SISCER Mod 12

Survival Analysis

Lecture 4

Ying Qing Chen, Ph.D.

Department of Medicine Stanford University

Department of Biostatistics University of Washington

In Lecture 3

- What we discussed
 - Log-rank test
 - Weighted log-rank tests
 - Power and sample size calculation

More than two-sample

- Two-sample (multiple-samples)
 - Only gives hypothesis testing results
 - Does not provide exact effect size
 - Does not provide confidence intervals
- Covariates
 - Continuous factors
 - Multiple factors and interactions
 - Confounders
 - In particular to time-to-event outcomes: time-varying covariates
- Regression modeling
 - Parametric
 - Nonparametric
 - Semiparametric

Parametric regression modeling

- General paradigm
 - Set up underlying parametric distributions
 - Establish a relationship between outcomes and covariates by some parametric form
 - Apply MLE to estimate regression parameters
 - Make inferences
 - Wald's test
 - Score test
 - Likelihood ratio test

Parametric regression models

Data (without censoring):

$$(T_i,Z_i), i=1,2,\ldots,n$$

Likelihood function

$$\prod_{i=1}^{n} f(T_i|Z_i),$$

- Examples
 - A linear regression model:

$$-\log T_i = \beta_0 + \beta Z_i + \epsilon_i$$
, where $\epsilon_i \sim N(0, \sigma^2)$

Example. $T \sim \exp(\theta)$. The density function is $f(t;\theta) = \theta e^{-\theta t} I(t > 0)$.

Regression extension: Let $x_i = (x_{i1}, \dots, x_{ip})$ be a $1 \times p$ vector of covariates and $\theta = (\theta_1, \dots, \theta_p)^t$ a $p \times 1$ vector of parameters for subject i. Assume the hazard function is $\lambda(t; x_i, \theta) = x_i \theta = \sum_{j=1}^p x_{ij} \theta_j$. Assume T has the pdf $(x_i \theta) e^{-(x_i \theta)t_i}$. Based on $(x_1, t_1), \dots, (x_n, t_n)$, the maximum likelihood techniques can still be applied to the likelihood function

$$L(\theta) = \prod_{i=1}^{n} (\underline{x_i \theta}) e^{-(x_i \theta)t_i} - - - - - -$$
 Exponential density

A constraint here is that the hazard $\lambda(t; x_i) = x_i \theta$ must be positive. To guarantee this, we sometimes use a positive-valued link function $\phi(\cdot)$ and assume the hazard $\lambda(t; x_i) = \phi(x_i \theta)$. For instance, $\phi(u) = u^2$ or $\phi(u) = e^u$. For the latter case, the likelihood becomes function

$$L(\theta) = \prod_{i=1}^{n} e^{x_i \theta} e^{-(e^{x_i \theta})t_i}$$

For censored time-to-event

Recall

- Log-rank test is mostly powerful to test the alternative when hazard functions are proportional
- This shall serve as an important motivation for the so-called Cox proportional hazards model

Cox proportional hazards model

- Response Variable:
 - \triangleright Observed: (Y_i, δ_i)
 - \triangleright Of Interest: T_i , or $\lambda(t)$
- T_i survival, with distribution given by:
 - \triangleright Survival function: S(t)
 - \triangleright Hazard function: $\lambda(t)$
- Observed Covariates: X_1, X_2, \dots, X_k
 - \triangleright For subject j we observe: $(Y_j, \delta_j), X_{1j}, X_{2j}, \ldots, X_{kj}$
- IDEA: same as with other regression models Model relates the covariates X_1, \ldots, X_k to the distribution (either S(t) or $\lambda(t)$) of the response variable of interest, T.

Model specification

Model:

$$\lambda(t \mid X_1, X_2, \dots, X_k) = \lambda_0(t) \cdot \exp(\beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k)$$

Model: alternatively expressed as

$$\log \lambda(t \mid X_1, \dots, X_k) = \log \lambda_0(t) + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$$

$$S(t \mid X_1, \dots, X_k) = [S_0(t)]^{[\exp(\beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k)]}$$

Note definitions:

$$\lambda_0(t) = \lambda(t \mid X_1 = 0, X_2 = 0, \dots, X_k = 0)$$

$$\triangleright S_0(t) = S(t \mid X_1 = 0, X_2 = 0, \dots, X_k = 0)$$

Model interpretation

Proportional Hazards:

RR =
$$\frac{\lambda(t \mid X_1, X_2, \dots, X_k)}{\lambda(t \mid X_1 = 0, X_2 = 0, \dots, X_k = 0)}$$

= $\exp(\beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k)$

• RR above is: "Relative risk, or hazard, of death comparing subjects with covariate values (X_1, X_2, \ldots, X_k) to subjects with covariate values $(0, 0, \ldots, 0)$."

