Introductory Models, Effective Population Size

Models

- Intentional simplification of complex relationships
 - Eliminate extraneous detail, focus on key parameters
 - Appropriate and useful first approximations
- Evaluate fit of data to model
 - Poor fit may implicate violation of model assumptions
 - Refining of models tells us which parameters most important
- Population genetics relies heavily on mathematical models
 - Specify the mathematical relationships among parameters that characterize a population

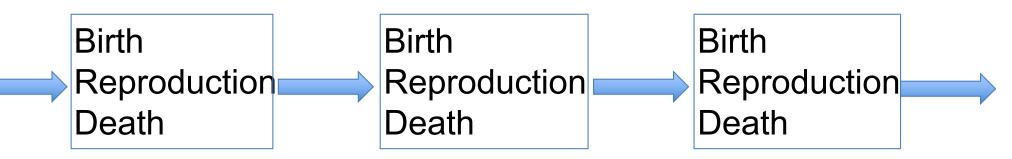
Random Mating

- One of the most important models in population genetics
- Frequency of mating pairs determined by genotype frequencies

Male Genotype Frequency A₁A₁ (P_M) A₁A₂ (H_M) A₂A₂ (Q_M)

Female Genotype Frequency A_1A_1 (P_F) A_1A_2 (H_F) A_2A_2 (Q_F)

Random Mating


- One of the most important models in population genetics
- Frequency of mating pairs determined by genotype frequencies

Male Genotype	Female Genotype Frequency				
Frequency	$A_1A_1(P_F)$	A_1A_2 (H _F)	A_2A_2 (Q _F)		
A_1A_1 (P_M)	$P_M P_F$	$P_M H_F$	P_MQ_F		
A_1A_2 (H_M)	$H_M P_F$	$H_M H_F$	$H_M Q_F$		
A_2A_2 (Q _M)	$\mathbf{Q}_{\mathbf{M}}\mathbf{P}_{\mathbf{F}}$	$Q_M H_F$	$\mathbf{Q}_{\mathbf{M}}\mathbf{Q}_{\mathbf{F}}$		

Random Mating

- One of the most important models in population genetics
- Frequency of mating pairs determined by genotype frequencies
- Also called 'panmictic' model

Non-overlapping Generations

Generation t -2 Generation t -1 Generation t

Hardy-Weinberg Model

- Both models convenient first approximations for complex populations
- What happens when we combine them?
- What are consequences of random mating in a non-overlapping generation model?

Godfrey Harold Hardy

Wilhelm Weinberg

HW Model Assumptions

- Discrete generations
- Random mating
- Sexual reproduction
- Diploid
- Bi-allelic locus
- Allele frequencies equal in males, females
- Large population size
- No migration
- No mutation
- No selection

- One of first major principles in population genetics
- Describes relationship between genotype frequency and allele frequency
 - Equilibrium state
- Autosomal locus will alleles A, a
 - Frequencies of A, a: p, q
- Genotypes AA, Aa, aa

- One of first major principles in population genetics
- Describes relationship between genotype frequency and allele frequency
 - Equilibrium state
- Autosomal locus will alleles A, a
 Frequencies of A, a: p, q
- Genotypes AA, Aa, aa

– HW frequencies: p^2 , 2pq, q^2

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

Mating

AA x AA aa x aa

Frequency(A) = pFrequency(a) = q

Mating	Frequency of Mating
AA x AA	

Frequency(A) = pFrequency(a) = q

Mating	Frequency of Mating
AA x AA	P^2
AA x Aa	

Frequency(A) = pFrequency(a) = q

Mating	Frequency of Mating	
AA x AA	P^2	
AA x Aa	2PH	
AA x aa		

Frequency(A) = pFrequency(a) = q

Mating	Frequency of Mating
AA x AA	P^2
AA x Aa	2PH
AA x aa	2PQ
Aa x Aa	
Aa x aa	
aa x aa	

Frequency(A) = pFrequency(a) = q

Mating	Frequency of Mating
AA x AA	P^2
AA x Aa	2PH
AA x aa	2PQ
Aa x Aa	H^2
Aa x aa	2HQ
aa x aa	Q^2

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

Fraguency of progeny

		_ rrequency of progeny		Jgeny
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2			
AA x Aa	2PH			
AA x aa	2PQ			
Aa x Aa	H^2			
Aa x aa	2HQ			
aa x aa	Q^2			

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		riequency of progeny		Jgeny
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH			
AA x aa	2PQ			
Aa x Aa	H^2			
Aa x aa	2HQ			
aa x aa	Q^2			
аалаа	Q^{-}			

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		_ rrequency of progeny		igeny
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ			
Aa x Aa	H^2			
Aa x aa	2HQ			
aa x aa	Q^2			

Frequency(A) = pFrequency(a) = q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2			
Aa x aa	2HQ			
aa x aa	Q^2			

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		riequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ			
aa x aa	Q^2			

Frequency(A) = pFrequency(a) = q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2			

Frequency(A) = pFrequency(a) = q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	0	0	1

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	_ 0	0	1

P'=

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		<u></u>			
Mating	Frequency of Mating	AA	Aa	aa	
AA x AA	P^2	1	0	0	
AA x Aa	2PH	1/2	1/2	0	
AA x aa	2PQ	0	1	0	
Aa x Aa	H^2	1/4	1/2	1/4	
Aa x aa	2HQ	0	1/2	1/2	
aa x aa	Q^2	_ 0	0	1	
P':	$= P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2}$				

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		Trequ	iency of pr	ogeny
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	. 2 0	0	1
$P' = P^2 + \frac{1}{2}2PH + \frac{1}{4}H^2 = \left(P + \frac{H}{2}\right)^2$				
	$2 4 \langle 2$.)		

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

	<u></u>				
Mating	Frequency of Mating	AA	Aa	aa	
AA x AA	P^2	1	0	0	
AA x Aa	2PH	1/2	1/2	0	
AA x aa	2PQ	0	1	0	
Aa x Aa	H^2	1/4	1/2	1/4	
Aa x aa	2HQ	0	1/2	1/2	
aa x aa	Q^2	. 20	0	1	
$P' = P^2 + \frac{1}{2}2PH + \frac{1}{4}H^2 = \left(P + \frac{H}{2}\right)^2 = p^2$					
	2 4 \ 2	.)			

