Introductory Models, Effective Population Size

Models

- Intentional simplification of complex relationships
 - Eliminate extraneous detail, focus on key parameters
 - Appropriate and useful first approximations
- Evaluate fit of data to model
 - Poor fit may implicate violation of model assumptions
 - Refining of models tells us which parameters most important
- Population genetics relies heavily on mathematical models
 - Specify the mathematical relationships among parameters that characterize a population

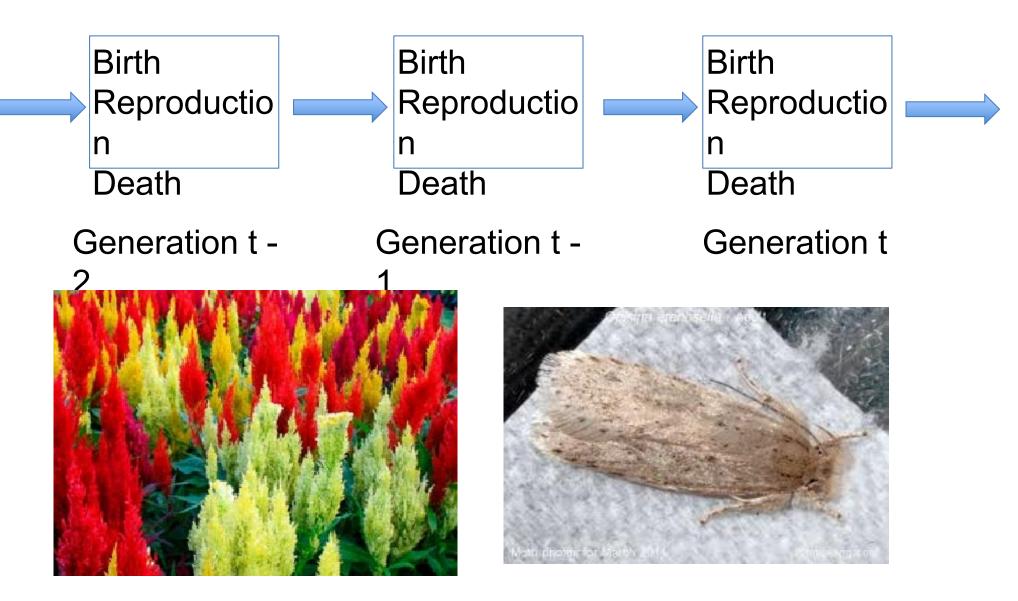
Random Mating

- One of the most important models in population genetics
- Frequency of mating pairs determined by genotype frequencies

Male Genotype Frequency A₁A₁ (P_M) A₁A₂ (H_M) A₂A₂ (Q_M)

Female Genotype Frequency A_1A_1 (P_F) A_1A_2 (H_F) A_2A_2 (Q_F)

Random Mating


- One of the most important models in population genetics
- Frequency of mating pairs determined by genotype frequencies

Male Genotype	Female Genotype Frequency		
Frequency	A_1A_1 (P _F)	A_1A_2 (H_F)	A_2A_2 (Q_F)
A_1A_1 (P _M)	$P_M P_F$	$P_M H_F$	P_MQ_F
A_1A_2 (H_M)	$H_M P_F$	$H_M H_F$	$H_M Q_F$
A_2A_2 (Q _M)	$\mathbf{Q}_{\mathbf{M}}\mathbf{P}_{\mathbf{F}}$	$Q_M H_F$	$Q_M Q_F$

Random Mating

- One of the most important models in population genetics
- Frequency of mating pairs determined by genotype frequencies
- Also called 'panmictic' model

Non-overlapping Generations

Hardy-Weinberg Model

- Both models convenient first approximations for complex populations
- What happens when we combine them?
- What are consequences of random mating in a non-overlapping generation model?

Godfrey Harold Hardy

Wilhelm Weinberg

HW Model Assumptions

- Discrete generations
- Random mating
- Sexual reproduction
- Diploid
- Bi-allelic locus
- Allele frequencies equal in males, females
- Large population size
- No migration
- No mutation
- No selection

