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Introduction

I Genetic association studies are widely used for the
identification of genes that influence complex traits.

I To date, hundreds of thousands of individuals have been
included in genome-wide association studies (GWAS) for the
mapping of both dichotomous and quantitative traits.

I Large-scale genomic studies often have high-dimensional data
consisting of

I Tens of thousands of individuals
I Genotypes data on a million (or more!) SNPs for all individuals

in the study
I Phenotype or Trait values of interest such as Height, BMI,

HDL cholesterol, blood pressure, diabetes, etc.
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Introduction

I The vast majority of these studies have been conducted in
populations of European ancestry

I Non-European populations have largely been underrepresented
in genetic studies, despite often bearing a disproportionately
high burden for some diseases.

I Recent genetic studies have investigated more diverse
populations.
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Confounding due to Ancestry in Genetic Association
Studies

I The observations in association studies can be confounded by
population structure

I Population structure: the presence of subgroups in the
population with ancestry differences

I Neglecting or not accounting for ancestry differences among
sample individuals can lead to false positive or spurious
associations!

I Confounding due to population structure is a serious concern
for genetic association studies.
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Confounding due to Ancestry

In statistics, a confounding variable is an extraneous variable in a
statistical model that correlates with both the dependent variable
and the independent variable.
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Confounding due to Ancestry

I Ethnicgroups (and subgroups) often share distinct dietary
habits and other lifestyle characteristics that leads to many
traits of interest being correlated with ancestry and/or
ethnicity. 6 / 1
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Spurious Association
I Case/Control association test

I Comparison of allele frequency between cases and controls.

I Consider a sample from 2 populations:

I Red population overrepresented among cases in the sample.
I Genetic markers that are not influencing the disease but with

significant differences in allele frequencies between the
populations
=⇒ spurious association between disease and genetic marker
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Spurious Association
I Quantitative trait association test

I Test for association between genotype and trait value

I Consider sampling from 2 populations:
Histogram of Trait Values

Population 1
Population 2

I Blue population has higher trait values.
I Different allele frequency in each population

=⇒ spurious association between trait and genetic marker if
one population is overrepresented in the sample
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Genotype and Phenotype Data

I Suppose the data for the genetic association study include
genotype and phenotype on a sample of n individuals

I Let Y = (Y1, . . . Yn)
T denote the n× 1 vector of phenotype

data, where Yi is the quantitative trait value for the ith
individual.

I Consider testing SNP s in a genome-screen for association
with the phenotype, where Gs = (Gs

1, . . . G
s
n)

T is n× 1 vector
of the genotypes, where Gs

i = 0, 1, or 2, according to whether
individual i has, respectively, 0, 1 or 2 copies of the reference
allele at SNP s.
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Correcting for Population Structure with PCA

I As previously discussed, Principal Components Analysis
(PCA) is a popular approach for identifying population
structure from genetic data

I PCA is also widely used to adjust for ancestry difference
among sampled individuals in a GWAS.

I Consider the genetic relationship matrix Ψ̂ discussed in the
previous lecture with components ψ̂ij :

ψ̂ij =
1

M

M∑
s=1

(Gs
i − 2p̂s)(G

s
j − 2p̂s)

p̂s(1− p̂s)

where p̂s is an allele frequency estimate for the type 1 allele at
marker s
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Correcting for Population Structure with PCA

I Price et al. (2006) proposed corrected for structure in genetic
association studies by applying PCA to Ψ̂.

I They developed a method called EIGENSTRAT for
association testing in structured populations where the top
principal components (highest eigenvalues)

I EIGENSTRAT essentially uses the top principal components
from the PCA as covariates in a regression model to correct
for sample structure.

Y = β0 + β1Gs + β2PC1 + β3PC2 + β4PC3 + · · ·+ ε

I H0 : β1 = 0 vs. Ha : β1 6= 0
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Samples with Population Structure and Relatedness

I The EIGENSTRAT methods was developed for unrelated
samples with population structure

I Methods may not be valid in samples with related individuals
(known and/or unknown)

I Many genetic studies have samples with related individuals

I Cryptic and/or misspecified relatedness among the sample
individuals can also lead invalid association results
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Incomplete Genealogy
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Incomplete Genealogy
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Association Testing in samples with Population
Structure and Relatedness

