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Two-sample testing

Two-sample studies

o Compare two survival functions via hypothesis
testing

o Assess group differences or treatment effect
Superiority versus non-inferiority
Active-control

o Sample size and power calculation

o Sequential monitoring
Establish efficacy/futility boundaries
Project timing of interim analyses



Review of binary outcomes

= In a two by two table

D D
Treatment A | a b | na
B c d | np
O Ch|'Sq uare mp mp N

Null hypothesis Hy : pa = pp

2
. na
I a—mp (22)
HAHB '??1}_—} mﬁ
n4(n—1)

when n is large, T' ~ )(2(1).




‘ A simple two-sample test

Suppose t-year survival rate is of interest
Hy: Sa(t) = Sg(t).

Data could be censored before t. We use the K-M estimmate to

estimate S4(t) and Sg(f). and construct a test statistic

T jA(ﬁ) — Sp(t)
SD[Sa(t) — Sp(t)]

~ N(0,1).

Here SD [S*A (t) — Sp (t)] can be estimated by Greenwood’s formula,

Var[S4(t) — Sp(t)] = Var(Sa(t)) + VarSg(t))
SDISa(t) = Sp(t)] = /Var(Sa(t)) + Var(S5(1)).

where Var is derived by by Greenwood’s formula.



Shortfalls

o Only test survival difference at a specific time

0 Yet to provide a overall summary of difference
over time

o Yet to take advantage of time-varying incidence
rates to maximize the power to detect difference



Log-rank test

Motivation

o Synthesize two-by-two tables that can be
constructed at each observed failure time
Why not censoring?

o For multiple two-by-two tables

Mantel-Haenszel approach when adjusting for potential
confounders by stratification



‘ Log-rank test

Ideas: 1. Create a 2 x 2 table at each uncensored failure time

2. The construction of each 2 x 2 table is based on the
corresponding risk set.

3. Combine mformation from tables

At an uncensored time

D D
Treatment A d na —d naA
Treatment B | mp —d | ng —(mp —d) | np
mp mp N

N: # individuals in the risk set at y from pooled data
d: # failures at y from group A

mp#t failures at y from pooled data

n:# individuals in the risk set at y from group A
np:# individuals in the risk set at y from group B

mp=N—mp




‘ Log-rank test

= Test statistic: PEED DI SN )

= ~ N(0,1)
\/Zj‘—l -Kr‘rﬂ].Lﬂ (.DH:,]I
- n larce
e Key quantities
> Observed: O; = dy;
> Expected: E; = ny; - f—: or By = D;- &
> Variance: V; = ny1;n9;D;S; /[N?(N; — 1)] (hypergeometric)

e Statistic:
2

S (0= En)|
Simt Vi
e Under the null hypothesis X2 ~ \?(df = 1)

2
JXL —




‘ Underlying theory

Use the following method to construct the test statistic:
conditional on na,ng. mp, mp, the random number d follows a

hypergeometric distribution (under Hg) with probability

., max(0,mp —ng) <d < min(ng, mg).

Under Hy,

Bo(D) = mp ()
N
Varg(D) = NANRBIMpPM G

NZ(N — 1)




‘Two-sided testing procedure

Usually the significance level of a test is set up to be 0.05.

nse

2

s _ | 21D — EolDia)) 2

VS Varg(Dgy)

n large

Reject Hg when 22 > 3.84 (|z] > 1.96)

p-value = Probability for values larger than 22.




Example

Example. Group A 3 5, 7 O, 18
Group B 12, 19, 20, 20%, 33*F
Uncesored: 3. 5. 7 12 18, 19, 20
Y1) =3 Ye2) =5 Y(z) =1 Yigy = 12
D D D D D D D D
Al11l 41 5 Al 1] 3|4 Al 1] 23 Al 0111
Blol 5| 5 Bl O |55 Bl O |5 |5 B| 1] 4]5
1 9 10 I 8 9 1 7 8 1 5 6



vy  do Eq [d{i) ] Varg [d{i)]
31 1 x & = 0. Dol — (.25
5001 1x 5 =044 LEFEE = .2469
71 1 x 3 =0.38 0.2344
120 I x =017 0.1389
18 1 1 x +=0.20 0.1600
19 0 1x5=0 0
20 0 1xg=0 0