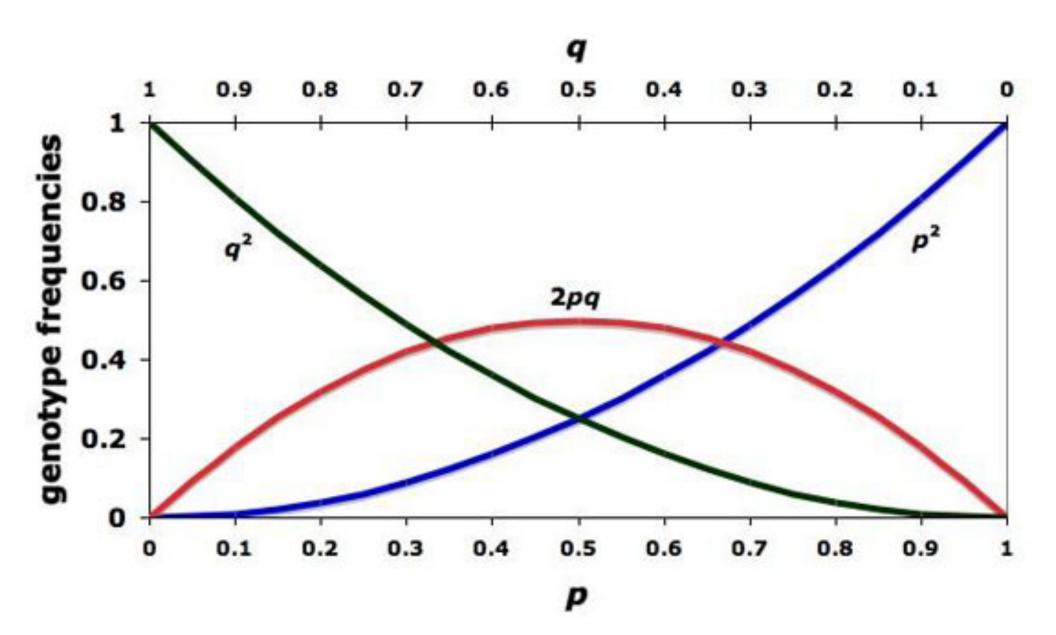
Hardy-Weinberg Principle

- One of first major principles in population genetics
- Describes relationship between genotype frequency and allele frequency
 - Equilibrium state
- Autosomal locus will alleles A, a

– Frequencies of A, a: p, q

• Genotypes AA, Aa, aa

Hardy-Weinberg Principle


- One of first major principles in population genetics
- Describes relationship between genotype frequency and allele frequency
 - Equilibrium state
- Autosomal locus will alleles A, a

– Frequencies of A, a: p, q

• Genotypes AA, Aa, aa

- HW frequencies: p^2 , 2pq, q^2

HWE Genotype Frequencies

Hardy-Weinberg Principle

- One of first major principles in population genetics
- Describes relationship between genotype frequency and allele frequency
 - Equilibrium state
- Autosomal locus will alleles A, a

– Frequencies of A, a: p, q

• Genotypes AA, Aa, aa

– HW frequencies: p^2 , 2pq, q^2

• Once at HWE, allele & genotype freq constant

- Hardy-Weinberg equilibrium predicts:
 - 1) Allele frequencies remain constant
 - 2) Genotype frequencies predicted by allele frequencies
- HW model assumes infinite population size
- With finite population size, allele frequencies change over time due to sampling
- Random genetic drift: stochastic change in allele frequencies due to finite sampling of gametes

- Haploid population of size *N*
- Two alleles: A, a
- At generation t
 Frequency of A is p
- Frequency of a is q = (1-p)

What is frequency of A at generation t + 1?

In generation t, freq(A) = p, freq(a) = (1-p)

Randomly select 1 individual to be parent

In generation t, freq(A) = p, freq(a) = (1-p)

Randomly select 1 individual to be parent
 – Pr(1A) =

In generation t, freq(A) = p, freq(a) = (1-p)

Randomly select 1 individual to be parent
 - Pr(1A) = p

In generation t, freq(A) = p, freq(a) = (1-p)

• Randomly select 1 individual to be parent

$$- \Pr(1A) = p$$

- Pr(0A) =

In generation t, freq(A) = p, freq(a) = (1-p)

• Randomly select 1 individual to be parent

$$-\Pr(1A) = p$$

 $-\Pr(0A) = (1 - p)$

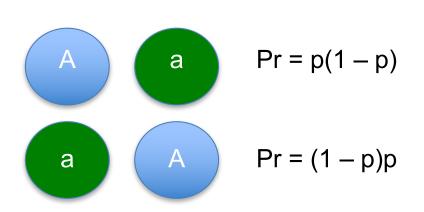
- Randomly select 1 individual to be parent
 - $\Pr(1A) = p$
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents

- Randomly select 1 individual to be parent
 - $\Pr(1A) = p$
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents
 Pr(2A) =

- Randomly select 1 individual to be parent
 - $\Pr(1A) = p$
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents $- Pr(2A) = p^2$

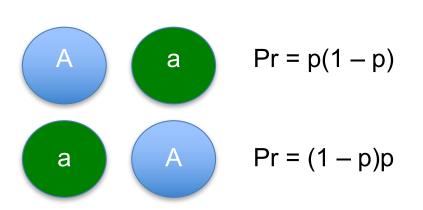
In generation t, freq(A) = p, freq(a) = (1-p)

- Randomly select 1 individual to be parent
 - $\Pr(1A) = p$
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents


$$- \Pr(2A) = p^2$$

- Pr(0A) =

- Randomly select 1 individual to be parent
 - $\Pr(1A) = p$
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents $- Pr(2A) = p^2$


$$-\Pr(0A) = (1-p)^2$$

- Randomly select 1 individual to be parent
 - $\Pr(1A) = p$
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents
 - $\Pr(2A) = p^2$
 - Pr(1A) =
 - $-\Pr(0A) = (1-p)^2$