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		Freque	ney of pre	<u>igeny</u>
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	0	0	1
P'=	$= P^{2} + \frac{1}{2} 2PH + \frac{1}{4} H^{2} = \left(P + \frac{1}{4}\right)^{2}$	$\left(\frac{H}{2}\right)^2 = p^2$		
-	Ζ_ 4_ \	ΖΙ		
H'= ·				

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		rieque	icy of pro	Jgeny
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	0	0	1
$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$ $H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ$				
$H' = \frac{1}{2}2F$	$PH + 2PQ + \frac{1}{2}H^2 + \frac{1}{2}2HQ$			

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		riequei	icy of pro	ogeny
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	0	0	1
$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$				
$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2})$				
2	2 2 2	2/1	2′	

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

		riequen	cy of pr	ogeny	
Mating	Frequency of Mating	AA	Aa	aa	
AA x AA	P^2	1	0	0	
AA x Aa	2PH	1/2	1/2	0	
AA x aa	2PQ	0	1	0	
Aa x Aa	H^2	1/4	1/2	1/4	
Aa x aa	2HQ	0	1/2	1/2	
aa x aa	Q^2	0	0	1	
$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$ $H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$					
$H' = \frac{1}{2}PH + 2PO + \frac{1}{2}H^{2} + \frac{1}{2}2HO = 2(P + \frac{H}{2})(O + \frac{H}{2}) = 2pO$					
$\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}$					

Frequency(A) = pFrequency(a) = q

		Frequency of progeny			
Mating	Frequency of Mating	AA	Aa	aa	
AA x AA	P^2	1	0	0	
AA x Aa	2PH	1/2	1/2	0	
AA x aa	2PQ	0	1	0	
Aa x Aa	H^2	1/4	1/2	1/4	
Aa x aa	2HQ	0	1/2	1/2	
aa x aa	Q^2	0	0	1	
$P' = P^2 + \frac{1}{2}2PH + \frac{1}{4}H^2 = \left(P + \frac{H}{2}\right)^2 = p^2$					
$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$ $H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$					
<i>Q</i> '=	=				

Frequency(A) = pFrequency(a) = q

		Frequency of progeny			
Mating	Frequency of Mating	AA	Aa	aa	
AA x AA	P^2	1	0	0	
AA x Aa	2PH	1/2	1/2	0	
AA x aa	2PQ	0	1	0	
Aa x Aa	H^2	1/4	1/2	1/4	
Aa x aa	2HQ	0	1/2	1/2	
aa x aa	Q^2	0	0	1	
$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$ $H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$					
$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$					
$Q' = \frac{1}{4}H^2 + \frac{1}{2}\frac{2}{2}HQ + Q^2$					

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

Eroquoney of progony

		Freque	ncy of pro	ogeny	
Mating	Frequency of Mating	AA	Aa	aa	
AA x AA	P^2	1	0	0	
AA x Aa	2PH	1/2	1/2	0	
AA x aa	2PQ	0	1	0	
Aa x Aa	H^2	1/4	1/2	1/4	
Aa x aa	2HQ	0	1/2	1/2	
aa x aa	Q^2	0	0	1	
$P' = P^{2} + \frac{1}{2} \frac{2PH}{1} + \frac{1}{4} \frac{H^{2}}{1} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$					
$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^2 + \frac{1}{2}2HQ = 2(P + \frac{1}{2})(Q + \frac{1}{2}) = 2pq$					
$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$ $H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$ $Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2}$					

Frequency(A) = pFrequency(a) = q Frequency(AA) = P Frequency(Aa) = H Frequency(aa) = Q

Fraguency of progeny

		Frequency of progeny		
Mating	Frequency of Mating	AA	Aa	aa
AA x AA	P^2	1	0	0
AA x Aa	2PH	1/2	1/2	0
AA x aa	2PQ	0	1	0
Aa x Aa	H^2	1/4	1/2	1/4
Aa x aa	2HQ	0	1/2	1/2
aa x aa	Q^2	0	0	1
$P' = P^{2} + \frac{1}{2} \frac{2PH}{1} + \frac{1}{4} \frac{H^{2}}{1} = \left(P + \frac{H}{2}\right)^{2} = \frac{p^{2}}{H} + \frac{H}{2}$				
$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{1}{2})(Q + \frac{1}{2}) = 2pq$				
$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$ $H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$ $Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$				

$$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$$

$$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$$

$$Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$$

$$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$$

$$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$$

$$Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$$

$$p' =$$

$$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$$

$$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$$

$$Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$$

$$p' = P' + \frac{1}{2}H'$$

$$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$$

$$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$$

$$Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$$

$$p' = P' + \frac{1}{2}H' = p^{2} + \frac{1}{2}2pq$$

$$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$$

$$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$$

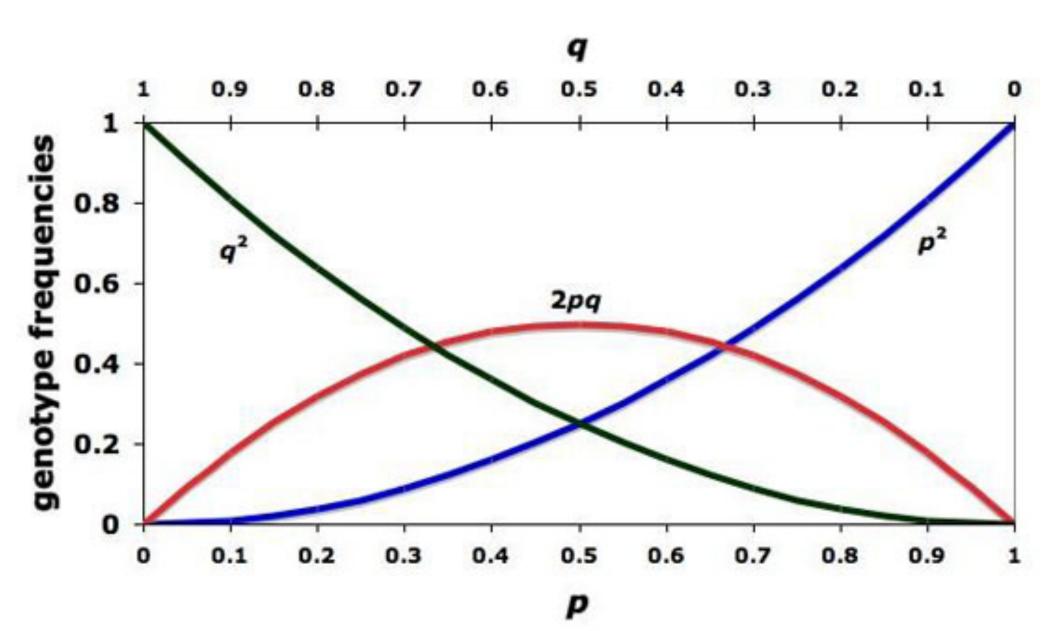
$$Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$$