In General:

 eta_m is the log RR (or log hazard ratio, log HR) comparing subjects with $X_m = (x+1)$ to subjects with $X_m = x$, given that all other covariates are constant (ie. the same for the groups compared).

$$\frac{\lambda(t \mid X_1, \dots, X_m = (x+1) \dots, X_k)}{\lambda(t \mid X_1, \dots, X_m = (x), \dots, X_k)} = \frac{\lambda_0(t) \exp(\beta_1 X_1 + \dots \beta_m (x+1) + \dots + \beta_k X_k)}{\lambda_0(t) \exp(\beta_1 X_1 + \dots \beta_m (x) + \dots + \beta_k X_k)} = \exp(\beta_m)$$

• The RR Comparing 2 Covariate Values (vectors):

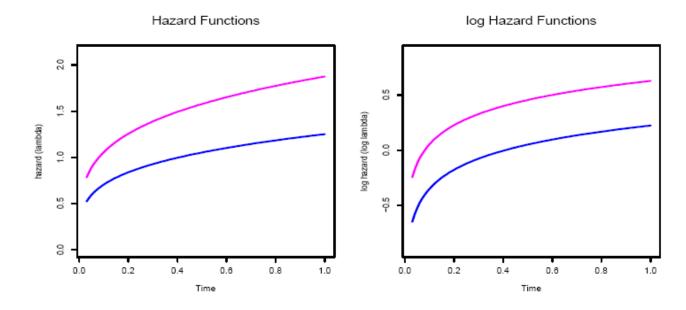
 \triangleright RR comparing (X_1, X_2, \dots, X_k) to $(X_1', X_2', \dots, X_k')$.

$$RR(X \text{ vs. } X') = \frac{\lambda(t \mid X_1, X_2, \dots, X_k)}{\lambda(t \mid X'_1, X'_2, \dots, X'_k)}$$

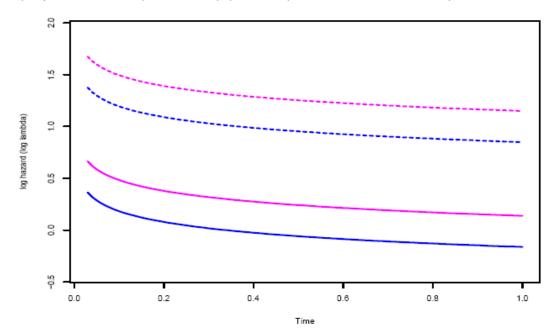
$$= \exp \left[\beta_1 \cdot (X_1 - X'_1) + \beta_2 \cdot (X_2 - X'_2) + \dots + \beta_k \cdot (X_k - X'_k) \right]$$

Examples: Cox proportional hazards model

- 1: One dichotomous covariate
 - \triangleright $X_E = 1$ if exposed; $X_E = 0$ if not exposed.
 - $\lambda(t \mid X_E) = \lambda_0(t) \exp(\beta X_E)$

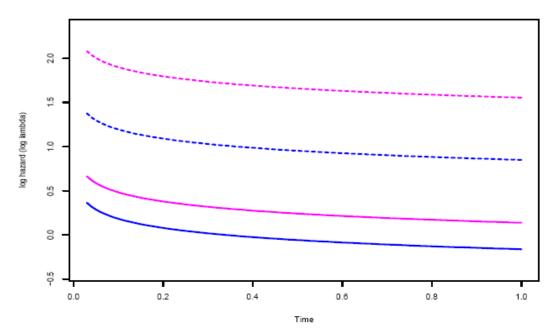


- 2: Dichotomous covariate; Dichotomous confounder
 - \triangleright $X_C = 1$ if level 2; $X_C = 0$ if level 1.
 - $\lambda(t \mid X_E, X_C) = \lambda_0(t) \exp(\beta_1 X_E + \beta_2 X_C)$



- 3: Dichotomous covariate; confounder; (interaction)
 - With interaction

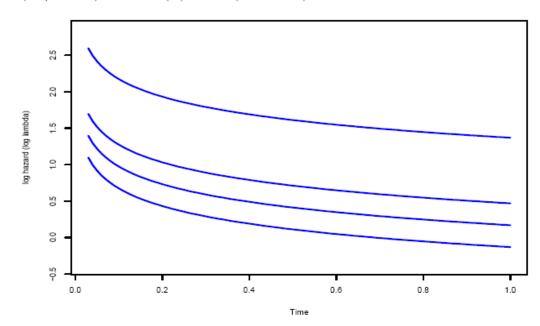
$$\lambda(t \mid X_E, X_C) = \lambda_0(t) \exp(\beta_1 X_E + \beta_2 X_C + \beta_3 X_E X_C)$$



• 4: One continuous covariate

$$X_D = 1.0, 2.0, \dots$$

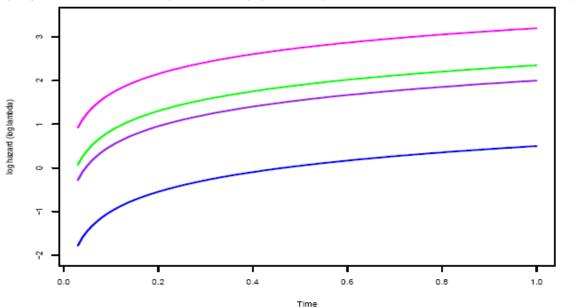
$$\lambda(t \mid X_D) = \lambda_0(t) \exp(\beta_1 X_D)$$



• **5**: K-sample Heterogeneity (K=4)

$$X_j = \begin{cases} 1 : \text{ group } j \\ 0 : \text{ otherwise} \end{cases}$$