- Randomly select 1 individual to be parent
 - $\Pr(1A) = p$
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents

$$- Pr(2A) = p^2$$

- Pr(1A) = 2p(1-p)
- Pr(0A) = (1 - p)^2

- Randomly select 1 individual to be parent
 - $-\Pr(1A) = p$
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents
 - $\Pr(2A) = p^2$
 - $\Pr(1A) = 2p(1-p)$
 - $-\Pr(0A) = (1-p)^2$
- Randomly select 3 individuals to be parents

- Randomly select 1 individual to be parent
 - $-\Pr(1A) = p$
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents

$$- \Pr(2A) = p^2$$

- $\Pr(1A) = 2p(1-p)$
- $-\Pr(0A) = (1-p)^2$
- Randomly select 3 individuals to be parents
 - Pr(3A) =
 - Pr(2A) =
 - Pr(1A) =
 - Pr(0A) =

In generation t, freq(A) = p, freq(a) = (1-p)

- Randomly select 1 individual to be parent
 - $-\Pr(1A) = p$
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents

$$- \Pr(2A) = p^2$$

$$- \Pr(1A) = 2p(1-p)$$

- $-\Pr(0A) = (1-p)^2$
- Randomly select 3 individuals to be parents

$$- Pr(3A) = p^3$$

- Pr(2A) = $3p^2(1 - p)$
- Pr(1A) = $3p(1 - p)^2$

 $-\Pr(0A) = (1-p)^3$

In generation t, freq(A) = p, freq(a) = (1-p)

Randomly select N individuals to be parents

$$\Pr(j \text{ alleles of type } A) = \binom{N}{j} p^{j} (1-p)^{N-j}$$

What is frequency of A at generation t + 1?

Frequency of A	Generation(t+1)
0/N	$\binom{N}{O}(\boldsymbol{p}_t)^{O}(1-\boldsymbol{p}_t)^{N-O}$
1/N	$\binom{N}{1}(\boldsymbol{\rho}_t)^1(1-\boldsymbol{\rho}_t)^{N-1}$
2/N	$\binom{N}{2}(p_t)^2(1-p_t)^{N-2}$
•	
N/N	$\binom{N}{N}(\boldsymbol{p}_t)^{N}(1-\boldsymbol{p}_t)^{O}$

Frequency of A	Generation(t+1)	Generation (t+2)
0/N	$\binom{N}{O}(\boldsymbol{\rho}_t)^{O}(1-\boldsymbol{\rho}_t)^{N-O}$	$\binom{N}{O} (p_{t+1})^{O} (1 - p_{t+1})^{N-O}$
1/N	$\binom{N}{1}(\boldsymbol{\rho}_t)^1(1-\boldsymbol{\rho}_t)^{N-1}$	$\binom{N}{1}(p_{t+1})^{1}(1-p_{t+1})^{N-1}$
2/N	$\binom{N}{2}(p_t)^2(1-p_t)^{N-2}$	$\binom{N}{2}(p_{t+1})^2(1-p_{t+1})^{N-2}$
N/N	$\binom{N}{N}(\boldsymbol{p}_t)^{N}(1-\boldsymbol{p}_t)^{O}$	$\binom{N}{N}(p_{t+1})^{N}(1-p_{t+1})^{O}$

Frequency of A	Generation(t+1)	Generation (t+2)	Generation(t+3)
0/N	$\binom{N}{O}(\boldsymbol{\rho}_t)^{O}(1-\boldsymbol{\rho}_t)^{N-O}$	$\binom{N}{0} (p_{t+1})^{0} (1-p_{t+1})^{N-0}$	$\binom{N}{0}(p_{t+2})^{0}(1-p_{t+2})^{N-0}$
1/N	$\binom{N}{1}(\boldsymbol{p}_t)^1(1-\boldsymbol{p}_t)^{N-1}$	$\binom{N}{1}(p_{t+1})^{1}(1-p_{t+1})^{N-1}$	$\binom{N}{1}(p_{t+2})^{1}(1-p_{t+2})^{N-1}$
2/N	$\binom{N}{2}(p_t)^2(1-p_t)^{N-2}$	$\binom{N}{2}(p_{t+1})^2(1-p_{t+1})^{N-2}$	$\binom{N}{2}(p_{t+2})^2(1-p_{t+2})^{N-2}$
•			
•			
N/N	$\binom{N}{N}(\boldsymbol{p}_t)^{N}(1-\boldsymbol{p}_t)^{O}$	$\binom{N}{N}(\mathcal{P}_{t+1})^{N}(1-\mathcal{P}_{t+1})^{O}$	$\binom{N}{N}(p_{t+2})^{N}(1-p_{t+2})^{O}$