—
e

7
Y (diy—Eo(d@y)) = (1=05)4...4(0—0) =231
1

» Varg(dy) = 025+...4+0=1030
1
2.31 o 5 5 |
= =122 — 22 =(2.28)2 =5.198 > 3.34
1.030 ——

—  p-value = 0.0226 = reject Hy




Relationship between Mantel-Haenszel
and log-rank

e | Mantel-Haenszel: | series of (independent) tables: different levels
of a confounder:

Exposed (E) | Unexposed (E)
Diseased (D) (1; b;

non-Diseased (D) Ci d;

e M-H compares P(D | E.C'=i) and P(D | E,C' = i) and is
designed for the situation where the odds ratios, W, are constant
across strata.
> Ho:W,=1foralli; H : W, =¥ # 1.
> where -

¥, — P(D |E_._ (' = -i)/P(E | E C'=1)
P(D|E.C=1i)/P(D|E C=1)




e | LogRank: | series of (dependent) tables: different observed death

times:
Group 1 | Group 2
Deaths at 7(; dy; do; D;
Survivors at ;) 814 $9; S
115 No; N;

e Thus we would expect the LogRank test to be powerful when
“odds ratios” over infinitesimal time intervals were constant across
time.



e This idea implies C'; = C' where

Pl elt.t+ At) |EST =t)/[1 — P(T € [t.t + At) | E.T > t)]
P(T elt.t+At)|ET >t)/[l = P(T'e[t.t+At) |E.T > t)]

Ct —

e As At — 0 we have
1. 1—P'sgoto 1.0
2. Ratio of P's same as ratio of P/At's

3. So Ratio of P's — 2UE) _ pp.
NG

e So the LogRank test is designed for (and is most powerful for) the

situation where
_AIE

CAMt|E)

Ry




Note:

| D, 1
O; —E; = dy; — '”-liﬁ = dy; — D*’\_:

niing [ di;  doj
f\-Ti Ti14 Tiaq

This shows that the statistic is based upon a weighted comparison
of the estimated hazards (dy;/n1:) and (da;/n2;) where the weight

B 11194 /f\ri.




‘ Weighted log-rank test

e Q: What happens when the hazards are not proportional?

> Similar to M-H, as long as the difference between the hazards
has a consistent sign, the LogRank test usually “does well”.

e Other tests are available. One family has the form:

2
S wi(0; — B, )}
ZJ L wiV;
where the weights w; = w|t(;)] can place emphasis on a particular

time range (e.g. early, late).

E .
Xy =




‘ Weighted log-rank test

e | Weight: | Let the weight w; be a function of the number of

subjects at-risk at time #(;), IV;:

> w; =1 = LogRank Test
(Mantel, 1966).

> w; = N; = Wilcoxon-Gehan-Breslow Test
(Gehan 1965; Breslow 1970).

> w; =/ IN; = Tarone-Ware Test
(Tarone and Ware 1977).

e The LogRank emphasizes the tail of the survival (relatively).

e The Wilcoxon-Gehan-Breslow emphasizes the beginning of the
curve.




e (): Which to choose?

> Which is scientifically more important — early versus late?

> The LogRank is most powerful for proportional hazards, so
naturally corresponds to Cox regression.

e There are additional tests such as those suggested by Harrington
and Fleming (1982) that use w; = [;@I(f(i_lj)]ﬁ for some value of
p. This will weight earlier times (depending on the choice of p)
but has an advantage in that it depends less on the censoring

distribution than the Wilcoxon test.

e p=1 using w; = ,'ﬁ(r{_i__uj is the Peto-Prentice generalization of
the Wilcoxon.



e The use of normality (chi-square) for X# stems from having a
large number of (possibly sparse) tables over which we sum — that
is, the key assumption is that ./, the number of observed event
times is large. This is the same as M-H where M-H could be
validly applied to matched data (e.g. each 2 x 2 is only a pair of
subjects.

e Similar to M-H normality could be assumed for a few large tables
— this would imply heavily “tied” data (e.g. 2,2,2, 7,7,7,7 for
outcome).

e Exact methods have been proposed when groups are not of equal

size and one group is small (see Heinze, Gnant, and Schemper,
2003).



