1991)



‘ Example

Example. (Lee, p29) Forty-two patients with acute leukemia were
randomized into a treatment group and a placebo group to assess
the treatment effect to maintain remission. 7' : remission time.

e G-MP (G-mercaptopurine) group, ny = 21
6.6,6.7,10,13,16.22,23.6%,97, 107, 11+, 17T,
197.20%,25%,32%,32%. 347,357 (months)

e Placebo group, ny = 21
1.1,2,2,3.4.4.5,5.8,8. 8,8, 11, 11,12, 12, 15,

17,22,23 (months)




e Placebo group, ny = 21
1.1,2,2,3.4,4,5,5.8, 8. 8,8, 11,11,12,12, 15,

17,22, 23 (months)

var(S(4)) =

SD(S(4)) = \/ "21 22

the placebo group

A 21 A 16
S(0) = % =1 S(3) = %—11
S(1) = — S(4) = — =0.67
( ) %l ( ) 21 _'r- ------------------------ I-I
1(; 2 — _{ . ,'I
?) = & . I,
A 95Y% confidence interval at £ = 4 is /

(0.67 —1.96 x 0.103, 0.67+ 1.96 x 0.103) = (0.47, 0.87)"*




e G-MP (G-mercaptopurine) group. nq = 21
6.6,6,7,10,13,16,22,23. 67,97, 10", 11T, 17T,
197,207, 257,327,327, 347, 35" (months)

1

1

var(S(10)) =

21><1t~§+17'><16+15><14

)

the K-M estimate — [m‘
S(5) = 1
S(6) = (1 - 2—51)
, 3 1 \
50 = (1-3) (117 _ A
§(10) = (1 _ 2—31) (1 _ %) (1 . %) =0.753 |

A 95% confidence interval for S(10) is

(0.753 — 1.96/0.0093 , 0.753 4 1.961/0.0093) = (0

.H64 . 0.942)




Remark 1 The K-M estimate is a nonparametric method which

can be applied to either discrete or continuous data. For a
rigorous development of statistical theory, see Kalbfleisch and

Prentice (1980).

Remark 2 The accuracy of the K-M estimate and Greenwood’s

formula relies on large sample size of uncensored data. Make

sure that yvou have at least, say, 20 or 30 uncensored failure

times in your data set before using the methods.

Remark 3 Greenwood’s formula is more appropriate when

0 << S(t) << 1. Using Greenwood’s formula, the confidence
interval limits could be above 1 or below 0. In these cases, we
usually replace these limit points by 1 or 0. For example, a
95% confidence interval could be (0.845,1.130), we will use

(0.845, 1) instead.




‘ Cumulative hazard functions

A = A0 o A
] »

Ft)=1-S() «=-==» A(t) = /{) ANu)du = 0

1 e MY 1 - {1—-A{)} = A(t)

S(u)




‘ Example of cumulative hazard functions
(cumulative incidences)

Nelson—-Aalen cumulative hazard estimate . Nelson—Aalen cumulative hazard estimates, by group
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Recall: | A(t) = [ A(s)ds
Q: Why estimate A(#)7
> Stepping stone to A(f) estimation

> Diagnostics (e.g. linear = exponential distn.)

Note that d;/N; can be thought of as estimating
P[T" € (ti-1).t@)] | T = ta—n] = (ta) — ti-1)) - AtE)

Given this approximation we have
t
Alt) = / A(s)ds
~= Z ;\ f{z f{z t{i—lj) ~z Z (ji/f\ri

t(ﬂ{:t tfz-:,it




The estimator A(t) = Ztu;.it d; /N; is known as the Nelson-Aalen
Cumulative Hazard Estimator.

Standard error:

vare'i

'I\'l'

As N — oo the number of jumps gets bigger, and the jump sizes,
d; /N;, get smaller — so the estimate becomes closer to a
continuous function.

STATA: sts graph, na




‘ Kaplan-Meier and Nelson-Aalen

o Kaplan-Meier estimator

e Assume T'is continuous = d; = 1 mostly
1. d; = N(t;) = N(t;=) = dN(t;)
2. n; =Y (t;) >0

3. Zfﬁtga; = [t [(Y (u) > 0)dN (u)/Y (u)

¢ Nelson-Aalen estimator

A(t) = —log 5(t) = /ﬂ I (Y(u); f))dw(u)




‘ Kernel estimate of hazard functions

e | Bad Idea: | Let the estimate of A(#) just be

~ A+ ) = A

At) =
(t+3)— (1
> When time is measured in days (minutes) this estimate will
just be d;/N; at t(;y and then zero everywhere else.

t

5)
)

b2 = |

e | Better Idea: | Don't just use d;/N; or 0.0, but rather look in the
“neighborhood” of ¢t and average values that are close by.

e Choose a weight function to assign weight to values:
kernel function K'(x) where [ K(x)dr =1
> K(x) = 1(x — % <r<xr-+ %)
> K(x) = exp(—3a2?)/V2m
> Ka)=la—-1<az<z+1) - (1—-2%)-0.75




Choose a bandwidth to determine the (effective) size of the

neighborhood over which you average: bandwidth b.

Estimate

S~ L[t =t d;
}\(r)—zg+j—1 ( ; )45\2

2

Standard Error:

1 t—t S
-~ 4 - — H1) + (ly
SEIA(t)] = 5 {Z [ﬁ ( ; )] m}}

7

Large value of b = smooth estimate.
Small value of b = fluctuating estimate.

STATA: sts graph, hazard with width option.
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Hazard Estimate: width(20) cihazard

Smoothed hazard estimate
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Hazard Estimates by Group: default
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‘ Summary

e We have illustrated (2) main statistical approaches

> Parametric model

+ Assume a model form (e.g. Weibull)
Estimate parameter(s) using Maximum Likelihood
Use model to estimate mean, median, S(t), A(t)

> Non-parametric methods

No specified model form

Kaplan-Meier Estimator of S(#) (and percentiles such as
median)

Nelson-Aalen Estimator of A(t)

Kernel Estimator of A(%)




Parametric methods will generate estimates for the mean even
when a large fraction of observations are censored — thoughts?

Non-parametric methods produce estimates of S(7) with
increasing variance with increasing time.

All methods have assumed that censoring is independent of the

survival time (i.e. no selection bias).
Summaries can be produced for groups (subsets) of subjects.

(: How can we make inference regarding group differences?
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