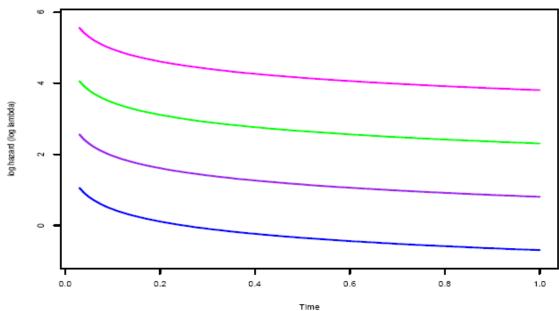
 $\lambda(t \mid X_2, X_3, X_4) = \lambda_0(t) \exp(\beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4)$



• 6: K-sample Trend (K=4)

$$> X_D = \left\{ \ j : {\rm group} \ j \right.$$

 $\lambda(t \mid X_D) = \lambda_0(t) \exp(\beta X_D)$



About the Cox model

- In each example the hazard functions are "parallel" that is, the change in hazard over time was the same for each covariate value.
- For regression models there are different possible tests for a hypothesis about coefficients: likelihood ratio; score; Wald. (more later!)
- The score test for example (1) with $H_0: \beta = 0$ is the LogRank Test.
- The score test for example (5) with $H_0: \beta_2 = \beta_3 = \beta_4 = 0$ is the same as the K-sample Heterogeneity test (generalization of LogRank).
- The score test for example (6) with $H_0: \beta = 0$ is the same as Tarone's trend test.

Some history

- D.R. Cox (1972) "Regression Models and Life-Tables" (with discussion) JRSS-B, 74: 187-220.
- "The present paper is largely concerned with the extension of the results of Kaplan and Meier to the comparison of life tables and more generally to the incorporation of regression-like arguments into life-table analysis." (p. 187)
- Model proposed: $\lambda(t \mid X) = \lambda_0(t) \cdot \exp(X\beta)$
- "In the present paper we shall, however, concentrate on exploring the consequence of allowing $\lambda_0(t)$ to be arbitrary, main interest being in the regression parameters." (p. 190)
- "A Conditional Likelihood" later called Partial Likelihood.
- Score Test = LogRank Test

Discussion:

"Mr. Richard Peto (Oxford University): I have greatly enjoyed Professor Cox's paper. It seems to me to formulate and to solve the problem of regression of prognosis on other factors perfectly, and it is very pretty."

Impact:

- Science Citation Index: 19,502 citations (17 Jan 2005)
- David R. Cox is knighted in 1985 in recognition of his scientific contributions.

How to estimate the Cox model

• Obtain estimates of $\beta_1, \beta_2, \dots, \beta_k$ by maximizing the "partial likelihood" function:

$$P\mathcal{L}(\beta_1,\beta_2,\ldots,\beta_k).$$

- $\triangleright \ \widehat{\beta}_1, \widehat{\beta}_2, \dots, \widehat{\beta}_k$ are MPLE's
- \triangleright Cl's for β_j using:

$$\widehat{\beta}_j \pm Z_{1-\alpha/2} SE(\widehat{\beta}_j).$$

Cl's for hazard ratio (HR) using:

$$\exp[\widehat{\beta}_j - Z_{1-\alpha/2}SE(\widehat{\beta}_j)], \exp[\widehat{\beta}_j + Z_{1-\alpha/2}SE(\widehat{\beta}_j)]$$

Wald test, score test, and likelihood ratio test similar to logistic regression. Now using the partial likelihood.

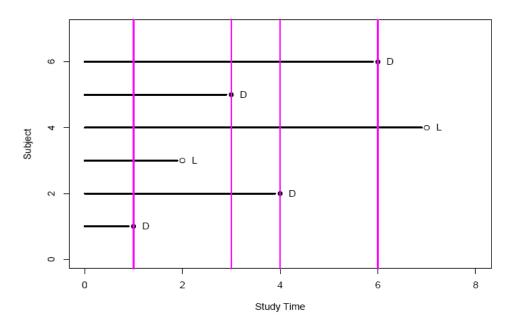
Partial likelihood

- Model: $\lambda(t \mid X_1, \dots, X_k) = \lambda_0(t) \exp(\beta_1 X_1 + \dots + \beta_k X_k)$
- Order Data:
 - \triangleright $t_{(i)}$ is the *i*th ordered failure time.
 - Assume no ties, and let $X_{(i)} = (X_{1(i)}, X_{2(i)}, \dots, X_{k(i)})$ be the covariates for the subject who dies at time $t_{(i)}$.
 - ▶ Let \mathcal{R}_i denote the "risk set" at time $t_{(i)}$, which denotes all subjects with $Y_i \ge t_{(i)}$.
- Partial Likelihood: (no ties)

$$P\mathcal{L}(\beta_1, \dots, \beta_k) = \prod_{i=1}^{J} \frac{\exp(\beta_1 X_{1(i)} + \beta_2 X_{2(i)} + \dots + \beta_k X_{k(i)})}{\sum_{j \in \mathcal{R}_i} \exp(\beta_1 X_{1j} + \beta_2 X_{2j} + \dots + \beta_k X_{kj})}$$

Risk set

D=death, L=lost, A=alive



- $\bullet \quad \text{Failure times:} \ t_{(1)} = 1, t_{(2)} = 3, t_{(3)} = 4, t_{(4)} = 6.$
- Risk sets:

$$\triangleright \mathcal{R}_1 = \{$$

$$\triangleright \mathcal{R}_2 = \{$$

$$\triangleright \ \mathcal{R}_3 = \{$$

$$\triangleright \ \mathcal{R}_4 = \{$$

• Q: What is the probability of the observed data at time $t_{(i)}$ given that one person was observed to die among the risk set?