A trivia

e Q: Why is this named “log rank”?
e A: Kalbflesich and Prentice (2002) p. 27:
“The name log-rank was coined by Peto and Peto (1972) and the

motivation of the term is not entirely clear to all — some say to apply
it one first logs the data and then ranks them.”




Take-home message

Log-rank test is essentially to test

e | Hypotheses
[> H{]: Sl(f)
= Hy: Sq(t)

So(t) for all t.

[S5(1)]€, for C' # 1

e | Hypotheses | (equivalently)
> Hg: A (t) = Aa(t) for all t.
> Hy: AM(t) = C - Aa(t), for O£ 1

Proportional hazards




‘ An example

Kaplan—Meier survival estimates, by tx

) no yes Log-rank test for equality of survivor functions
5 | Events Events
. tx | observed expected
______ L
% no | 180 187.42
; yes | 103 95.58
0 100 200 300 anal;siﬂs tilline 100 200 300 400 e e e —————
| 95% CI Survivor function ‘ Total | 283 283.00
Graphs by &
chi2(1) = 0.89

Smoothed hazard estimates, by tx

1}
o]
[#%]
= -
9]
o

Pr>chi?2

.015
1

—— Not significant

0 100 200 300 400
analysis time




- o e e e e e e . .
Supeival Sunival

Hypothetical examples

Log-rank test




‘ Stratified log-rank

e Q: What if we want to test for differences in risk, adjusting for
some potential confounding factor?

e | Solution: | Stratify on (categorical) confounder.

e Suppose stratification factor has K levels: £ =1,2...., K.

e TJest
> Ho: Ae(t|E) = Ae(t | E)
forall tand k =1,.... K.
> Hy: Ap(t|E)=C - Ap(t | E)
forall tand k=1..... K, and C"#£ 1.




Test Statistic:

strata 1 strata 2 strata K
J] e N fJIx i
Z(Ul? E11 +Z (—)21 Eﬂz +Z(th Eﬁz)
) i=1 i=1 1=1
‘XL — - Jq Jo Jx )
Z Irlz -+ Z IrQ*L -+ + Z V K1
i=1 i=1 tre=1
~—— —— “I—'-v-—"
strata 1 strata 2 strata K

Where Oy,;. E};, and Vy,; are calculated solely from subjects in

strata k.

Under Hy we have X7 ~ ?(df = 1).



‘ STATA codes

e STATA: sts test tx, strata( group )

Stratified log-rank test for equality of survivor functions

| Events Events
tx | observed expected(*)
______ o
no | 223 231.14
yes | 151 142.86
______ o
Total | 374 374.00

(*) sum over calculations within group
chi2(1) = 0.79 Pr>chi2 = 0.3754




One-way ANOVA

e Now consider the situation of comparing more that two groups.

e |Hypotheses
[> HD : )\l(ﬁ) — )\Q(f) = ... = )‘-K(ﬂ

> Hj : at least one inequality among K groups.

e | Data |at each #(; based on all of the data:

tei Group 1l | Group2 | ... | Group k | ... | Group I

Deaths dy; oy Ce . Ce d e D;

Survivors 51; So; . Siei . Sk i S,
115 194 . T . N N;




e Similar to before, we accumulate the difference between observed

for group & and that which would be expected under the null
hypothesis.

2
e The we use a multivariate generalization of @ to form the

test statistic.

e Key quantities for group k:
> Observed: O; = dy;

> Expected: Ej; = ny; - 24
T

T ked {..!""v"g' —Tthi ) .D@ S-;_i,
h"f (N;—1)

> Variance: Vip; =

—MiTpry; .Dz' S?;
NZ(N,;—1)

> Covariance with dp;: Viprs =




e Accumulate;
> Op — LEj = Z’f:ﬂom — Eki)

. J 1
> Vir = D icy Viri

. W
> Vi = 2 izt Vawri

e T[est Statistic

X2 =

[ O —E;
Oy — Es
\ Ok — Ey, )

r

/12

Vao

J_.T
1K

Vok

.
LK K

[ O, —F;
(Vs — FEo

\OH—EA:. )




The form of the test statistic is called a "quadratic form" .

The matrix notation V'~ denotes a generalization of 1/V" used for
a single number.