$$p' = P' + \frac{1}{2}H' = p^{2} + \frac{1}{2}2pq = p(p + q)$$

$$P' = P^{2} + \frac{1}{2}2PH + \frac{1}{4}H^{2} = \left(P + \frac{H}{2}\right)^{2} = p^{2}$$

$$H' = \frac{1}{2}2PH + 2PQ + \frac{1}{2}H^{2} + \frac{1}{2}2HQ = 2(P + \frac{H}{2})(Q + \frac{H}{2}) = 2pq$$

$$Q' = \frac{1}{4}H^{2} + \frac{1}{2}2HQ + Q^{2} = \left(Q + \frac{H}{2}\right)^{2} = q^{2}$$


$$p' = P' + \frac{1}{2}H' = p^{2} + \frac{1}{2}2pq = p(p+q) = p$$

$$q' = Q' + \frac{1}{2}H' = q^{2} + \frac{1}{2}2pq = q(q+p) = q$$

- Allele frequency unchanged across generations

 Mendelian inheritance itself preserves variation
- HWE achieved in ONE generation
 - Equal allele frequencies in males & females, discrete generations

HWE Genotype Frequencies

- One of first major principles in population genetics
- Describes relationship between genotype frequency and allele frequency
 - Equilibrium state
- Autosomal locus will alleles A, a

 Frequencies of A, a: p, q
- Genotypes AA, Aa, aa
 HW frequencies: p², 2pq, q²
- Once at HWE, allele & genotype freq constant

- Hardy-Weinberg equilibrium predicts:
 - 1) Allele frequencies remain constant
 - 2) Genotype frequencies predicted by allele frequencies
- HW model assumes infinite population size
- With finite population size, allele frequencies change over time due to sampling
- Random genetic drift: stochastic change in allele frequencies due to finite sampling of gametes

- Haploid population of size N
- Two alleles: A, a
- At generation t
 Frequency of A is p
- Frequency of a is q = (1-p)

What is frequency of A at generation t + 1?

Probability(X) =
ways X can happen/Total Possible Outcomes

1. You roll a die. What is the probability that you roll a 4?

2. You roll a die. What is the probability that you roll an even number?

3. You roll a die twice. What is the probability that you roll a 4 twice?

4. You flip a fair coin. What is the probability you flip a head?

5. You flip a fair coin twice. What is the probability you flip a head twice?

6. You flip a fair coin and it flips heads. What is the probability if you flip it again, it will flip heads?

7. You flip a fair coin twice. What is the probability you flip at least one head?

8. A bag of marbles contains 36 blue marbles and 14 red marbles. If you pull out one marble, what is the probability that it is blue? 9. A bag of marbles contains 36 blue marbles and 14 red marbles. If you pull out one marble, what is the probability that it is NOT blue? 10. A population contains 36 AA individuals and 14 aa individuals. If you pull out genotype at random, what is the probability that it is AA? 11. A randomly mating population contains 36 AA individuals, 50 Aa individuals and 14 aa individuals. These individuals each produce an infinite number of gametes. If you reach into the gamete pool and pull out a single allele, what is the probability that it is A?

In generation t, freq(A) = p, freq(a) = (1-p)

• Randomly select 1 individual to be parent

In generation t, freq(A) = p, freq(a) = (1-p)

Randomly select 1 individual to be parent
 – Pr(1A) =

In generation t, freq(A) = p, freq(a) = (1-p)

Randomly select 1 individual to be parent
 - Pr(1A) = p

- Randomly select 1 individual to be parent
 - $\Pr(1A) = p$
 - Pr(0A) =

In generation t, freq(A) = p, freq(a) = (1-p)

• Randomly select 1 individual to be parent

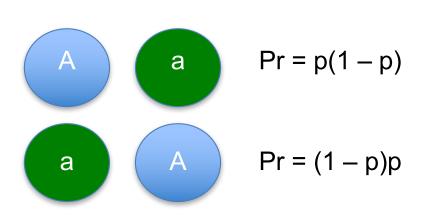
$$-\Pr(1A) = p$$

$$- \Pr(0A) = (1 - p)$$

- Randomly select 1 individual to be parent
 - Pr(1A) = p
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents

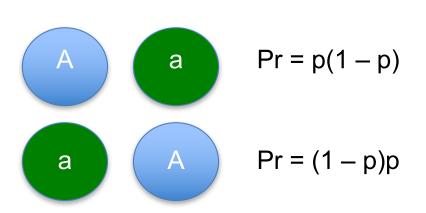
- Randomly select 1 individual to be parent
 - Pr(1A) = p
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents
 Pr(2A) =

- Randomly select 1 individual to be parent
 - Pr(1A) = p
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents
 - $Pr(2A) = p^2$


- Randomly select 1 individual to be parent
 - Pr(1A) = p
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents
 - $Pr(2A) = p^2$
 - Pr(0A) =

- Randomly select 1 individual to be parent
 - $\Pr(1A) = p$
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents

$$- Pr(2A) = p^2$$


$$-\Pr(0A) = (1-p)^2$$

- Randomly select 1 individual to be parent
 - $\Pr(1A) = p$
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents
 - $\Pr(2A) = p^2$
 - Pr(1A) =
 - $\Pr(0A) = (1 p)^2$