Note :
$$P[T \in (t, t + \Delta t] \mid T \ge t] \approx \lambda(t) \cdot \Delta t$$

Person who died :
$$\lambda_0(t) \exp(\beta_1 X_{1(i)} + \ldots + \beta_k X_{k(i)}) \Delta t = P_{(i)}$$

Generic
$$j$$
 in \mathcal{R}_i : $\lambda_0(t) \exp(\beta_1 X_{1j} + \ldots + \beta_k X_{kj}) \Delta t = P_j$

• Probability One Death, Was (i):

$$P_{(i)} \times (1 - P_1) \times (1 - P_2) \dots \times \text{skip}(i) \times (1 - P_k)$$

Probability of One Death:

P(One Death) = P(1 died, others lived) +
$$P(2 \text{ died, others lived }) + \\ \dots + \\ P(k \text{ died, others lived })$$
 P(j died, others lived) =
$$P_j \times \prod_{k \neq j} (1 - P_k)$$

• Note: $(1-P_j) \approx 1$ for small Δt .

Now calculate the desired quantity:

$$\begin{array}{lll} \text{P(Observed Data | 1 death)} & = & \frac{\text{P(Only (i) Dies)}}{\text{P(One Death)}} \\ & = & \frac{P(\text{one Death })}{\sum_{j \in \mathcal{R}_i} P_j \prod_{k \neq j} (1 - P_k)} \\ & \approx & \frac{P_{(i)}}{\sum_{j \in \mathcal{R}_i} P_j} \end{array}$$

$$\frac{P_{(i)}}{\sum_{j \in \mathcal{R}_i} P_j} = \frac{\lambda_0(t) \exp(\beta_1 X_{1(i)} + \beta_2 X_{2(i)} + \dots + \beta_k X_{k(i)}) \cdot \Delta t}{\sum_{j \in \mathcal{R}_i} \lambda_0(t) \exp(\beta_1 X_{1j} + \beta_2 X_{2j} + \dots + \beta_k X_{kj}) \cdot \Delta t}$$

$$= \frac{\exp(\beta_1 X_{1(i)} + \beta_2 X_{2(i)} + \dots + \beta_k X_{k(i)})}{\sum_{j \in \mathcal{R}_i} \exp(\beta_1 X_{1j} + \beta_2 X_{2j} + \dots + \beta_k X_{kj})}$$

- Cox (1972) "No information can be contributed about β by time intervals in which no failures occur because the component $\lambda_0(t)$ might conceivably be identically zero in such intervals."
- Cox (1972) "We therefore argue conditionally on the set $\{t_{(i)}\}$ of instants at which failure occur."
- Cox (1972) "For the particular failure at time $t_{(i)}$ conditional on the risk set, \mathcal{R}_i , the probability that the failure is on the individual as observed is:

$$\frac{\exp(\beta_1 X_{1(i)} + \beta_2 X_{2(i)} + \dots + \beta_k X_{k(i)})}{\sum_{j \in \mathcal{R}_i} \exp(\beta_1 X_{1j} + \beta_2 X_{2j} + \dots + \beta_k X_{kj})}.$$

 Note: This likelihood contribution has the exact same form as a (matched) logistic regression conditional likelihood. Notice that our model is equivalent to

$$\log \lambda(t \mid X_1 \dots X_k) = \alpha(t) + \beta_1 X_1 + \dots + \beta_k X_k$$

where $\alpha(t) = \log \lambda_0(t)$, but the PL does not depend on $\alpha(t)$.

- Using the partial likelihood (PL) to estimate parameters provides estimates of the regression coefficients, β_j , only.
- The model is called "semi-parametric" since we only need to parameterize the effect of covariates, and do not say anything about the baseline hazard.
- Q: Why not just use standard maximum likelihood, as outlined in the notes on pages 86-87?
- A: To do so would require choosing a model for the baseline hazard, but we actually don't need to do that!

Handle ties

- If there is more than one death at time $t_{(i)}$ then the denominator for the partial likelihood contribution will involve a large number of terms. For example if there are 20 people at risk at time $t_{(i)}$ and 3 die then there are "20 choose 3" = 1140 terms.
- Approximation (Breslow, Peto) default in STATA
 - The numerator can be calculated and represented using:
 - * Sum X_1 for deaths: $s_{1i} = \sum_{j:Y_i=t_{(i)},\delta_i=1} X_{1j}$
 - * Sum X_2 for deaths: $s_{2i} = \sum_{j:Y_i = t_{(i)}, \delta_i = 1} X_{2j}$ etc.
 - $hd \ \$ The approximation with D_i deaths at time $t_{(i)}$ is:

$$P\mathcal{L}_{A} = \prod_{i=1}^{J} \frac{\exp(\beta_{1}s_{1i} + \beta_{2}s_{2i} + \dots + \beta_{k}s_{ki})}{\left[\sum_{j \in \mathcal{R}_{i}} \exp(\beta_{1}X_{1j} + \beta_{2}X_{2j} + \dots + \beta_{k}X_{kj})\right]^{D_{i}}}$$

- If continuous times, T_i , then ties should not be an issue.
 - Time recorded in (days, minutes).
 - Modest sample size.
- If discrete times, $T_i \in [t_k, t_{k+1})$, recorded then consider methods appropriate for discrete-time data (e.g. variants on logistic regression)
 - See Singer & Willett (2003) chpts 10−12; H& L pp. 268-9.