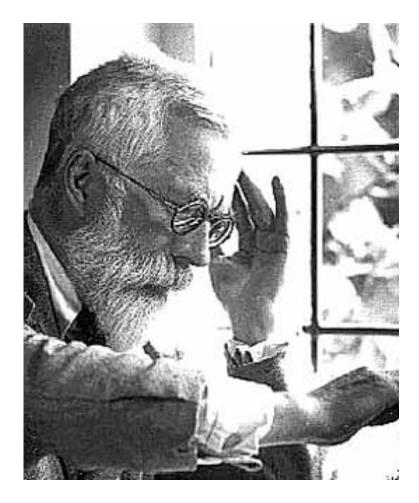
Transitions between states are random, but defined by a probability

Transitions have no memory beyond previous step

Frequency of A	Generation(t+1)	Generation (t+2)	Generation(t+3)
0/N	$\binom{N}{O}(\mathcal{P}_t)^{O}(1-\mathcal{P}_t)^{N-O}$	$\binom{N}{0} (p_{t+1})^{0} (1 - p_{t+1})^{N - 0}$	$\binom{N}{0}(p_{t+2})^{0}(1-p_{t+2})^{N-0}$
1/N	$\binom{N}{1}(p_t)^1(1-p_t)^{N-1}$	$\binom{N}{1}(p_{t+1})^{1}(1-p_{t+1})^{N-1}$	$\binom{N}{1}(p_{t+2})^{1}(1-p_{t+2})^{N-1}$
2/N	$\binom{N}{2}(p_t)^2(1-p_t)^{N-2}$	$\binom{N}{2}(p_{t+1})^2(1-p_{t+1})^{N-2}$	$\binom{N}{2}(p_{t+2})^2(1-p_{t+2})^{N-2}$
N/N	$\binom{N}{N}(\boldsymbol{p}_t)^{N}(1-\boldsymbol{p}_t)^{O}$	$\binom{N}{N}(p_{t+1})^{N}(1-p_{t+1})^{O}$	$\binom{N}{N}(p_{t+2})^{N}(1-p_{t+2})^{O}$

Transitions between states are random, but defined by a probability

Transitions have no memory beyond previous step


Diploid Model

- N diploid individuals
 - 2N alleles in population
- Two alleles: A, a (frequencies *p*, *q*)
- Randomly draw 2N gametes to found next generation

 $\Pr(j \text{ alleles of type } A) = \binom{2N}{j} p^j (1-p) 2^{N-j}$

Wright-Fisher Model

Wright-Fisher Model

- Assumptions:
 - N diploid organisms (2N alleles)
 - Infinite gametes
 - Discrete Generations
 - Random mating
 - No mutation
 - No selection

$$P_{ij} = {\binom{2N}{j}} \left(\frac{i}{2N}\right)^{j} \left(1 - \frac{i}{2N}\right)^{2N-j} = {\binom{2N}{j}} p^{j} q^{2N-j}$$

- Alleles are eventually fixed or lost
- 2N alleles
 - Each equally likely to fix (selectively equivalent)
 - Pr(fixation) =

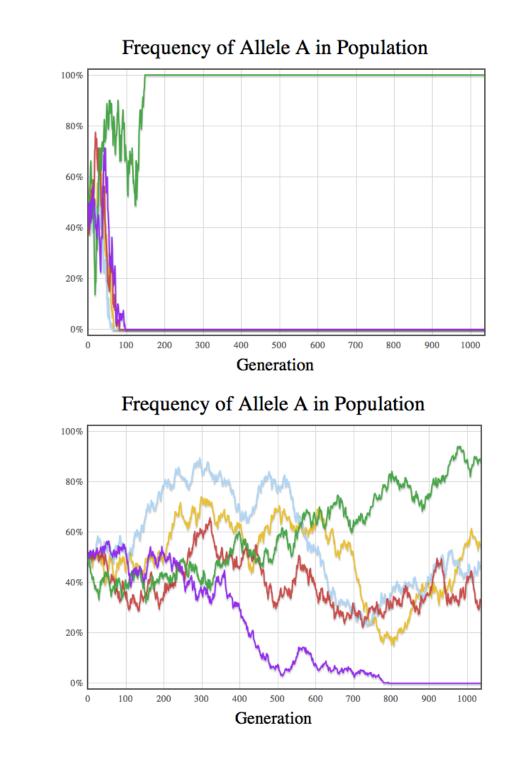
- Alleles are eventually fixed or lost
- 2N alleles
 - Each equally likely to fix (selectively equivalent)
 - Pr(fixation) = 1/2N

- Alleles are eventually fixed or lost
- 2N alleles
 - Each equally likely to fix (selectively equivalent)
 - Pr(fixation) = 1/2N
 - If *i* copies of allele, Pr(fixation) = *i*/2N

- Alleles are eventually fixed or lost
- 2N alleles
 - Each equally likely to fix (selectively equivalent)
 - Pr(fixation) = 1/2N
 - If *i* copies of allele, Pr(fixation) = i/2N
- Pr(fixation) = p

