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For censored time-to-event

Log-rank test
o Usually good for two-sample hypothesis testing

o Mostly powerful to test the alternative when
hazard functions are proportional

o motivating for the so-called Cox proportional
hazards model



 Cox proportional hazards model

e | Response Variable:
> Observed: (Y;, ;)
> Of Interest: T}, or A(?)

e [} survival, with distribution given by:
> Survival function: S(t)

> Hazard function: A(t)

e | Observed Covariates: | X, Xo,..., X},

e IDEA: same as with other regression models — Model relates the
covariates X, ..., X, to the distribution (either S(¢) or A(#)) of

the response variable of interest, 1.




‘ Model specitication

e | Model:
)\(f | le Xg_, Ca ~XL) = )\[] (IL) : 'EEXp(:Ble + ..32X2 + ...+ jﬁbXﬁ)
e | Model: |alternatively expressed as
IOg )\(IL ‘ Xl.. ‘s .,X,ll-_) lUg )\U(IL) -+ .-Ble + I,BQXQ 4+ ...+ jich.,
S(l‘- ‘ Xl """ X,I!) — [S[](t)][exp(,ﬁ‘le—|—,."32X2—|—...—|—,-'3;CX;,3)]

e Note definitions:

> )\U(IL):)\(IL|X1 :O,XQZO,..._,X;;_—O)
> Sg(f):S(f|X1 :U,XQZOX}:




‘ Model interpretation

e | Proportional Hazards:

RR =

= E}Ip(ﬁle + I,-'CIBQXQ + ...+ ﬁlX,if)

e RR above is: "Relative risk, or hazard, of death comparing subjects

with covariate values (X, Xo, ..., X}) to subjects with covariate
values (0,0,...,0)."




In General:

> 3, is the log RR (or log hazard ratio, log HR) comparing
subjects with X,,, = (x + 1) to subjects with X,,, = x, given
that all other covariates are constant (ie. the same for the
groups compared).

Ao(tyexp(F3 Xy + ... 0 (z+1)+...+ 3. X))
)\()(f) e}cp(__.-:'31 X1 + ... __:i'B.m_(;lf) —+ ...+ __3;;XL,_)

= ©exXp (_-"3??1 )



The RR Comparing 2 Covariate Values (vectors):

> RR comparing (X, Xo,..., X;) to (X1, X5,.... X}).
Nt | Xy, Xo, o0, X))
RR(X vs. X') = P
At X1, X5 X))
= exp| A1 (X7 —X])+

B2 (Xo — X3) +
ce. T+
;‘3;;, : (X,!u — Xi) ]




Examples: Cox proportional hazards
model

e |1:|One dichotomous covariate

> Xg =1 if exposed; Xg = 0 if not exposed.
> Mt | Xg) = Ao(t) exp(6XE)
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2: | Dichotomous covariate; Dichotomous confounder

> Xo=1if level 22 X =0 if level 1.
> }\(f | Xg. XC') = )\U(f) E}{p(ﬁlXE + .-*"32XC*)
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3: | Dichotomous covariate; confounder; (interaction)

> With interaction
L )\(IL ‘ XEg, XC') = )\U(t) exp(:BlXE + 32 X + ijEXC')
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4: | One continuous covariate

> Xp=1.0.20,...
> )\(f | XD) = )\U(IL) exp(:BlXD)
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5: | K-sample Heterogeneity (K=4)

1: group j

0 : otherwise

> )\(f | Xo, X3, X4) = Ao (f) e}(p(:BQXQ + B3X3 + 34X4)

DX_-;':

lag hezam (og lambda)




6: | K-sample Trend (K=4)

> XD:{ j . group j
> )\(t ‘ XD) = )\U(t) eXp(ﬁXD)

g hazam (jog mbda)
2
|




About the Cox model

e In each example the hazard functions are “parallel” — that is, the
change in hazard over time was the same for each covariate value.

e For regression models there are different possible tests for a
hypothesis about coefficients: likelihood ratio; score; Wald. (more
later!)

e | The score test for example (1) with Hy : 3 = 0 is the LogRank
Test.

e The score test for example (5) with Hy : 32 = (33 = 3, = 0 is the
same as the K-sample Heterogeneity test (generalization of
LogRank).

e The score test for example (6) with Hy : 3 = 0 is the same as

Tarone's trend test.