- Randomly select 1 individual to be parent
 - $\Pr(1A) = p$
 - $\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents

$$- Pr(2A) = p^{2}$$

- Pr(1A) = 2p(1-p)
- Pr(0A) = (1 - p)^{2}

- Randomly select 1 individual to be parent
 - $\Pr(1A) = p$
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents
 - $Pr(2A) = p^2$
 - $\Pr(1A) = 2p(1-p)$
 - $-\Pr(0A) = (1-p)^2$
- Randomly select 3 individuals to be parents

- Randomly select 1 individual to be parent
 - $\Pr(1A) = p$
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents
 - $Pr(2A) = p^2$
 - $\Pr(1A) = 2p(1-p)$
 - $-\Pr(0A) = (1-p)^2$
- Randomly select 3 individuals to be parents
 - Pr(3A) =
 - Pr(2A) =
 - Pr(1A) =
 - Pr(0A) =

In generation t, freq(A) = p, freq(a) = (1-p)

- Randomly select 1 individual to be parent
 - $\Pr(1A) = p$
 - $-\Pr(0A) = (1 p)$
- Randomly select 2 individuals to be parents
 - $Pr(2A) = p^2$
 - $\Pr(1A) = 2p(1-p)$
 - $-\Pr(0A) = (1-p)^2$
- Randomly select 3 individuals to be parents
 - $\Pr(3A) = p^{3}$ - $\Pr(2A) = 3p^{2}(1-p)$ - $\Pr(1A) = 3p(1-p)^{2}$
 - $-\Pr(0A) = (1-p)^3$

In generation t, freq(A) = p, freq(a) = (1-p)

Randomly select N individuals to be parents

$$\Pr(j \text{ alleles of type } A) = \binom{N}{j} p^{j} (1-p)^{N-j}$$

What is frequency of A at generation t + 1?

Frequency of A Generation(t+1) $\binom{\mathsf{N}}{\mathsf{O}}(p_t)^{\mathsf{O}}(1-p_t)^{\mathsf{N}-\mathsf{O}}$ 0/N $\binom{\mathsf{N}}{1}(p_t)^1(1-p_t)^{\mathsf{N}-1}$ 1/N $\binom{N}{2}(p_t)^2(1-p_t)^{N-2}$ 2/N $\binom{\mathsf{N}}{\mathsf{N}}(p_t)^{\mathsf{N}}(1-p_t)^{\mathsf{O}}$ N/N

Frequency of A	Generation(t+1)	Generation (t+2)
0/N	$\binom{N}{O}(\boldsymbol{\rho}_t)^{O}(1-\boldsymbol{\rho}_t)^{N-O}$	$\binom{N}{0}(p_{t+1})^{0}(1-p_{t+1})^{N-0}$
1/N	$\binom{N}{1}(\boldsymbol{p}_t)^1(1-\boldsymbol{p}_t)^{N-1}$	$\binom{N}{1}(p_{t+1})^{1}(1-p_{t+1})^{N-1}$
2/N	$\binom{N}{2}(p_t)^2(1-p_t)^{N-2}$	$\binom{N}{2}(p_{t+1})^2(1-p_{t+1})^{N-2}$
N/N	$\binom{N}{N}(\boldsymbol{\rho}_t)^{N}(1-\boldsymbol{\rho}_t)^{O}$	$\binom{N}{N}(p_{t+1})^{N}(1-p_{t+1})^{O}$

Frequency of AGeneration(t+1)Generation (t+2)Generation(t+3)0/N
$$\binom{N}{0}(\rho_t)^0(1-\rho_t)^{N-0}$$
 $\binom{N}{0}(\rho_{t+1})^0(1-\rho_{t+1})^{N-0}$ $\binom{N}{0}(\rho_{t+2})^0(1-\rho_{t+2})^{N-0}$ 1/N $\binom{N}{1}(\rho_t)^1(1-\rho_t)^{N-1}$ $\binom{N}{1}(\rho_{t+1})^1(1-\rho_{t+1})^{N-1}$ $\binom{N}{1}(\rho_{t+2})^1(1-\rho_{t+2})^{N-1}$ 2/N $\binom{N}{2}(\rho_t)^2(1-\rho_t)^{N-2}$ $\binom{N}{2}(\rho_{t+1})^2(1-\rho_{t+1})^{N-2}$ $\binom{N}{2}(\rho_{t+2})^2(1-\rho_{t+2})^{N-2}$N/N $\binom{N}{N}(\rho_t)^N(1-\rho_t)^0$ $\binom{N}{N}(\rho_{t+1})^N(1-\rho_{t+1})^0$ $\binom{N}{N}(\rho_{t+2})^N(1-\rho_{t+2})^0$

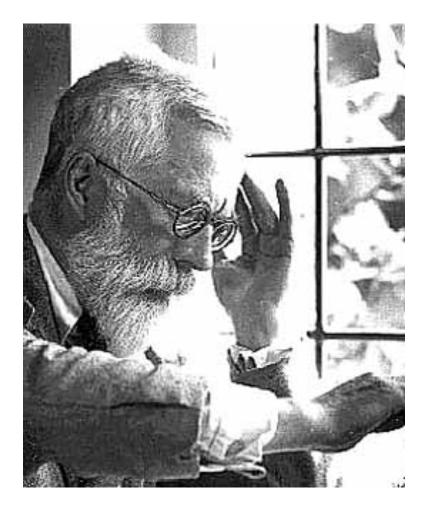
Transitions between states are random, but defined by a probability