Under the null hypothesis
> X2~ 2(df =K —1)

Note: the negative covariance Vy;; between d;; and dj.; comes
from conditioning on the margin totals, D;, S;, ng;, and ng/; —
that is, if deaths sum to D; then allowing an increase in deaths for
group k would necessitate a decrease in other groups (possibly £’).




‘ STATA codes

e STATA: sts test treat

Log-rank test for equality of survivor functions

| Events Events
treat | observed expected
____________ e
none | 223 223.09
topical Acy | 30 38.34
oral Acy | 111 95.96
IV Acy | 10 16.61
____________ e
Total | 374 374.00

chi2(3) = 6.89 Pr>chi2 = 0.0755




‘ Trend test

e [n some situations we have K groups that can be ordered based
on some scale, or “dose” vector (xy,x9,.... 7).

e [n these situations we are interested in testing whether the hazard
functions tend to increase or decrease with “dose”.

e | Hypotheses

[= Hﬂ: }kl(ﬁ):}\g(f) :...:)\If(f)
[> Hl : }\1 (f) > }\Q(f) > > j’(f), or
A(t) < Aa(t) < < Ai (t), with at least one > or <.

e | Hypotheses| (more specifically)
= H{]: }ll(ﬁ):}kg(f) :...:}\I{(f)
> Hyp: CF1 - A (8) =C"2 - A\g(t) = ... =C"K - Ak (t), C # 1.




Q: Does risk increase (or decrease) with increasing dose?

Test Statistic:

2

. [ZL e (O — Ey)

Ek 1 fa ek T 20 ) pepr Tk keke?
Under null X2 ~ \2(df = 1).

Test is effectively for a regression of log A(f) on xy, using
log A(t | xp) = alt) + 3 -




‘ STATA codes

e STATA sts test group, trend

Log-rank test for equality of survivor functions

| Events Events

group | observed expected
______ o
I | 36 94 .86
1T | 283 245.73
I1I | 55 33.41
______ e
Total | 374 374.00

chi2(2) = 59.08

Pr>chi2 = 0.0000
Test for trend of survivor functions

chi2(1) = 57.49

Pr>chi2 = 0.0000




Counting process representation of
weighted log-rank test

e A general form

P . . Yy (u)Yo(u) A (o) — dRola
" _[] Wi )Yl(u){—}rg{u) {dhl( ) — N )}

— statistics of the class K (Gill, 1980)

— W(-): weight function
— weighted differences in cumulative hazard functions
e Choices of weight function W ()
— W(t) = 1: Log-rank
- W(t) = ¢- Y (t): Wilcoxon rank-sum, Gehan-Wilcoxon
- W) = §(t—): Prentice-wilcoxon
- W(t) = 5(t—)*, p > 0: Gr-family
- W(t) = S(t—)?[1 — S(t=)]7: Gr-family
W (t) = K(t)[ninz/(n1 4+ n1)]Y2[Y1(t) 4 Y2()] /Y (£): the class K




Power calculation based on weighted log-
rank test

e Power analysis of weighted Log-rank test statistics
1. type-l error: a = 5%
2. power level
3. alternative hypothesis

4. error bound




e Under Hg : A\o(%) = A\ 1(t) = A(t)
e Alternative hypothesis
= Hy 1 A1(t) = Ag()eln 00
— log[A1(t]| Z;)/Ao(t)] = BnZ; x 6(t)
— 6(t): take into account of nonproportionality

— (3n: distance between the null and an alternative

e Given a sample size n,

Power = Pr {‘n‘lf@ﬂf’/\/%‘ > 21_q/2 | Hl}




Distributional properties and power

e Summary on n— /2w

— Under Hg: n=1/2W ~ 47(0, A(w?)) Weight function
————————— ™ user-defined

__________ =| Degree of nonpropotionality

1,/2,.3
' [y —
o é_ — = |Difference to detect

Froteba

£A(0w)
he (A(w?)”? o 2)

A@w?) = [ w(@)2Bu,[(Z; - 1z ())21(X 2 who(u)du



‘ Sample size calculation

e In practice, we have a fixed g to be detected

— Ho : A1(t) = Ao(2)

— Hy : A1(t) = Ag(t)efox o)

e Standardized weighted Log-rank 7S
— under Hg: T'S ~ A4°(0, 1)

— under Hy:

TS =N (”1”2..-’3014(9%) )

A(R,Q)lfz




e Power P = Pr{|T'S| > z1_n/2t =1-7

ﬂljg_ﬁgﬂ(ﬂw) (EQ/Q + zﬁ)zﬂ(wg)

= _a = —
A(w2)1/2 Z1_aj2tz1-g =1 BoA(0w)2
—w=60=1
+ Log-rank for proportional hazards model

* sample size

— (zﬂ:/lg + 23'3)2




— whatis A(1)?