Some history

D.R. Cox (1972) "Regression Models and Life-Tables”
(with discussion) JRSS-B, 74: 187-220.

“The present paper is largely concerned with the extension of the
results of Kaplan and Meier to the comparison of life tables and
more generally to the incorporation of regression-like arguments
into life-table analysis.” (p. 187)

Model proposed: | A(t | X) = A\o(t) - exp(X 3)

“In the present paper we shall, however, concentrate on exploring
the consequence of allowing Ao(t) to be arbitrary, main interest
being in the regression parameters.” (p. 190)

“A Conditional Likelihood"” — later called Partial Likelihood.

Score Test = LogRank Test



How to estimate the Cox model

e Obtain estimates of 31, 32..... 3, by maximizing the “partial
likelihood” function:
P [:(;31 . ﬁg_._ c e ,;‘313).

> §1§2 e 1 are MPLE's
> Cl's for /3, using:
3+ 7y 0/2SE(3)).
> CI's for hazard ratio (HR) using:
exp[gj—Zl_a/gSE(Ej)L e}{p[gj+Zl_&/QSE(:§j)]
> Wald test, score test, and likelihood ratio test similar to
logistic regression. Now using the partial likelihood.




‘ Partial likelihood

o | Model: | A(t| X1,....Xk) = No(t)exp(51 X1 + ...+ 5 Xk)

e | Order Data:

> ;) is the ith ordered failure time.

> Assume no ties, and let X(;) = (Xy;). Xo(;y..... X)) be the
covariates for the subject who dies at time 7).

> Let R; denote the "risk set” at time #(;), which denotes all
subjects with Y; = 7(;).

e Partial Likelihood: (no ties)

AL e e e s ) — p P P
M1 N e ZJ'ERa‘ exp(;}lej + ,-*'32X2j + ...+ :i'J-,;;_X;Gj)




‘ Risk set

D=death, L=lost, A=alive

e Failure times: ta) = 1,t(2) = 3,1‘(3) = 4,f(4) = 6.
“ . e Risk sets:
D [> Rl = { }
5 T oL
£ L b Ry ={ }
o » D > RB — { }
—4¢D
| > R4 = { }
T T T
0 2 4 6 8

Study Time




e Q: What is the probability of the observed data at time 7(;, given
that one person was observed to die among the risk set?

Note : P[I'e (t,t+At] |1 >t] ~ A(t) - At

Person who died :  Ao(t) exp(51 X iy + ... + B Xpg)) At = Py

Generic jin R; : Ao(t)exp(51 Xy + ...+ BpXy;)At = P,




Probability One Death, Was (i) :

Py x (1 =P) x (1= FPy)...xskip(i) x (1 — )

Probability of One Death:

P( One Death ) = P( 1 died, others lived ) +
P( 2 died, others lived ) +
ot
P( % died, others lived )
P( j died, others lived ) = P, x H(l — P)
ket

Note: | (1 — P;) ~ 1 for small At.




Now calculate the desired quantity:

P( Only (i) Dies )
P( One Death )
Py Iz y (1 = )

P( Observed Data | 1 death ) =

.
Zje’ﬁ‘,i P.i'
P Aot exp(B1X 1) + B Xopy + o+ B X)) - At
ZJERi P ZjE’Ri Ao(t)exp(B1 Xy, + BoXoj + ...+ 5 Xy;) - At

e}{p(ﬁl Xl(:ﬂ,} -+ 32X2(t} + ...+ 3LXR(1))
ZjE’Ri e}zp(:Blej + BaXo; 4+ .. F :Sg-_Xk_j)




Cox (1972) — “No information can be contributed about 3 by time
intervals in which no failures occur because the component A\y(?)
might conceivably be identically zero in such intervals.”

Cox (1972) — “"We therefore argue conditionally on the set {#;}
of instants at which failure occur.”

Cox (1972) — “For the particular failure at time ;) conditional on
the risk set, R;, the probability that the failure is on the individual
as observed is:
exp(1 X ) + B2 Xogy + -+ B Xps))
> ier, (1 X1 + (o Xoj + .o+ B X))

Note: | This likelihood contribution has the exact same form as

a (matched) logistic regression conditional likelihood.



Notice that our model is equivalent to
log AM(t | Xy... X)) =a(t)+ 51 Xy + ... 3L X
where a(t) = log Ap(t), but the PL does not depend on «a(t).