Transitions have no memory beyond previous step

Frequency of A	Generation(t+1)	Generation (t+2)	Generation(t+3)
0/N	$\binom{N}{O}(\boldsymbol{p}_t)^{O}(1-\boldsymbol{p}_t)^{N-O}$	$\binom{N}{0} (p_{t+1})^{0} (1 - p_{t+1})^{N - 0}$	$\binom{N}{0}(p_{t+2})^{0}(1-p_{t+2})^{N-0}$
1/N	$\binom{N}{1}(p_t)^1(1-p_t)^{N-1}$	$\binom{N}{1}(p_{t+1})^{1}(1-p_{t+1})^{N-1}$	$\binom{N}{1}(p_{t+2})^{1}(1-p_{t+2})^{N-1}$
2/N	$\binom{N}{2}(p_t)^2(1-p_t)^{N-2}$	$\binom{N}{2}(p_{t+1})^2(1-p_{t+1})^{N-2}$	$\binom{N}{2}(p_{t+2})^2(1-p_{t+2})^{N-2}$
N/N	$\binom{N}{N}(p_t)^{N}(1-p_t)^{0}$	$\binom{N}{N}(p_{t+1})^{N}(1-p_{t+1})^{O}$	$\binom{N}{N} (p_{t+2})^{N} (1 - p_{t+2})^{0}$

Transitions between states are random, but defined by a probability

Transitions have no memory beyond previous step


Diploid Model

- N diploid individuals
 - 2N alleles in population
- Two alleles: A, a (frequencies *p*, *q*)
- Randomly draw 2N gametes to found next generation

 $\Pr(j \text{ alleles of type } A) = \binom{2N}{j} p^j (1-p) 2^{N-j}$

Wright-Fisher Model

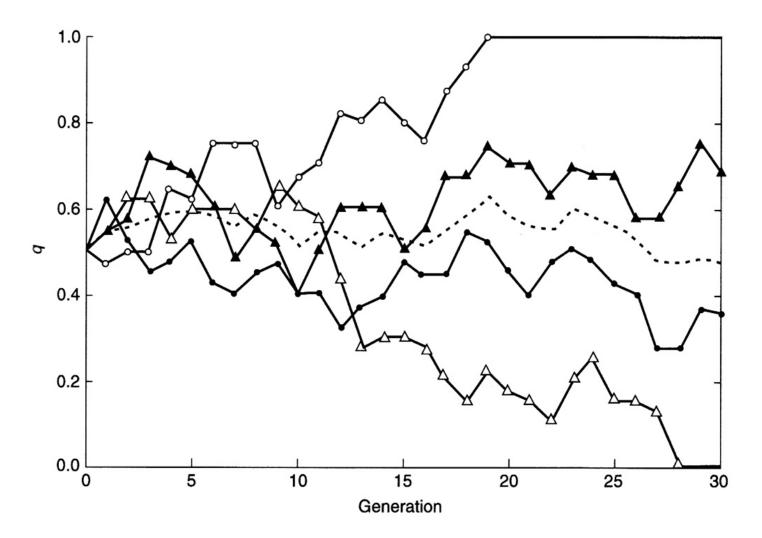
Wright-Fisher Model

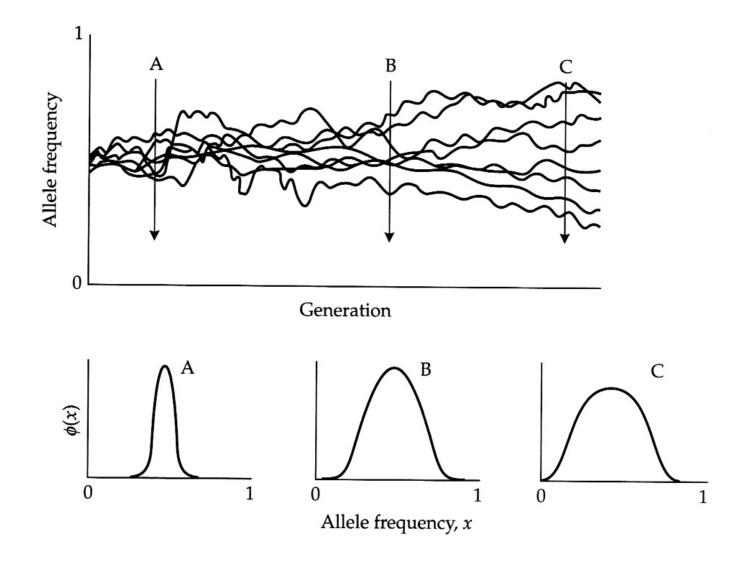
- Assumptions:
 - N diploid organisms (2N alleles)
 - Infinite gametes
 - Discrete Generations
 - Random mating
 - No mutation
 - No selection

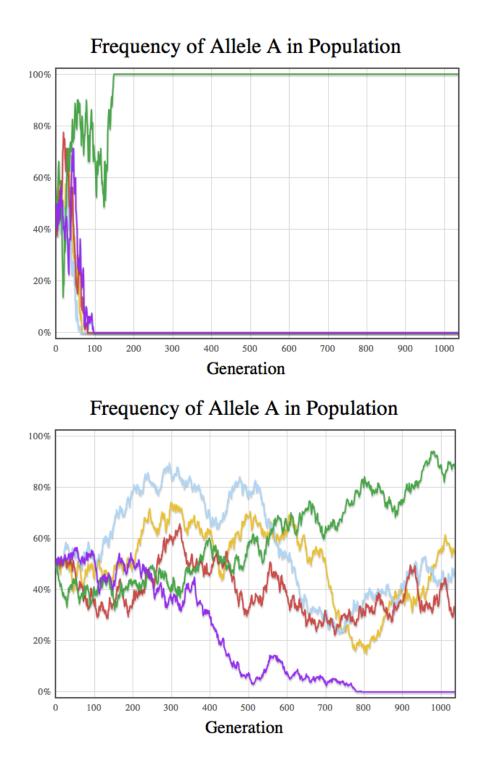
$$P_{ij} = {\binom{2N}{j}} \left(\frac{i}{2N}\right)^{j} \left(1 - \frac{i}{2N}\right)^{2N-j} = {\binom{2N}{j}} p^{j} q^{2N-j}$$

- Alleles are eventually fixed or lost
- 2N alleles
 - Each equally likely to fix (selectively equivalent)
 - Pr(fixation) =

- Alleles are eventually fixed or lost
- 2N alleles
 - Each equally likely to fix (selectively equivalent)
 - Pr(fixation) = 1/2N