Probabilities of fixation, loss

- Alleles are eventually fixed or lost
- 2N alleles
 - Each equally likely to fix (selectively equivalent)
 - Pr(fixation) = 1/2N
 - If *i* copies of allele, Pr(fixation) = i/2N
- Pr(fixation) = p
- Pr(loss) = 1-*p*

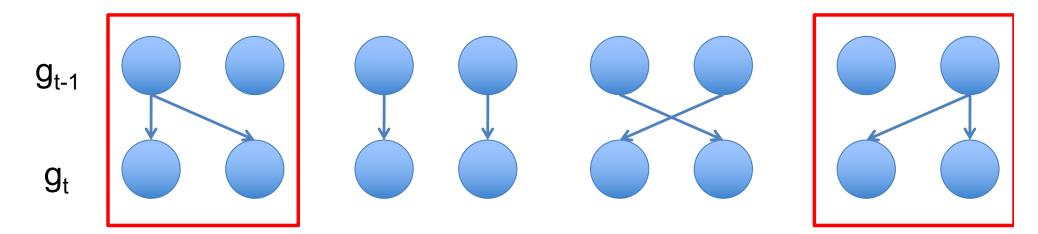

Times to fixation, loss

$$t_{fix} = \frac{-4N(1-p)ln(1-p)}{p}$$

For p = 1/2N,
$$t_{fix} \approx 4N$$

$$t_{oss} = \frac{-4N(p)ln(p)}{1-p}$$

For p = 1/2N, $t_{loss} \approx 2ln(2N)$



N = 2000

Decay of Heterozygosity 2N=2

Pr(IBD) = 2/4 = 1/2
Pr(IBD) = 1/2N
Pr(not IBD) = 1 - 1/2N
Pr(IBD_t) = F_t =
$$\frac{1}{2N} + (1 - \frac{1}{2N})F_{t-1}$$

If F₀ = 0, F_t = 1 - $(1 - \frac{1}{2N})^t$

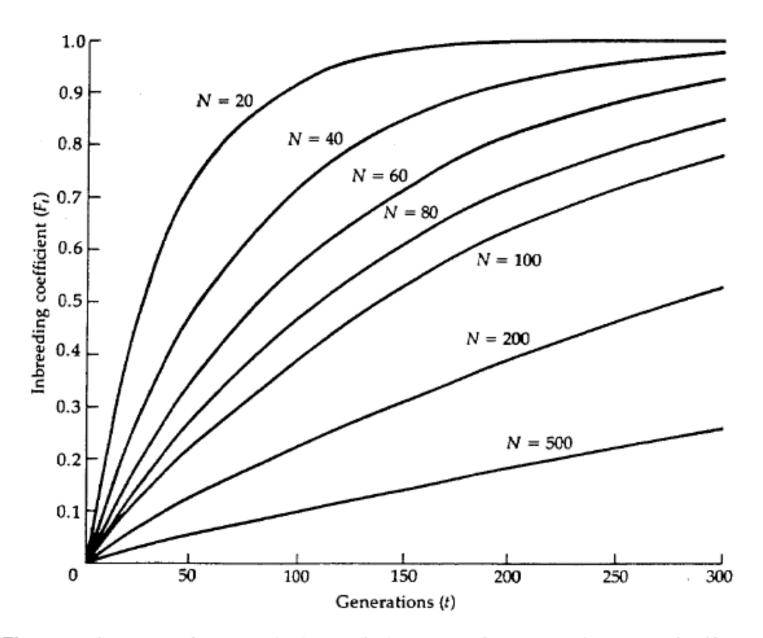


Figure 9. Increase of F_t in ideal populations as a function of time and effective population size N.

Hartl & Clark

Decay of Heterozygosity

$$F_{t} = 1 - (1 - \frac{1}{2N})^{t}$$
$$H_{t} = H_{0} \left(1 - \frac{1}{2N}\right)^{t} \approx H_{0} e^{-t/2N}$$

Summary of Drift

- Stochastic fluctuations in allele frequencies due to sampling in a finite population
- Described by Wright-Fisher model
- Alleles are ultimately fixed or lost from population
 - $-\Pr(fix) = p; \Pr(loss) = 1 p$
 - $\operatorname{Time}(\operatorname{fix}_{1/2N}) \approx 4N$; Time(loss_{1/2N}) $\approx 2\ln(2N)$
- H decreases (~1/2N) over time
- Hardy-Weinberg largely still applies
 - Allele frequency changes small
 - Deviation from expected genotype frequencies ~ 1/2N

Habitat loss

 Small, isolated populations are threatened – RGD

Habitat loss

- Small, isolated populations are threatened – RGD, inbreeding
- Consequences:
 - Reduction in genetic diversity

Genetically depauperate species

Species	Popula- tions (N)	Indi- viduals (N)	Loci (N)	Poly- morphic loci (%)	Average hetero- zygosity	Refer- ence
		All	ozyme			
Drosophila	43*	> 100	24	43.1	0.140	(10)
Mus musculus	2	87	46	20.5	0.088	(15)
Felis catus	1	56	55	22.0	0.076	(16)
Homo sapiens	Many	> 100	104	31.7	0.063	(43-45)
Acinonyx jubatus	2	55	47	0.0	0.0	

O'Brien et al.