Using the partial likelihood (PL) to estimate parameters provides
estimates of the regression coefficients, /3;, only.

The model is called "semi-parametric” since we only need to
parameterize the effect of covariates, and do not say anything
about the baseline hazard.

Q: Why not just use standard maximum likelihood, as outlined in
the notes on pages 86-877

A: To do so would require choosing a model for the baseline
hazard, but we actually don't need to do that!



Handle ties

e If there is more than one death at time ;) then the denominator
for the partial likelihood contribution will involve a large number
of terms. For example if there are 20 people at risk at time ¢,
and 3 die then there are “20 choose 3" = 1140 terms.

e | Approximation | (Breslow, Peto) default in STATA

> The numerator can be calculated and represented using:
Sum X, for deaths: s5;; = Z;‘:}}:tm,aijzl Xy
Sum X, for deaths: s9; = Zj:}’j-:tm,aij:l Xo; etc.
> The approximation with [; deaths at time ;) is:

PL 4 = f[ E}Cp(___.ﬂl S1i + __:2'3;3.5'2@, + ...+ __::’3]‘,_ S Lf*a'.)

i1 {zjeﬂé exp(51X1; + FoXoj + ...+ B Xn;)

D;



e |f continuous times, 1;, then ties should not be an issue.

> Time recorded in (days,minutes).

> Modest sample size.

o If discrete times, 1, € [tg,ti+1), recorded then consider methods
appropriate for discrete-time data (e.g. variants on logistic regression)

> See Singer & Willett (2003) chpts 10-12; H& L pp. 268-9.




e However, there is plenty of room between continuous and discrete.

> | Example:

25% annual mortality = 50,000 deaths/year.
50,000 deaths/365 days = 137 deaths/day.

USRDS Data = 200,000 subjects.

US Renal Data System

e Kalbfleisch & Prentice (2002), section 4.2.3 summarize options and
relative pros/cons.

> “Breslow method” — simple to implement/justify; some bias if

discrete.

> "Efron method” — also simple comp; performs well.

> “exact method” — justified; comp challenge.

> Should be minor issue in general, and if not then perhaps a
discrete-time approach should be considered.




‘ Partial likelihood ratio test

e | Full Model:

)\(IL‘X) = )\U(f) EXp(I,Ble + ...+ ijp -+ f?p—l—lXp—l—l =+ ... jk.X;:)

ex:ra
e | Reduced Model:
At[X) = Ao(t) exp(B1 X1 + ...+ 5,X,)

e In order to test:

> Hy: Reduced model & Hy: 0,0, =...=0,=0

> Hy : Full model < Hy : extra coeff # 0 somewhere

e Use the partial likelihood ratio statistic

X7, p = [2log PL(FullModel) — 2log PL(ReducedModel)]




Under H, (reduced is correct) then X%, 5 ~ y?(df = (k — p))

Degrees of freedom, df = (k — p), equals the number of
parameters set to O by the null hypothesis.

Application is for situations where the models are “nested” — the

reduced model is a special case of the full model.

Also can use Wald tests, and/or score tests. The PLR (Partial
Likelihood Ratio) test is particularly useful when df> 1.

The PLR statistic is equivalent (using a “double negative" ) to:

X3, p ={[-2log PL(ReducedModel)] — [~2log PL(FullModel)]}



‘ STATA codes for Cox models

EE S S EE LSS EEE LSS LSS

* evaluate TX *

3 3 o sk 3k ok ok ok sk ok e ok sk ok ok sk sk sk ok ok ok ok ok ok ok ok ok ok kok

stcox tx, nohr
est store LRmodl

X1: stcox 1i.group, nohr
est store LRmod2

X1: stcox tx i.group, nohr
est store LRmod3

lrtest LRmod3 LRmod2, stats




. Xi: stcox i.group, nohr

Cox regression -- Breslow method for ties
No. of subjects = 456 Number of obs = 456
No. of failures = 374
Time at risk = 46363
LR chi2(2) = 67 .41

Log likelihood = -1986.2945 Prob > chi2 = 0.0000

t | Coef. Std. Err. zZ P>|z| [95% Conf. Intervall]
__________ o
_Igroup_2 | 1.14690 .1786005 6.42 0.000 . 7968584 1.496959