I Linear mixed models (LMMs) have demonstrated to be a
flexible and powerful approach for genetic association testing
in structured samples. Consider the following model:

Y = Wβ + Gsγ + g + ε

I Fixed effects:
I W is an n× (w + 1) matrix of covariates that includes an

intercept
I β is the (w + 1)× 1 vector of covariate effects, including

intercept
I γ is the (scalar) association parameter of interest, measuring

the effect of genotype on phenotype
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Linear Mixed Models for Genetic Association

Y = Wβ + Gsγ + g + ε

I Random effects:
I g is a length n random vector of polygenic effects with

g ∼ N(0, σ2
gΨ)

I σ2
g represents additive genetic variance and Ψ is a matrix of

pairwise measures of genetic relatedness
I ε is a random vector of length n with ε ∼ N(0, σ2

eI)
I σ2

e represents non-genetic variance due to non-genetic effects
assumed to be acting independently on individuals
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LMMs For Cryptic Structure
I The matrix Ψ will be generally be unknown when there is

population structure (ancestry differences ) and/or cryptic
relatedness among sample individuals.

I Kang et al. [Nat Genet, 2010] proposed the EMMAX linear
mixed model association method that is based on an empirical
genetic relatedness matrix (GRM) Ψ̂ calculated using SNPs
from across the genome. The (i, j)th entry of the matrix is
estimated by

Ψ̂ij =
1

S

S∑
s=1

(Gs
i − 2p̂s)(G

s
j − 2p̂s)

2p̂s(1− p̂s)

where p̂s is the sample average allele frequency. S will
generally need to be quite large, e.g., larger than 100,000, to
capture fine-scale structure.

Kang, Hyun Min, et al. (2010) ”Variance component model to account for
sample structure in genome-wide association studies.” Nature genetics 42
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EMMAX

I For genetic association testing, the EMMAX mixed-model
approach first considers the following null model without
including any of the SNPs as fixed effects:

Y = Wβ + g + ε (1)

I The variance components, σ2g and σ2e , are then estimated
using either a maximum likelihood or restricted maximum
likelihood (REML), with Cov(Y) set to σ2gΨ̂ + σ2eI in the

likelihood with fixed Ψ̂
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EMMAX

I Association testing of SNP s and phenotype is then based on
the model

Y = Wβ + Gsγ + g + ε

I The EMMAX association statistic is the score statistic for
testing the null hypothesis of γ = 0 using a generalized
regression with V ar(Y) = Σ evaluated at Σ̂ = σ̂2gΨ̂ + σ̂2eI

I EMMAX calculates σ̂2g and σ̂2e only once from model (1) to
reduce computational burden.
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GEMMA

I Zhou and Stephens [2012, Nat Genet] developed a
computationally efficient mixed-model approach named
GEMMA

I GEMMA is very similar to EMMAX and is essentially based
on the same linear mixed-model as EMMAX

Y = Wβ + Gsγ + g + ε

I However, the GEMMA method is an ”exact” method that
obtains maximum likelihood estimates of variance components
σ̂2g and σ̂2e for each SNP s being tested for association.

Zhou and Stephens (2012) ”Genome-wide efficient mixed-model analysis for
association studies” Nature Genetics 44
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Other LMM approaches for Quantitative Traits
I A number of similar linear mixed-effects methods have

recently been proposed for association testing with
quantitative triatwhen there is cryptic structure: Zhang at al.
[2010, Nat Genet], Lippert et al. [2011, Nat Methods], Zhou
& Stephens [2012, Nat Genet], and Svishcheva [2012, Nat,
Genet], and others.

21 / 1



Module 17: Computational Pipeline for WGS Data

GMMAT: Logistic Mixed Model for Dichotomous
Phenotypes

The GMMAT can be used to conduct a logistic mixed model
regression analysis of binary traits for GWAS with population
structure and relatedness.
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GMMAT: Logistic Mixed Model for Dichotomous
Phenotypes

I Let πi be the probability that individual i is affected with the
disease. The GMMAT logistic mixed model is:

log

(
πi

1− πi

∣∣∣W,Gs

)
= Wβ + Gsγ + g

I Random effect:
I g is a length n random vector of polygenic effects with

g ∼ N(0, τgΨ)
I τg is the variance component parameter for polygenic effects

I GMMAT tests the association parameter γ under the null
hypothesis of H0 : γ = 0.
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