- However, there is plenty of room between continuous and discrete.
 - Example: USRDS Data = 200,000 subjects.

US Renal Data System

- * 25% annual mortality = 50,000 deaths/year.
- * 50,000 deaths/365 days = 137 deaths/day.
- Kalbfleisch & Prentice (2002), section 4.2.3 summarize options and relative pros/cons.
 - "Breslow method" simple to implement/justify; some bias if discrete.

 - Should be minor issue in general, and if not then perhaps a discrete-time approach should be considered.

Partial likelihood ratio test

• Full Model:

$$\lambda(t|X) = \lambda_0(t) \exp(\beta_1 X_1 + \dots + \beta_p X_p + \underbrace{\beta_{p+1} X_{p+1} + \dots + \beta_k X_k}_{\text{extra}})$$

Reduced Model:

$$\lambda(t|X) = \lambda_0(t) \exp(\beta_1 X_1 + \ldots + \beta_p X_p)$$

• In order to test:

 \triangleright $H_0: \text{Reduced model} \Leftrightarrow H_0: \beta_{p+1} = \ldots = \beta_k = 0$

ho $H_1:$ Full model \Leftrightarrow $H_1:$ extra coeff eq 0 somewhere

Use the partial likelihood ratio statistic

$$X_{PLR}^2 = [2 \log P\mathcal{L}(\text{FullModel}) - 2 \log P\mathcal{L}(\text{ReducedModel})]$$

- Under H_0 (reduced is correct) then $X_{PLR}^2 \sim \chi^2(df = (k p))$
- Degrees of freedom, df = (k p), equals the number of parameters set to 0 by the null hypothesis.
- Application is for situations where the models are "nested" the reduced model is a special case of the full model.
- Also can use Wald tests, and/or score tests. The PLR (Partial Likelihood Ratio) test is particularly useful when df> 1.
- The PLR statistic is equivalent (using a "double negative") to:

$$X_{PLR}^2 = \{ [-2\log P\mathcal{L}(\texttt{ReducedModel})] - [-2\log P\mathcal{L}(\texttt{FullModel})] \}$$

STATA codes for Cox models

```
*********
   evaluate TX
**********
stcox tx, nohr
est store LRmod1
xi: stcox i.group, nohr
est store LRmod2
xi: stcox tx i.group, nohr
est store LRmod3
1rtest LRmod3 LRmod2, stats
```

. xi: stcox i.group, nohr Cox regression -- Breslow method for ties No. of subjects = 456 Number of obs = 456 No. of failures = 374 Time at risk = 46363LR chi2(2) = 67.41Prob > chi2 = 0.0000Log likelihood = -1986.2945_t | Coef. Std. Err. z P>|z| [95% Conf. Interval] _Igroup_2 | 1.14690 .1786005 6.42 0.000 .7968584 1.496959 _Igroup_3 | 1.51643 .2168077 6.99 0.000 1.091494 1.941365

. xi: stcox tx i.group, nohr Cox regression -- Breslow method for ties No. of subjects = 456 Number of obs = 456 No. of failures = 374 Time at risk = 46363LR chi2(3) = 68.49Log likelihood = -1985.7542Prob > chi2 = 0.0000_t | Coef. Std. Err. z P>|z| [95% Conf. Interval] tx | .111602 .1069722 1.04 0.297 -.0980588 .3212645 _Igroup_2 | 1.171318 .1801767 6.50 0.000 .8181779 1.524457 _Igroup_3 | 1.525078 .2170109 7.03 0.000 1.099745 1.950411

. lrtest LRmod3 LRmod2, stats

likelihood-ratio test LR chi2(1) = 1.08 (Assumption: LRmod2 nested in LRmod3) Prob > chi2 = 0.2986

Model | nobs 11(null) 11(model) df AIC BIC

LRmod2 | 456 -2019.999 -1986.294 2 3976.589 3984.834

LRmod3 | 456 -2019.999 -1985.754 3 3977.508 3989.876

Estimate baseline hazard function

Recall: (math fact)

$$S(t) = \exp[-\int_0^t \lambda(s)ds] = \exp[-\Lambda(t)]$$

Cox model:

$$\lambda(t \mid X_1 \dots X_k) = \lambda_0(t) \exp(\beta_1 X_1 + \dots + \beta_k X_k)$$

$$\Lambda(t \mid X_1 \dots X_k) = \Lambda_0(t) \exp(\beta_1 X_1 + \dots + \beta_k X_k)$$

$$S(t \mid X_1 \dots X_k) = [S_0(t)]^{[\exp(\beta_1 X_1 + \dots + \beta_k X_k)]}$$

• Therefore, in order to estimate the survival function, or the hazard for specific values of the covariates, (X_1, X_2, \ldots, X_k) we need to estimate $\lambda_0(t), \Lambda_0(t)$, and/or $S_0(t)$.