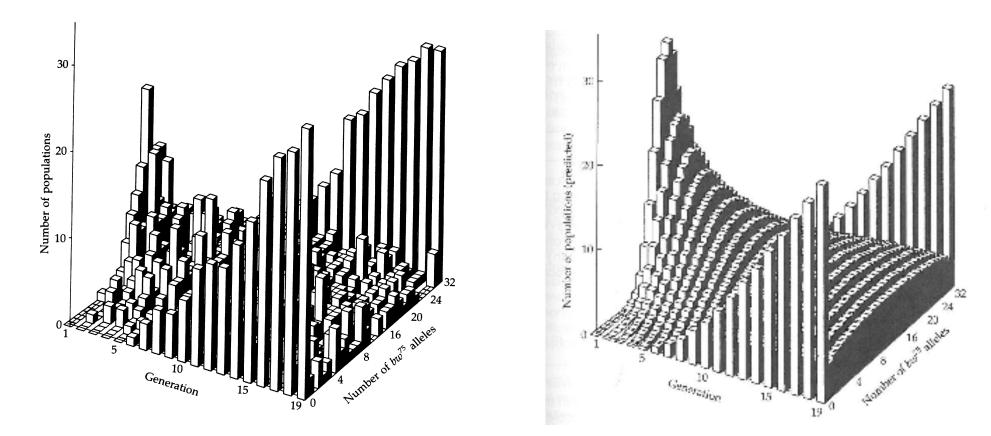
Genetically depauperate species

	No.	Allozyme locus ^a			Percent	
Population	lions scored	IDHI TF		PTI	polymorphic loci	Average Heterozygosity ^b
African						
Kruger Park	15	A = 1.0	a = 0.65	s = 1.0	7	0.023
South Africa			b = 0.35			
Serengeti ecosystem	27	A = 0.72	a = 0.52	s = 1.0	11	0.038
Tanzania, East Africa		B = 0.28	b = 0.28			
African Zoo lions	18	A = 1.0	a = 0.72	s = 1.0	7	0.030
(Atlas)			b = 0.28			
Asian						
Indian lions	28	B = 1.0	a = 1.0	d = 1.0	0.0	0.0
(Gir Forest)						
Indian lions	29	A = 0.72	a = 0.93	s = 0.45	7	0.021
(SSP-studbook)		$\mathbf{B}=0.28$	b = 0.07	d = 0.55		

TABLE 2. Distribution and allele frequency of polymorphic allozyme loci in lions

Genetically depauperate species

			Microsatelli			
Number Date	Location	043	090	096	mtDNA	
Contempora	ry .					
14	1980s	Big Cypress Swamp	122/122	121/121	203/203	А
67	1980s	Big Cypress Swamp	122/122	121/121	203/203	А
71	1980s	Big Cypress Swamp	122/130	121/121	203/203	А
422	1980s	Big Cypress Swamp	122/122	121/121	203/203	А
426	1980s	Big Cypress Swamp	122/130	121/121	203/203	А
428	1980s	Big Cypress Swamp	122/122	121/121	203/203	А
Museum						
777	1890s	Florida	-	-	-	С
778	1890s	Florida	-	-	-	С
779	1890s	Florida	-	-	-	С
780	1890s	Immokolee	122/124	127/127	203/203	С
785	1898	Sebastian	134/134	-	-	А
787	1898	Sebastian	104/126	-	-	-
792	1922	Allen's River	-	_	-	в



Culver et al. 2008

Summary of Drift

- Stochastic fluctuations in allele frequencies due to sampling in a finite population
- Described by Wright-Fisher model
- Alleles are ultimately fixed or lost from population
 - $-\Pr(fix) = p; \Pr(loss) = 1 p$
 - $\operatorname{Time}(\operatorname{fix}_{1/2N}) \approx 4N$; Time(loss_{1/2N}) $\approx 2\ln(2N)$
- H decreases (~1/2N) over time
- Hardy-Weinberg largely still applies
 - Allele frequency changes small
 - Deviation from expected genotype frequencies ~ 1/2N

$$Var(p) = Var\left(\frac{\#A}{2N}\right) = \left(\frac{1}{2N}\right)^{2} Var(\#A)$$
$$= \left(\frac{1}{2N}\right)^{2} 2Npq$$
$$= \frac{pq}{2N}$$

$$Var(p) = Var\left(\frac{\#A}{2N}\right) = \left(\frac{1}{2N}\right)^{2} Var(\#A)$$
$$= \left(\frac{1}{2N}\right)^{2} 2Npq$$
$$= \frac{pq}{2N}$$

In reality, allele frequency changes > pq/2N

 – Fluctuations in population size, N_m≠N_f, etc.