- Alleles are eventually fixed or lost
- 2N alleles
 - Each equally likely to fix (selectively equivalent)
 - Pr(fixation) = 1/2N
 - If *i* copies of allele, Pr(fixation) = *i*/2N


- Alleles are eventually fixed or lost
- 2N alleles
 - Each equally likely to fix (selectively equivalent)
 - Pr(fixation) = 1/2N
 - If *i* copies of allele, Pr(fixation) = *i*/2N
- Pr(fixation) = p


Probabilities of fixation, loss

- Alleles are eventually fixed or lost
- 2N alleles
 - Each equally likely to fix (selectively equivalent)
 - Pr(fixation) = 1/2N
 - If *i* copies of allele, Pr(fixation) = *i*/2N
- Pr(fixation) = p
- Pr(loss) = 1-*p*

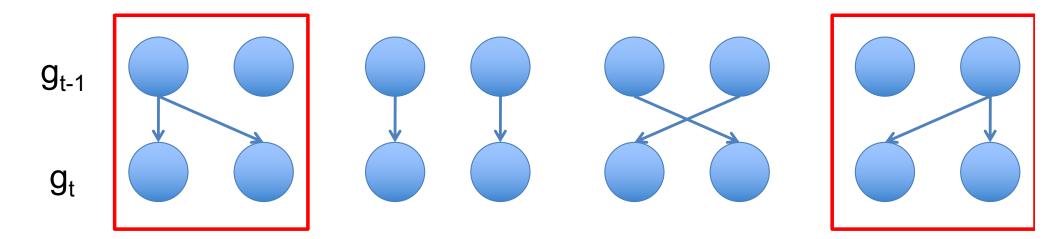
Allele frequencies will change randomly over time

N = 40

N = 2000

http://scit.us/redlynx/

Times to fixation, loss


$$t_{fix} = \frac{-4N(1-p)ln(1-p)}{p}$$

For p = 1/2N,
$$t_{fix} \approx 4N$$

$$t_{oss} = \frac{-4N(p)\ln(p)}{1-p}$$

For p = 1/2N,
$$t_{loss} \approx 2ln(2N)$$

Decay of Heterozygosity 2N=2

Pr(IBD) = 2/4 = 1/2
Pr(IBD) = 1/2N
Pr(not IBD) = 1 - 1/2N
Pr(IBD_t) = F_t =
$$\frac{1}{2N} + (1 - \frac{1}{2N})F_{t-1}$$

If F₀ = 0, F_t = 1 - $(1 - \frac{1}{2N})^t$

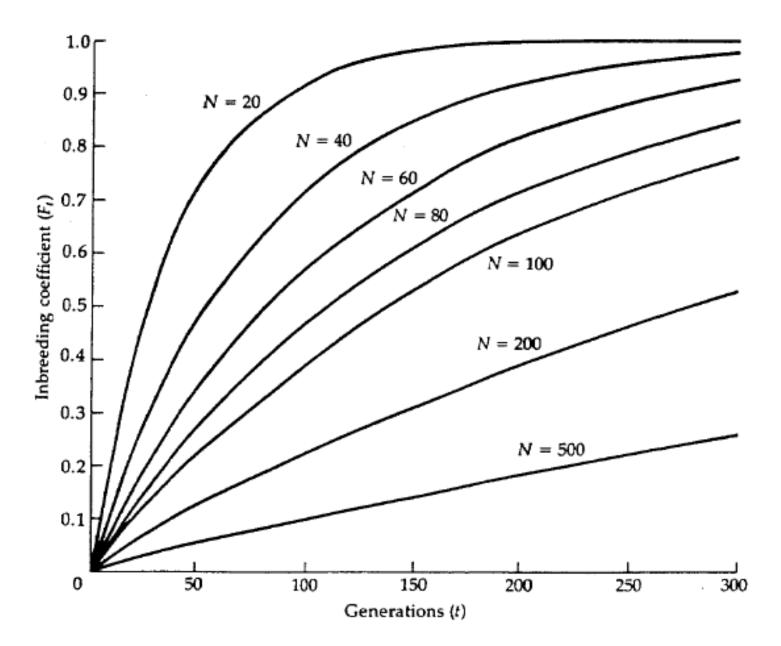


Figure 9. Increase of F_t in ideal populations as a function of time and effective population size N.

Hartl & Clark

Decay of Heterozygosity

$$F_{t} = 1 - (1 - \frac{1}{2N})^{t}$$
$$H_{t} = H_{0} \left(1 - \frac{1}{2N}\right)^{t} \approx H_{0} e^{-t/2N}$$

Summary of Drift

- Stochastic fluctuations in allele frequencies due to sampling in a finite population
- Described by Wright-Fisher model
- Alleles are ultimately fixed or lost from population
 - $-\Pr(fix) = p; \Pr(loss) = 1 p$
 - Time(fix_{1/2N}) \approx 4N; Time(loss_{1/2N}) \approx 2ln(2N)
- H decreases (~1/2N) over time
- Hardy-Weinberg largely still applies
 - Allele frequency changes small
 - Deviation from expected genotype frequencies ~ 1/2N

How does drift come into play in conservation genetics?

Habitat loss

 Small, isolated populations are threatened – RGD

Habitat loss

- Small, isolated populations are threatened – RGD, inbreeding
- Consequences:
 - Reduction in genetic diversity

Genetically depauperate species

Species	Popula- tions (N)	Indi- viduals (N)	Loci (N)	Poly- morphic loci (%)	Average hetero- zygosity	Refer- ence
		All	ozyme			
Drosophila	43*	> 100	24	43.1	0.140	(10)
Mus musculus	2	87	46	20.5	0.088	(15)
Felis catus	1	56	55	22.0	0.076	(16)
Homo sapiens	Many	> 100	104	31.7	0.063	(43-45)
Acinonyx jubatus	2	55	47	0.0	0.0	