• Method 1: Breslow Method (used in STATA)

$$\widehat{\Lambda}_0(t) = \sum_{i:t_{(i)} \le t} \frac{D_i}{\left[\sum_{j \in \mathcal{R}_i} \exp(\widehat{\beta}_1 X_{1j} + \dots + \widehat{\beta}_k X_{kj})\right]}$$

- Special Cases
 - ▶ 1 One group, no covariates

Nelson-Aalen Estimator

This is like $(\widehat{\beta}_1 X_{1j} + \ldots + \widehat{\beta}_k X_{kj}) = 0$

$$\widehat{\Lambda}_0(t) = \sum_{i:t_{(i)} \le t} \frac{D_i}{\left[\sum_{j \in \mathcal{R}_i} \exp(0)\right]} = \sum_{i:t_{(i)} \le t} \frac{D_i}{N_i}$$

- Special Cases

$$X = \begin{cases} 0 \text{ group } 1\\ 1 \text{ group } 2 \end{cases}, \qquad \lambda(t \mid X) = \lambda_0(t) \exp(\beta X).$$

$$\widehat{\Lambda}_{0}(t) = \sum_{i:t_{(i)} \leq t} \frac{D_{i}}{\left[\sum_{j \in \mathcal{R}_{i}} \exp(\widehat{\beta}X_{j})\right]}$$

$$= \sum_{i:t_{(i)} \leq t} \frac{D_{i}}{\left[\sum_{j \in \mathcal{R}_{i}, \text{ group } 1} \exp(\widehat{\beta}X_{j}) + \sum_{j \in \mathcal{R}_{i} \text{ group } 2} \exp(\widehat{\beta}X_{j})\right]}$$

$$= \sum_{i:t_{(i)} \leq t} \frac{D_{i}}{\left[N_{1i} + \exp(\widehat{\beta}) \cdot N_{2i}\right]}$$

- In this example we can consider $N_{1i} + \exp(\widehat{\beta})N_{2i}$ as the "effective risk set" at time $t_{(i)}$.
- The <u>numerator</u>, D_i , counts deaths equally from both group 1 and group 2.
- However, in order to represent cumulative hazard (risk) for group
 1 some adjustment of the group 2 contributions is warranted.
- Idea: reweight the denominator
 - $\widehat{\beta} > 0$ more deaths in group 2, so effective risk set needs to be increased to estimate risk in group 1.
 - $\widehat{\beta} < 0$ fewer deaths in group 2, so effective risk set needs to be decreased to estimate risk in group 1.

• 3 In general, the denominator

$$\sum_{j \in \mathcal{R}_i} \exp(\widehat{\beta}_1 X_{1j} + \ldots + \widehat{\beta}_k X_{kj})$$

- Is <u>bigger</u> than N_i when the average risk for a subject in \mathcal{R}_i is greater than the risk for a subject with the reference value $(X_1 = 0, X_2 = 0, \dots, X_k = 0)$.
- Is <u>smaller</u> than N_i when the average risk for a subject in \mathcal{R}_i is less than the risk for a subject with the reference value $(X_1 = 0, X_2 = 0, \dots, X_k = 0)$.

Survival

$$\widehat{S}_0(t) = \exp[-\widehat{\Lambda}_0(t)]$$

- ▶ Not the default in STATA, but can be created.
- Hazard (similar to before)

$$\widehat{\lambda}_0(t) = \frac{1}{b} \cdot \sum_{j=1}^{J} K\left(\frac{t - t_{(j)}}{b}\right) \cdot \left\{ \frac{D_i}{\left[\sum_{j \in \mathcal{R}_i} \exp(\widehat{\beta} X_j)\right]} \right\}$$

Also not the default in STATA.

Alternative approach to estimate baseline survival function

- Kalbfleisch and Prentice (1973) discuss use of a discrete time model and use this to estimate the baseline survival.
- The PH model implies:

$$p_j(X_1, \dots, X_k) = P[T \in [t_{j-1}, t_j) \mid T \ge t_{j-1}, X_1, \dots, X_k]$$

$$1 - p_j(X_1, \dots, X_k) = \left[\frac{S_0(t_j)}{S_0(t_{j-1})} \right]^{\exp(\beta_1 X_1 + \dots + \beta_k X_k)}$$
$$= [\alpha_j]^{\exp(\beta_1 X_1 + \dots + \beta_k X_k)}$$

- K&P (1973) show that using such a discrete time approximation leads to a method to estimate these α_j . (see STATA manual p. 150 for further details)
- K&P (1973) are using maximum likelihood for the discrete model.