- Number of individuals in a theoretically ideal population having the same magnitude of drift as the actual population
- Measure 'magnitude' in 3 ways
 - Change in variance of allele frequency (variance N_e)

$$var(p) = \frac{pq}{2N}$$
$$\overline{var}(p) = \frac{pq}{2N_e}$$
$$N_e = \frac{pq}{2\overline{N_e}}$$

ZVar(p)

- Number of individuals in a theoretically ideal population having the same magnitude of drift as the actual population
- Measure 'magnitude' in 3 ways
 - Change in variance of allele frequency (variance N_e)
 - Change in Pr(IBD) (inbreeding $N_{\rm e}$)
 - Rate of loss of heterozygosity (eigenvalue $N_{\rm e}$)

- Number of individuals in a theoretically ideal population having the same magnitude of drift as the actual population
- Measure 'magnitude' in 3 ways
 - Change in variance of allele frequency (variance N_e)
 - Change in Pr(IBD) (inbreeding N_e)
 - Rate of loss of heterozygosity (eigenvalue $N_{\rm e}$)
- Typically smaller than census size N

- Number of individuals in a theoretically ideal population having the same magnitude of drift as the actual population
- Measure 'magnitude' in 3 ways
 - Change in variance of allele frequency (variance N_e)
 - Change in Pr(IBD) (inbreeding N_e)
 - Rate of loss of heterozygosity (eigenvalue $N_{\rm e}$)
- Typically smaller than census size N
 - Sex ratio
 - Variance in reproductive success
 - Population size changes

Relating N, N_e

Population size changes

$$\frac{1}{N_e} = \frac{1}{t} \left(\frac{1}{N_0} + \frac{1}{N_1} + \dots + \frac{1}{N} \right)$$

Relating N, N_e

- Population size changes $\frac{1}{N_e} = \frac{1}{t} \left(\frac{1}{N_0} + \frac{1}{N_1} + \dots + \frac{1}{N} \right)$
- Unequal males, females

$$N = N_m + N_f$$
$$N_e = \frac{4N_m N_f}{N_m + N_f}$$

Frequency(A) = pFrequency(a) = q

Mating			
AA x AA			

Frequency(A) = pFrequency(a) = q

Mating	Frequency of Mating
AA x AA	

Frequency(A) = pFrequency(a) = q

Mating	Frequency of Mating
AA x AA	P^2
AA x Aa	

Frequency(A) = pFrequency(a) = q

Mating	Frequency of Mating
AA x AA	P^2
AA x Aa	2PH
AA x aa	

Frequency(A) = pFrequency(a) = q

Mating	Frequency of Mating		
AA x AA	P^2		
AA x Aa	2PH		
AA x aa	2PQ		
Aa x Aa			
Aa x aa			
aa x aa			

Frequency(A) = pFrequency(a) = q

Mating	Frequency of Mating
AA x AA	P^2
AA x Aa	2PH
AA x aa	2PQ
Aa x Aa	H^2
Aa x aa	2HQ
aa x aa	Q^2

Frequency(A) = pFrequency(a) = q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2			
AA x Aa	2PH			
AA x aa	2PQ			
Aa x Aa	H^2			
Aa x aa	2HQ			
aa x aa	Q^2			

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

Frequency of progeny

		requercy of progery		Jgeny
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH			
AA x aa	2PQ			
Aa x Aa	H^2			
Aa x aa	2HQ			
aa x aa	Q^2			
aa x aa	Q^2			

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ			
Aa x Aa	H^2			
Aa x aa	2HQ			
aa x aa	Q^2			

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		requeries of progery		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2			
Aa x aa	2HQ			
aa x aa	Q^2			

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

Fraguency of progeny

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ			
aa x aa	Q^2			

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		riequency of progeny			_
Mating	Frequency of Mating	AA	Aa	aa	
AA x AA	P^2	1	0	0	
AA x Aa	2PH	1/2	1/2	0	
AA x aa	2PQ	0	1	0	
Aa x Aa	H^2	1/4	1/2	1/4	
Aa x aa	2HQ	0	1/2	1/2	
aa x aa	Q^2				

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		riequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	0	0	1

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

Frequency of progeny

		Treque	ncy of pro	Jgeny
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	_ 0	0	1
ות				

P'=

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

	Treque	ney of pro	Jgeny
Frequency of Mating	AA	Aa	aa
P^2	1	0	0
2PH	1/2	1/2	0
2PQ	0	1	0
H^2	1/4	1/2	1/4
2HQ	0	1/2	1/2
Q^2	_ 0	0	1
$= P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2}$			
	P ² 2PH 2PQ H ²	Frequency of MatingAA P^2 1 $2PH$ 1/2 $2PQ$ 0 H^2 1/4 $2HQ$ 0 Q^2 0	$\begin{array}{c ccccc} P^2 & 1 & 0 \\ 2PH & 1/2 & 1/2 \\ 2PQ & 0 & 1 \\ H^2 & 1/4 & 1/2 \\ 2HQ & 0 & 1/2 \\ Q^2 & 0 & 0 \end{array}$