_Igroup_3 | 1.51643 .2168077 6.99  0.000 1.091494 1.941365



. X1: stcox tx 1i.group, nohr

Cox regression -- Breslow method for ties
No. of subjects = 456 Number of obs = 456
No. of failures = 374
Time at risk = 46363
LR chi2(3) = 68.49
Log likelihood =  -1985.7542 Prob > chi2 = 0.0000
t | Coef. Std. Err. A P>|z]| [95% Conf. Intervall]
__________ e e
tx | .111602 .1069722 1.04  0.297 -.0980588 .3212645
_Igroup_2 | 1.171318 .1801767 6.50 0.000 .8181779 1.524457

_Igroup_3 | 1.525078 .2170109 7.03 0.000 1.099745 1.950411



lrtest LRmod3 LRmod2, stats

likelihood-ratio test LR chi2(1) = 1.08
(Assumption: LRmod2 nested in LRmod3) Prob > chi2 = 0.2986
Model | nobs 11 (null) 11 (model) df AIC BIC

________ +______________________________________________________________
LRmod2 | 456  -2019.999 -1986.294 2 3976.589 3984.834

LRmod3 | 456 -2019.999  -1985.754 3 3977 .508 3989.876



Estimate baseline hazard function

e | Recall: |(math fact)

S(t) = e}{p[—/o A(s)ds] = exp|—A(t)]

e | Cox model:

)\(t Xy .. .X;l-_) = )\U(t) E}{p(ﬁle + ...+ ﬁX;b)
A(t Xq... X;l-,) = Ag(t) EXp(:Ble + ...+ BLXL)
S(IL Xl . Xﬁ;) _ [;S}_](t)][CXP(IBIXI—*—“.+'I8ka:]]

e [ herefore, in order to estimate the survival function, or the hazard

for specific values of the covariates, (X, Xo,..., X} ) we need to
estimate A\y(t), Ag(?), and/or Sy(t).




Method 1: | Breslow Method (used in STATA)

Rl = 3 D,

Special Cases

>

1

One group, no covariates

This is like (51X1; + ... + 3 Xk;) =0

Nelson-Aalen Estimator

K(}(f) = Z Di =

it (i) <t |:ZJIER1- exp((l)} it (q) <t |

D;
N,




Special Cases

> | 2 | Two groups: one dichotomous covariate

0 1
x={ " A(t | X) = Ao(t) exp(BX).

1 group 2

_ D;
ity <t _Zje’;’{’,i eXp(.ij)]

. D:

it (s) St ZjERie group 1 eXP(}XJ) + ZJ'ER?; group 2 exp(-BXj)

. D:

it ;) <t [Nu + exp(ﬁ) : NQ?:]




In this example we can consider Ny; + exp(_}f?)Nzi as the “effective
risk set” at time 7.

The numerator, D);, counts deaths equally from both group 1 and

group 2.

However, in order to represent cumulative hazard (risk) for group
1 some adjustment of the group 2 contributions is warranted.

Idea: reweight the denominator

> § > () | more deaths in group 2, so effective risk set needs to

be increased to estimate risk in group 1.

> § < 0 | fewer deaths in group 2, so effective risk set needs to

be decreased to estimate risk in group 1.



In general, the denominator

[

[

S exp(Gi Xy + ..+ B Xyy)

1ER;

Is bigger than IV; when the average risk for a subject in 'R; is

greater than the risk for a subject with the reference value
(X1 =0,Xo=0,..., X =0).

Is smaller than N; when the average risk for a subject in R; is

less than the risk for a subject with the reference value
(X1 =0,Xo=0,..., X =0).



Survival

§0(t) = exp[—io(t)]
> Not the default in STATA, but can be created.

Hazard | (similar to before)

t—1() D;

N A
Ao(t) = b ‘JZ:;LL ( b ) | [Zje’fh EXI)("ng)]

> Also not the default in STATA.