O'Brien et al. 1983

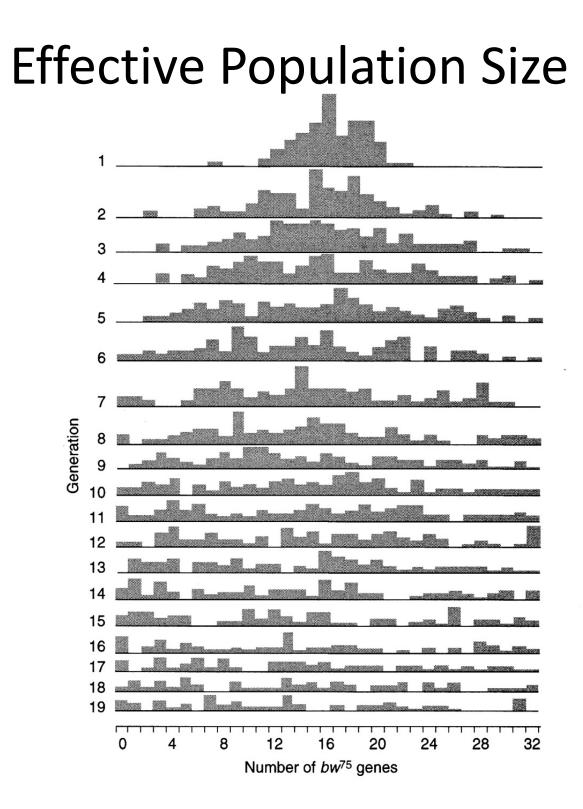
Genetically depauperate species

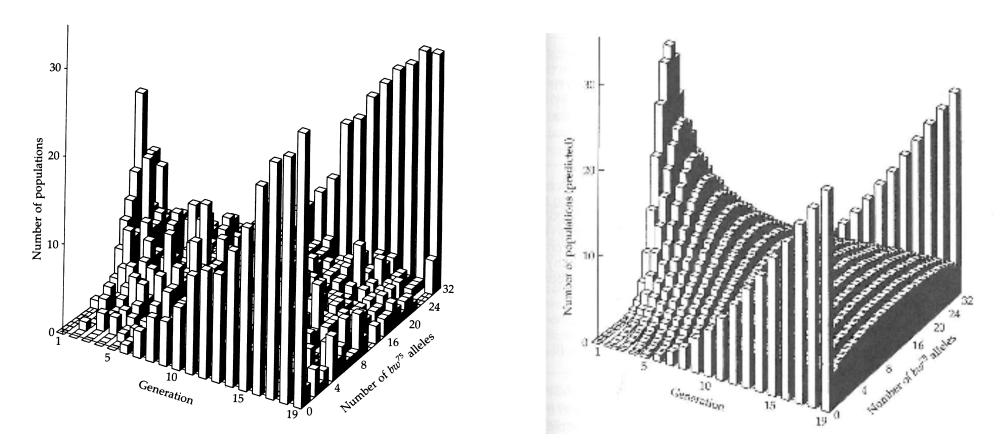
TABLE 2. Distribution and allele frequency of polymorphic allozyme loci in lions

	No.	All	ozyme locu	ls ^a	Percent polymorphic loci		
Population	lions scored	IDHI	TF	PTI		Average Heterozygosity ^b	
African							
Kruger Park	15	A = 1.0	a = 0.65	s = 1.0	7	0.023	
South Africa			b = 0.35				
Serengeti ecosystem	27	A = 0.72	a = 0.52	s = 1.0	11	0.038	
Tanzania, East Africa		B = 0.28	b = 0.28				
African Zoo lions	18	A = 1.0	a = 0.72	s = 1.0	7	0.030	
(Atlas)			b = 0.28				
Asian							
Indian lions	28	B = 1.0	a = 1.0	d = 1.0	0.0	0.0	
(Gir Forest)							
Indian lions	29	A = 0.72	a = 0.93	s = 0.45	7	0.021	
(SSP-studbook)		B = 0.28	b = 0.07	d = 0.55			

O'Brien et al.

Genetically depauperate species


			Microsatelli			
Number Date	Location	043	090	096	mtDNA	
Contempora	ry					
14	1980s	Big Cypress Swamp	122/122	121/121	203/203	Α
67	1980s	Big Cypress Swamp	122/122	121/121	203/203	Α
71	1980s	Big Cypress Swamp	122/130	121/121	203/203	Α
422	1980s	Big Cypress Swamp	122/122	121/121	203/203	Α
426	1980s	Big Cypress Swamp	122/130	121/121	203/203	Α
428	1980s	Big Cypress Swamp	122/122	121/121	203/203	Α
Museum						
777	1890s	Florida	-	-	-	С
778	1890s	Florida	-	-	-	С
779	1890s	Florida	-	-	-	С
780	1890s	Immokolee	122/124	127/127	203/203	С
785	1898	Sebastian	134/134	-	-	Α
787	1898	Sebastian	104/126	-	-	-
792	1922	Allen's River	-	_	-	в