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	0	0	1
$P' = P^2 + \frac{1}{2}2PH + \frac{1}{4}H^2 = \left(P + \frac{H}{2}\right)^2$				
	2 4 \ 2	2/		

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		rrequency of progeny			
Mating	Frequency of Mating	AA	Aa	aa	
AA x AA	P^2	1	0	0	
AA x Aa	2PH	1/2	1/2	0	
AA x aa	2PQ	0	1	0	
Aa x Aa	H^2	1/4	1/2	1/4	
Aa x aa	2HQ	0	1/2	1/2	
aa x aa	Q^2	υ 2 Ο	0	1	
$P' = P^2 + \frac{1}{2}2PH + \frac{1}{4}H^2 = \left(P + \frac{H}{2}\right)^2 = p^2$					
	$2 4 \langle 2$				

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		riequency of progeny			
Mating	Frequency of Mating	AA	Aa	aa	
AA x AA	P^2	1	0	0	
AA x Aa	2PH	1/2	1/2	0	
AA x aa	2PQ	0	1	0	
Aa x Aa	H^2	1/4	1/2	1/4	
Aa x aa	2HQ	0	1/2	1/2	
aa x aa	Q^2	0	0	1	
$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$					
-	2 4 \	2) .:			
H'= ·					

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		riequei	icy of pro	Jgeny	
Mating	Frequency of Mating	AA	Aa	aa	
AA x AA	P^2	1	0	0	
AA x Aa	2PH	1/2	1/2	0	
AA x aa	2PQ	0	1	0	
Aa x Aa	H^2	1/4	1/2	1/4	
Aa x aa	2HQ	0	1/2	1/2	
aa x aa	Q^2	0	0	1	
P':	aa x aa $P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$ $H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ$				
, 1 1 _{2 5}	2 1 4 1	2)	••		
H' = -2P	$H + 2PQ + -H^{2} + -2HQ$				
—					

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

	riequency of progeny				
Mating	Frequency of Mating	AA	Aa	aa	
AA x AA	P^2	1	0	0	
AA x Aa	2PH	1/2	1/2	0	
AA x aa	2PQ	0	1	0	
Aa x Aa	H^2	1/4	1/2	1/4	
Aa x aa	2HQ	0	1/2	1/2	
aa x aa	Q^2	0	0	1	
$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$ $H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2})$					
$\mu^{-1}_{2} = \frac{2}{2} + \frac{4}{2} + \frac{4}{2} + \frac{2}{2} + \frac$					
$H = \frac{2PH}{2} + \frac{2PQ}{2} + \frac{-H^{-}}{2} + \frac{-2HQ}{2} = \frac{2(P + \frac{-1}{2})(Q + \frac{-1}{2})}{2}$					

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	0	0	1
$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$ $H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$				
$H' = \frac{1}{2PH} + \frac{2}{2PO} + \frac{1}{2}H^{2} + \frac{1}{2}HO = \frac{2}{2(P + H)}(O + H) = 2pO$				
2 2 2 2 2 2 2 2 2 2				

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	0	0	1
$P' = P^2 + \frac{1}{2}2PH + \frac{1}{4}H^2 = \left(P + \frac{H}{2}\right)^2 = p^2$				
$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$ $H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$				
<i>Q</i> '	=			

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	0	0	1
$P' = P^2 + \frac{1}{2}2PH + \frac{1}{4}H^2 = \left(P + \frac{H}{2}\right)^2 = p^2$				
$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$ $H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$				
$Q' = \frac{1}{4}H^2 + \frac{1}{2}\frac{2}{2}HQ + Q^2$				
	· •	•		

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	2 0	0	1
$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$				
$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$				
$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$ $Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2}$				

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	0	0	1
$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$				
$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$				
$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$ $Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$				

$$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$$

$$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$$

$$Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$$

$$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$$

$$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$$

$$Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$$

$$p' =$$

$$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$$

$$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$$

$$Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$$

$$p' = P' + \frac{1}{2}H'$$

$$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$$

$$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$$

$$Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$$

$$p' = P' + \frac{1}{2}H' = p^{2} + \frac{1}{2}2pq$$

$$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$$

$$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$$

$$Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$$

$$p' = P' + \frac{1}{2}H' = p^{2} + \frac{1}{2}2pq = p(p+q)$$

$$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$$

$$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$$

$$Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$$

$$p' = P' + \frac{1}{2}H' = p^{2} + \frac{1}{2}2pq = p(p+q) = p$$

$$q' = Q' + \frac{1}{2}H' = q^{2} + \frac{1}{2}2pq = q(q+p) = q$$

- Allele frequency unchanged across generations

 Mendelian inheritance itself preserves variation
- HWE achieved in ONE generation
 - Equal allele frequencies in males & females, discrete generations