Alternative approach to estimate baseline
survival function

o Kalbfleisch and Prentice (1973) discuss use of a discrete time
model and use this to estimate the baseline survival.

e The PH model implies:

Dj(Xl,s..._-,Xk) = P|T e [tj—lptj) Tt 1 X1 X
50(1‘) ]oxl?r(,.'91X1_|____+',3ka)
1—p (X, ..., X)) = |-2ol)
pi( X, ... Xy) [50(%1)

. 1 X1+ 60X
_ [aj]'lxl?(.l 1+ 8k Xk)

o K&P (1973) show that using such a discrete time approximation
leads to a method to estimate these ;. (see STATA manual p.
150 for further details)

o K&P (1973) are using maximum likelihood for the discrete model.




e Notice that once these estimates are obtained

o - [30] [0 [ 5]

So(t) = H o

’i:f(i) Et

e This provides an estimate for the baseline survival function given
as the default in STATA:

Soty= ][ &

e Q: How does this estimate compare to that obtained using the

cumulative hazard?




STATA codes for baseline estimates

xi: stcox i.treat i.group age25 i.gender, basesurv( sO ) basechazard( HO )
gen sOalt = exp( -1 * HO )

graph twoway (scatter sO sOalt rectime )

N mhm%%h%%
© 4 \..- © N“ @ @ omp
-“\'-..,_ | .“qfinﬁh

o

o 4 . 0 100 200 300 400
0 100 200 300 400 time from end of primary episode to recurrence (days)
time from end of primary episode to recurrence (days)

® sHatl o sHat2
® baseline survivor  © sOalt ® sHat3 o sHat4




‘ Smoothed baseline hazard functions

e | Note: | — with the estimates &; we can also obtain estimates of

the baseline hazard function:

-2 (5

e STATA uses this method.

t—1t
)\[]

20

C‘J-'Ir—L

stcurve, hazard at( _Itreat_1=0,
_Itreat_2=0,
_Itreat_3=0,
_Igroup_2=0,
_Igroup_3=0,
age25=0,
_Igender_2=0 ) subtitle("Baseline Hazard");




Examples: smoothed baseline hazard

functions

Smoothed hazard function

.004

.003

.002

.001

Cox proportional hazards regression

Baseline Hazard

200
analysis time

300

400

.004 .005

Smoothed hazard function
.001 002 .003

0

Cox proportional hazards regression

Baseline Hazards

o4

200 300 400

analysis time
gp 1, X's=0 gp 2, X's=0
gp 3, X's=0 gp 4, X's=0




Use of baseline estimates

& Uses:

> Estimate survival or risk for specific sub-populations defined by
a vector of covariate values.

> Evaluate the shape of the estimated hazard as provided by the
model. The model imposes constraints (e.g. PH).

> To check the fit of the model, for example, by comparing the
fitted survival curves for subsets to the survival curve estimated
under the model.

> Can be used to see whether different strata appear to satisfy
PH after adjustment for key covariates (next!)



‘ Stratification: use of dummy variables

e Suppose a confounder X has 3 levels on which we would like to
stratify when comparing Xg =1to Xg = 0.
> )\(t | XE_,XCJ)

r
Xg =1 :exposure

Xg =0 :noexposure
\

e | 1 | “Dummy variables”
4

X, =1 : Xe=j
X, =0 : X¢#j

\

> | Model

)\(f ‘ XE XQ? Xj) = )\U(IL) E‘Xp(leE + l,i'BQXQ —|— J-’de)




Level 1 of X~

d : Ao(t)exp(3
SAPOSE ot)exp(B1) | gp exp(/1)
unexposed : Aq(t)

Level 2 of X~

exposed : Ag(t)exp(1 + H2)

RR = exp(/)
unexposed : Ag(t) exp(/32)
Level 3 of X
exposed : \o(t) exp(3; + 3
P 0( )exp(, 1 ' ‘3) RR = e}{p(ﬁ])

unexposed : \o(t)exp(/3s)




Stratified Cox models

e In the previous approach each of the six groups has a log hazard
that is“parallel” to any other group (e.g. one common curve
characterizes time, log A\ (?)).

e | More generally:
> Model: A(f | XE,XC :J) = /\U'-.j(f) exp(_,-:}?lXE)

> Ao.j(t) represents an arbitrary function of time for the

unexposed in strata { X = j}.

> However, the comparison between exposed and unexposed

within each strata is assumed to be constant [HR= exp( /31 )].

e This approach is implicit in the stratified version of the LogRank
test.

e “Stratified Cox Model"



Level 1 of X

exposed : Ag1(t)exp(fy)

unexposed : Ag1(t) o
Level 2 of X
d : Xoa(t)exp(J3
expose 0.2(t) exp(f1) RR = exp(/3))
unexposed : Ago(t)
Level 3 of X
exposed : Ag3(t)exp(f
P 0.3(t) exp(1) RR = exp(/31)

unexposed : Ay 3(t)




Comparison of two stratification methods

Adjustment Using Dummy Variables Stratified Cox Model




[>

[>

[>

. When to choose separate baselines?