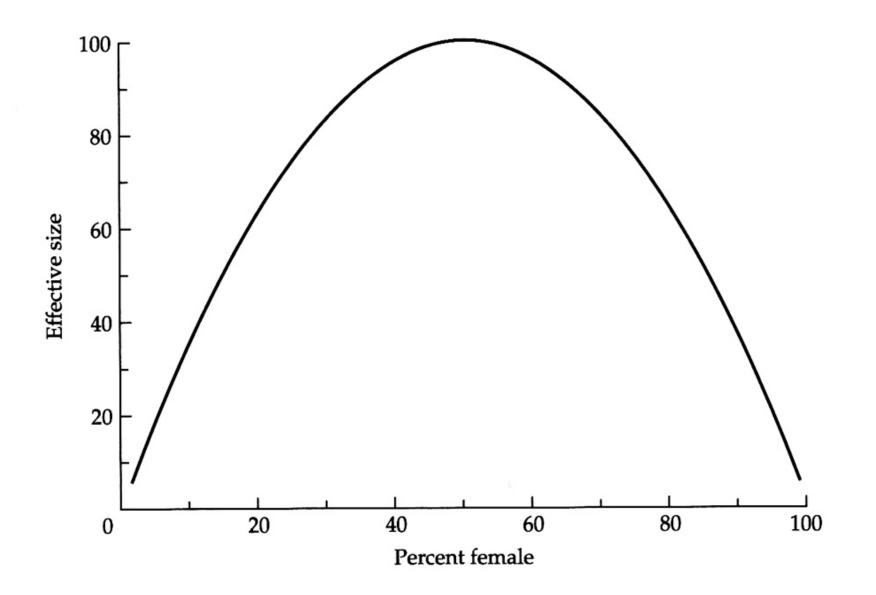
Culver et al. 2008

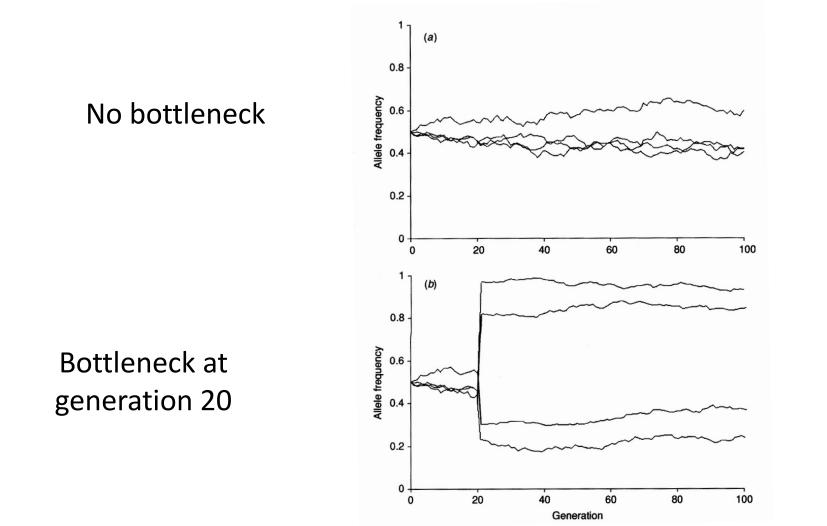
$$Var(p) = Var\left(\frac{\#A}{2N}\right) = \left(\frac{1}{2N}\right)^{2} Var(\#A)$$
$$= \left(\frac{1}{2N}\right)^{2} 2Npq$$
$$= \frac{pq}{2N}$$

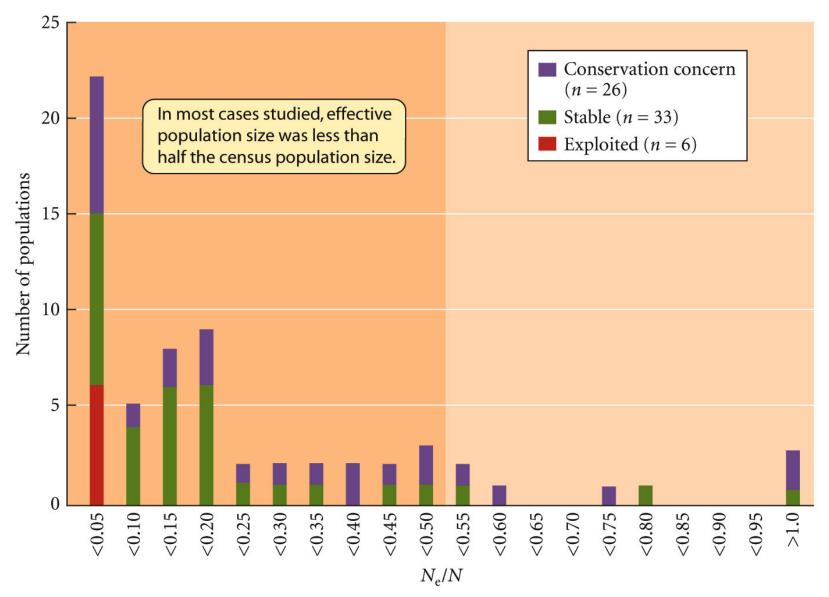
$$\operatorname{Var}(p) = \operatorname{Var}\left(\frac{\#A}{2N}\right) = \left(\frac{1}{2N}\right)^{2} \operatorname{Var}(\#A)$$
$$= \left(\frac{1}{2N}\right)^{2} 2Npq$$
$$= \frac{pq}{2N}$$

In reality, allele frequency changes > pq/2N

 – Fluctuations in population size, N_m≠N_f, etc.


- Number of individuals in a theoretically ideal population having the same magnitude of drift as the actual population
- Measure 'magnitude' in 3 ways
 - Change in variance of allele frequency (variance N_e)


$$var(p) = \frac{pq}{2N}$$
$$\overline{var}(p) = \frac{pq}{2N_e}$$
$$N_e = \frac{pq}{2\overline{var}(p)}$$


- Number of individuals in a theoretically ideal population having the same magnitude of drift as the actual population
- Measure 'magnitude' in 3 ways
 - Change in variance of allele frequency (variance N_e)
 - Change in Pr(IBD) (inbreeding N_e)
 - Rate of loss of heterozygosity (eigenvalue $N_{\rm e}$)

- Number of individuals in a theoretically ideal population having the same magnitude of drift as the actual population
- Measure 'magnitude' in 3 ways
 - Change in variance of allele frequency (variance N_e)
 - Change in Pr(IBD) (inbreeding N_e)
 - Rate of loss of heterozygosity (eigenvalue $N_{\rm e}$)
- Typically smaller than census size N

- Number of individuals in a theoretically ideal population having the same magnitude of drift as the actual population
- Measure 'magnitude' in 3 ways
 - Change in variance of allele frequency (variance N_e)
 - Change in Pr(IBD) (inbreeding N_e)
 - Rate of loss of heterozygosity (eigenvalue $N_{\rm e}$)
- Typically smaller than census size N
 - Sex ratio
 - Variance in reproductive success
 - Population size changes

Relating N, N_e

Population size changes

$$\frac{1}{N_e} = \frac{1}{t} \left(\frac{1}{N_0} + \frac{1}{N_1} + \dots + \frac{1}{N} \right)$$

Relating N, N_e

- Population size changes $\frac{1}{N_{o}} = \frac{1}{t} \left(\frac{1}{N_{o}} + \frac{1}{N_{1}} + \dots + \frac{1}{N} \right)$
- Unequal males, females

$$N = N_m + N_f$$
$$N_e = \frac{4N_m N_f}{N_m + N_f}$$