Notice that once these estimates are obtained

$$S_0(t) = \left[\frac{S_0(t_1)}{1}\right] \times \left[\frac{S_0(t_2)}{S_0(t_1)}\right] \times \ldots \times \left[\frac{S_0(t_j)}{S_0(t_{j-1})}\right]$$

$$S_0(t) = \prod_{i:t_{(i)} \le t} \alpha_i$$

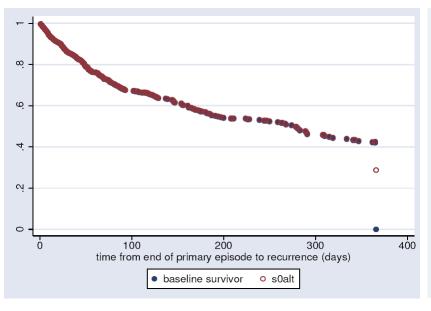
 This provides an estimate for the baseline survival function given as the default in STATA:

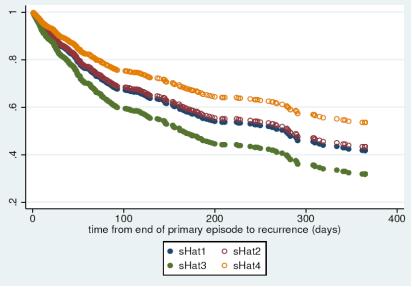
$$\widehat{S}_0(t) = \prod_{i:t_{(i)} \le t} \widehat{\alpha}_i$$

 Q: How does this estimate compare to that obtained using the cumulative hazard?

STATA codes for baseline estimates

```
xi: stcox i.treat i.group age25 i.gender, basesurv( s0 ) basechazard( H0 )
gen s0alt = exp( -1 * H0 )
graph twoway (scatter s0 s0alt rectime )
```





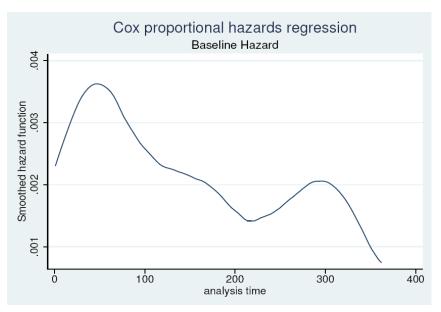
Smoothed baseline hazard functions

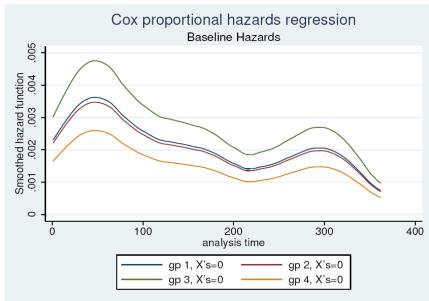
• Note: – with the estimates $\widehat{\alpha}_j$ we can also obtain estimates of the baseline hazard function:

$$\widehat{\lambda}_0(t) = \frac{1}{b} \cdot \sum_{j=1}^{J} K\left(\frac{t - t_{(j)}}{b}\right) \cdot \left[\left(1 - \widehat{\alpha}_j\right)\right]$$

STATA uses this method.

Examples: smoothed baseline hazard functions





Use of baseline estimates

Uses:

- Estimate survival or risk for specific sub-populations defined by a vector of covariate values.
- Evaluate the shape of the estimated hazard as provided by the model. The model imposes constraints (e.g. PH).
- To check the fit of the model, for example, by comparing the fitted survival curves for subsets to the survival curve estimated under the model.
- Can be used to see whether different strata appear to satisfy
 PH after adjustment for key covariates (next!)

Stratification: use of dummy variables

• Suppose a confounder X_C has 3 levels on which we would like to stratify when comparing $X_E = 1$ to $X_E = 0$.

$$\lambda(t \mid X_E, X_C)$$

$$X_E = 1 : exposure$$

$$X_E = 0 : no exposure$$

• 1 "Dummy variables"

$$\begin{cases} X_j = 1 : X_C = j \\ X_j = 0 : X_C \neq j \end{cases}$$

▶ Model

$$\lambda(t \mid X_E, X_2, X_3) = \lambda_0(t) \exp(\beta_1 X_E + \beta_2 X_2 + \beta_3 X_3)$$

• Level 1 of X_C

exposed :
$$\lambda_0(t) \exp(\beta_1)$$
 unexposed : $\lambda_0(t)$ $\mathbb{RR} = \exp(\beta_1)$

• Level 2 of X_C

exposed :
$$\lambda_0(t) \exp(\beta_1 + \beta_2)$$

unexposed : $\lambda_0(t) \exp(\beta_2)$
$$RR = \exp(\beta_1)$$

• Level 3 of X_C

exposed :
$$\lambda_0(t) \exp(\beta_1 + \beta_3)$$

unexposed : $\lambda_0(t) \exp(\beta_3)$ $\Re R = \exp(\beta_1)$

Stratified Cox models

- In the previous approach each of the six groups has a log hazard that is "parallel" to any other group (e.g. one common curve characterizes time, $\log \lambda_0(t)$).
- More generally:
 - $ightharpoonup Model: \lambda(t \mid X_E, X_C = j) = \lambda_{0,j}(t) \exp(\beta_1 X_E)$
 - $\lambda_{0,j}(t)$ represents an arbitrary function of time for the unexposed in strata $\{X_C=j\}$.
 - \triangleright However, the <u>comparison</u> between exposed and unexposed within each strata is assumed to be constant [HR= $\exp(\beta_1)$].
- This approach is implicit in the stratified version of the LogRank test.
- "Stratified Cox Model"