Dummy variables assume common time change across
confounder groups. If not correct then X~ may be

inadequately controlled, and may confound exposure
evaluation.

PH can be checked using graphical methods of time-dependent
covariates (later!).

True stratification is a more thorough adjustment when
observations within each stratum are homogeneous. If X is
measured as a continuous variable, and strata are formed by
grouping its values then better control might be achieved with
the original continuous variable (possibly with time-dependent)
covariate adjustment.



[

>

If X is controlled using true stratification then there is no

single HR to report comparing the different levels of X .
However, we can estimate baseline survival (hazard) within

each level and can compare these curves.

True stratification generally requires more data to obtain the
same precision in coefficient estimates (a bias-variance

trade-off).



‘ STATA codes for stratification

% ok %k

*** using dummy variables

% ok %k

X1: stcox 1i.treat 1.group age2b 1i.gender

* ok k

*** using stratified model
g
Xi: stcox i.treat age25 i.gender, strata( group ) ///

basesurv( sO0 ) basehc( haz0 )




xi: stcox i.treat i.group age2b i.gender

Cox regression -- Breslow method for ties

LR chi2(7) = 86.54

Log likelihood =  -1976.7301 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. =z P>|z] [95% Conf. Intervall
__________ o
_Itreat_1 | .98055 .19563991 -0.10 0.922 .663517 1.44909
_Itreat_2 | 1.33508 .1593493 2.42 0.015 1.066606  1.68695
_Itreat_3 | . 13497 .2392646 -0.95 0.344 .388313 1.39111
_Igroup_2 | 3.55011 6491291 6.93 0.000 2.480856  5.08021
_Igroup_3 | 4.78591 1.050507 7.13 0.000 3.112625  7.35874
age25 | .97799 .0082657 -2.63 0.008 .961923 .99432
_Igender_2 | . 74549 .0849773 -2.68 0.010 .596231 .93211



xi: stcox i.treat age2b i.gender, strata( group ) basesurv( sO ) ///

basehc( haz0 )

Stratified Cox regr. -- Breslow method for ties
LR chi2(5) = 16.94
Log likelihood =  -1723.7986 Prob > chi2 = 0.0046

P>|z]| [95% Conf. Intervall]

_t | Haz. Ratio Std. Err.

+
_Itreat_1 | .9568117 .1911902
_Itreat_2 | 1.304738 .1562943
_Itreat_3 | . 724621 .2358843

age25 | .980098 .0083365

_Igender_2 | . 755070 .0862966

.647982 1.416688
1.031712 1.650018
.382843 1.371516
. 963894 .996574
.603537 .944649

Stratified by group



‘ Baseline functions

Separate SO by Group Separate A\ ;(7) by Group

[T}
o
o
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..‘
© bl o
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ee e .o o <
° L ]
L ] [aY]
= \ % - 8
o 4 ‘t %06%0 8
s L 4 & o @ oo 0%
* s @ op $
o o o
T T T T T T T
0 100 200 300 400 0 100 200 300 400
time from end of primary episode fo recurrence (days) time

® sHat1 o sHat2 ® |ambda0 : group 1 ® |lambda0 : group 2
4 sHat3 @ |ambda0 : group 3




Summary

e (Cox Model parameters [3,,, are estimated using the partial
likelihood. This focuses on the hazard ratios, HR or RR, and does
not (directly) provide an estimate of the baseline hazard.

e Baseline hazard can be estimated using either the Breslow
estimator of the cumulative hazard, or via a method introduced by
Kalbfleisch & Prentice (default in STATA).

e The relationship among hazard, cumulative hazard, and survival
functions allows estimation of one function to allow estimation of

each of the other two functions:

At | X) = A(t| X) = S(t| X)



Stratified Cox models allow a more flexible adjustment for a
stratifying variable. This is effectively allowing a separate baseline
hazard for each level of the stratifying variable.

No simple summary represents strata comparisons.

Can be used to evaluate PH assumption relating strata after
controlling for other covariates.
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