« recallon A(1) = [CE[(Z — pz(w))?I(X > u)]\o(u)du

* A(l) =nz(1 —mg)Pr(A=1) - | Proportion of treatment arm

— Sample size is then

— Expected # failures/events: Ep =nPr(A =1)

nPr(A=1) =-

(ZC}:,H'Q + 23)2

..-'J?gﬂz(l - ’.?Tz')

+ HR = P is hazards ratio

x 1-t0-1 treatment-control assignment

#

Ep =

o 4(205/2 + 23)2
(log HR)?

e.g. 1-to-1 randomization: 1/2

— Example:

x type-l error: 5%
+ power: 90%
* HR = 2

« Ep = 42/(log HR)?: 88




Sequential monitoring

Develop a design for repeated data analyses

o satisfying the ethical need for early termination if
initial results are extreme

o not increasing the chance of false conclusions



O'Brien-Fleming guideline

How the O'Brien-Fleming guideline works:

o Arriving at recommendations about early
termination of clinical trials
that establish favorable effects
that rule out favorable effects



Example: O Brien-Fleming boundaries

Exam ple: H PTN 052 O’Brien-Fleming Boundaries, Biometrics (1979)

o Goal: with 4 analyses,
preserve the 1-sided 0001
false positive error rate:
0.025

o Issue: account for
multiple comparisons

0023

0103

0.025 r llllllllllllllllllllllllllllllllllllll




‘ Establish favorable effects

Estimated log hazards ratio

REJECT I
H:B>1In0.80
H:B<In0.80 ‘

n0.52 —

|

n0.80  — 21 58 95 133

V. 64 v.112 v, . 160 v. 207
325 S18 .599 .644

L= 385 170 255 340




‘ Rule out favorable effects

Estimated log hazards ratio

REJECT
H:p=in0.80 L= 85 170 255 340
H:pB<n0.80
n0.52 — 56 94 132 170
v. 29 v.76 v, 123 v. 170
1.909 1236 1.069  .995
In 0.80 __ \

n1.22 ~ ] \

17



Accrual and follow-up

A: Accrual F: Follow-up

== =
Subject Vv X

Step 1: what is the probability of a subject to
have an event at x when he/she is recruited
at v?

Q(z) = [ Mu)exp{—[A(u) + H(u)]}du = QU —v)

where A(u) = [’ A(v)dv and H(u) = [; kit

Rate of lost-to-follow-up




Step 2: Total expected number of events

N(AF) = [fa(v) = Q(F —v)dv



Example: HTPN 052 Trial

Two-arm control randomized clinical trial of treatment
strategies of ART management

o Immediate versus delayed
o Four interim analyses planned

e N=1750

e Accrual time: A=2.5 years or 3 years

e Accrual rate: a(u) =a = (1750/2)/2.5 = 350 or (1750/2)/3 = 292

e Time-to-infection event rate: A(u) as stated in the first section.

— using high effective rate for the immediate arm.

— using 50% as reduction rate to generate the event rate for the delayed
arm.

e Loss-to-follow-up rate: h(u) = 6% = h*



Results:

1. When A=2.5 years and vary F from 3.5 to 6.5 years

Accrual time (A) 2525|2525 |25
Follow-up time (F) 351 4 |45 5 |55
Total time (T) 6 |65 7 |75 8

Total events (N.yen:) || 165 | 168 | 173 | 176 | 181

2. when A=3 years and vary F from 3.5 to 6.5 years

Accrual time (A) 3 3 3 3 3

Follow-up time (F) 35| 4 45| 5 |55
Total time (T) 65| 7 |75 ] 8 | 85
Total events (Noyen:) || 166 | 171 | 174 | 179 | 182
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