• Level 1 of X_C

exposed :
$$\lambda_{0,1}(t) \exp(\beta_1)$$

unexposed : $\lambda_{0,1}(t)$
 $\Re R = \exp(\beta_1)$

• Level 2 of X_C

• Level 3 of X_C

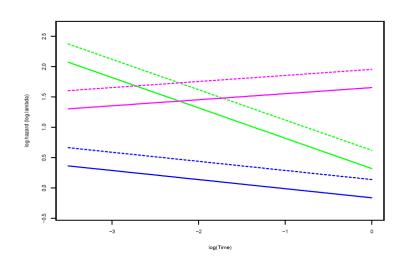
exposed :
$$\lambda_{0,3}(t) \exp(\beta_1)$$

 unexposed : $\lambda_{0,3}(t)$

Comparison of two stratification methods

Adjustment Using Dummy Variables

Stratified Cox Model



- Q: When to choose separate baselines?
 - Dummy variables assume common time change across confounder groups. If not correct then X_C may be inadequately controlled, and may confound exposure evaluation.
 - PH can be checked using graphical methods of time-dependent covariates (later!).
 - True stratification is a more thorough adjustment when observations within each stratum are homogeneous. If X_C is measured as a continuous variable, and strata are formed by grouping its values then better control might be achieved with the original continuous variable (possibly with time-dependent) covariate adjustment.

- If X_C is controlled using true stratification then there is no single HR to report comparing the different levels of X_C . However, we can estimate baseline survival (hazard) within each level and can compare these curves.
- True stratification generally requires more data to obtain the same precision in coefficient estimates (a bias-variance trade-off).

STATA codes for stratification

```
***
*** using dummy variables
***
xi: stcox i.treat i.group age25 i.gender
***
*** using stratified model
***
xi: stcox i.treat age25 i.gender, strata( group ) ///
    basesurv( s0 ) basehc( haz0 )
```

xi: stcox i.treat i.group age25 i.gender
Cox regression -- Breslow method for ties

Log likelihood = -1976.7301			LR chi2(7) Prob > chi2			86.54 0.0000
_t H	az. Ratio	Std. Err.	z 	P> z	[95% Conf.	Interval]
_Itreat_1	.98055	.1953991	-0.10	0.922	.663517	1.44909
_Itreat_2	1.33508	.1593493	2.42	0.015	1.056606	1.68695
_Itreat_3	.73497	.2392546	-0.95	0.344	.388313	1.39111
_Igroup_2	3.55011	.6491291	6.93	0.000	2.480856	5.08021
_Igroup_3	4.78591	1.050507	7.13	0.000	3.112625	7.35874
age25	.97799	.0082657	-2.63	0.008	.961923	.99432
_Igender_2	.74549	.0849773	-2.58	0.010	. 596231	.93211

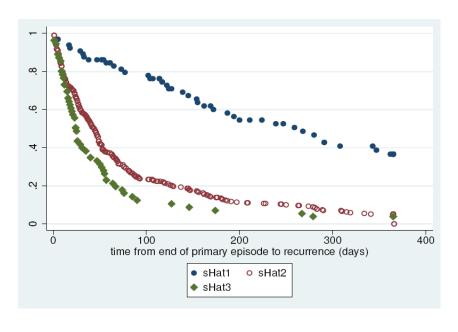
```
xi: stcox i.treat age25 i.gender, strata( group ) basesurv( s0 ) ///
    basehc( haz0 )
Stratified Cox regr. -- Breslow method for ties
                                    LR chi2(5) = 16.94
Log likelihood = -1723.7986
                          Prob > chi2 = 0.0046
      _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
_Itreat_1 | .958117 .1911902 -0.21 0.830 .647982 1.416688
_Itreat_2 | 1.304738 .1562943 2.22 0.026 1.031712 1.650018
_Itreat_3 | .724621 .2358843 -0.99 0.322 .382843 1.371516
    age25 | .980098 .0083365 -2.36 0.018 .963894 .996574
_Igender_2 | .755070 .0862966 -2.46 0.014 .603537 .944649
```

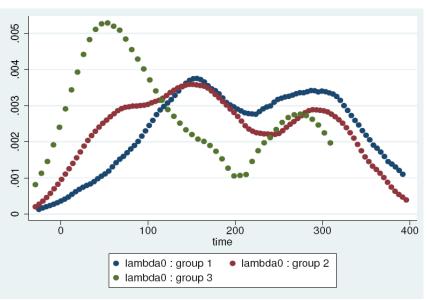
Stratified by group

Baseline functions

Separate S0 by Group

Separate $\lambda_{0,j}(t)$ **by Group**





Summary

- Cox Model parameters β_m are estimated using the partial likelihood. This focuses on the hazard ratios, HR or RR, and does not (directly) provide an estimate of the baseline hazard.
- Baseline hazard can be estimated using either the Breslow estimator of the cumulative hazard, or via a method introduced by Kalbfleisch & Prentice (default in STATA).
- The relationship among hazard, cumulative hazard, and survival functions allows estimation of one function to allow estimation of each of the other two functions:

$$\lambda(t \mid X) \Longleftrightarrow \Lambda(t \mid X) \Longleftrightarrow S(t \mid X)$$

- Stratified Cox models allow a more flexible adjustment for a stratifying variable. This is effectively allowing a separate baseline hazard for each level of the stratifying variable.
- No simple summary represents strata comparisons.
- Can be used to evaluate PH assumption relating strata after controlling for other covariates.