Introductory Models, Effective Population Size

Models

- Intentional simplification of complex relationships
- Eliminate extraneous detail, focus on key parameters
- Appropriate and useful first approximations
- Evaluate fit of data to model
- Poor fit may implicate violation of model assumptions
- Refining of models tells us which parameters most important
- Population genetics relies heavily on mathematical models
- Specify the mathematical relationships among parameters that characterize a population

Random Mating

- One of the most important models in population genetics
- Frequency of mating pairs determined by genotype frequencies

Male Genotype Female Genotype Frequency Frequency $\quad \mathrm{A}_{1} \mathrm{~A}_{1}\left(\mathrm{P}_{\mathrm{F}}\right) \quad \mathrm{A}_{1} \mathrm{~A}_{2}\left(\mathrm{H}_{\mathrm{F}}\right) \quad \mathrm{A}_{2} \mathrm{~A}_{2}\left(\mathrm{Q}_{\mathrm{F}}\right)$
$\mathrm{A}_{1} \mathrm{~A}_{1}\left(\mathrm{P}_{\mathrm{M}}\right)$
$\mathrm{A}_{1} \mathrm{~A}_{2}\left(\mathrm{H}_{\mathrm{M}}\right)$
$\mathrm{A}_{2} \mathrm{~A}_{2}\left(\mathrm{Q}_{\mathrm{M}}\right)$

Random Mating

- One of the most important models in population genetics
- Frequency of mating pairs determined by genotype frequencies

Male Genotype Female Genotype Frequency
Frequency
$\mathrm{A}_{1} \mathrm{~A}_{1}\left(\mathrm{P}_{\mathrm{F}}\right) \quad \mathrm{A}_{1} \mathrm{~A}_{2}\left(\mathrm{H}_{\mathrm{F}}\right) \quad \mathrm{A}_{2} \mathrm{~A}_{2}\left(\mathrm{Q}_{\mathrm{F}}\right)$
$\mathrm{A}_{1} \mathrm{~A}_{1}\left(\mathrm{P}_{\mathrm{M}}\right)$
$\mathrm{A}_{1} \mathrm{~A}_{2}\left(\mathrm{H}_{\mathrm{M}}\right)$
$\mathrm{A}_{2} \mathrm{~A}_{2}\left(\mathrm{Q}_{\mathrm{M}}\right)$
$P_{M} P_{F}$
$\mathrm{P}_{\mathrm{M}} \mathrm{H}_{\mathrm{F}}$
$P_{M} Q_{F}$
$\mathrm{H}_{\mathrm{M}} \mathrm{P}_{\mathrm{F}}$
$\mathrm{H}_{\mathrm{M}} \mathrm{H}_{\mathrm{F}} \quad \mathrm{H}_{\mathrm{M}} \mathrm{Q}_{\mathrm{F}}$
$\mathrm{Q}_{\mathrm{M}} \mathrm{P}_{\mathrm{F}}$
$\mathrm{Q}_{\mathrm{M}} \mathrm{H}_{\mathrm{F}}$
$\mathrm{Q}_{\mathrm{M}} \mathrm{Q}_{\mathrm{F}}$

Random Mating

- One of the most important models in population genetics
- Frequency of mating pairs determined by genotype frequencies
- Also called 'panmictic' model

Non-overlapping Generations

\longrightarrow| Birth |
| :--- |
| Reproduction |
| Death |\rightarrow| Birth |
| :--- |
| Reproduction |
| Death |$\quad \rightarrow$| Birth |
| :--- |
| Reproduction |
| Death |

Generation t-2 Generation t-1 Generation t

Hardy-Weinberg Model

- Both models convenient first approximations for complex populations
- What happens when we combine them?
- What are consequences of random mating in a non-overlapping generation model?

HW Model Assumptions

- Discrete generations
- Random mating
- Sexual reproduction
- Diploid
- Bi-allelic locus
- Allele frequencies equal in males, females
- Large population size
- No migration
- No mutation
- No selection

Hardy-Weinberg Principle

- One of first major principles in population genetics
- Describes relationship between genotype frequency and allele frequency
- Equilibrium state
- Autosomal locus will alleles A, a
- Frequencies of A, a: p, q
- Genotypes AA, Aa, aa

Hardy-Weinberg Principle

- One of first major principles in population genetics
- Describes relationship between genotype frequency and allele frequency
- Equilibrium state
- Autosomal locus will alleles A, a
- Frequencies of A, a: p, q
- Genotypes AA, Aa, aa
- HW frequencies: $p^{2}, 2 p q, q^{2}$

HWE Genotype Frequencies

Hardy-Weinberg Principle

- One of first major principles in population genetics
- Describes relationship between genotype frequency and allele frequency
- Equilibrium state
- Autosomal locus will alleles A, a
- Frequencies of A, a: p, q
- Genotypes AA, Aa, aa
- HW frequencies: $p^{2}, 2 p q, q^{2}$
- Once at HWE, allele \& genotype freq constant

Random Genetic Drift

- Hardy-Weinberg equilibrium predicts:
- 1) Allele frequencies remain constant
-2) Genotype frequencies predicted by allele frequencies
- HW model assumes infinite population size
- With finite population size, allele frequencies change over time due to sampling
- Random genetic drift: stochastic change in allele frequencies due to finite sampling of gametes

Random Genetic Drift

- Haploid population of size N
- Two alleles: A, a
- At generation t
- Frequency of A is p
- Frequency of a is $q=(1-p)$

What is frequency of A at generation $t+1$?

Random Genetic Drift

In generation t, freq $(A)=p$, freq $(a)=(1-p)$

Random Genetic Drift

In generation t, freq $(A)=p$, freq $(a)=(1-p)$

- Randomly select 1 individual to be parent

Random Genetic Drift

In generation t, freq $(A)=p$, freq $(a)=(1-p)$

- Randomly select 1 individual to be parent
$-\operatorname{Pr}(1 \mathrm{~A})=$

Random Genetic Drift

In generation t, freq $(A)=p$, freq $(a)=(1-p)$

- Randomly select 1 individual to be parent
$-\operatorname{Pr}(1 \mathrm{~A})=p$

Random Genetic Drift

In generation t, freq $(A)=p$, freq(a) $=(1-p)$

- Randomly select 1 individual to be parent
$-\operatorname{Pr}(1 A)=p$
$-\operatorname{Pr}(\mathrm{OA})=$

Random Genetic Drift

In generation t, freq $(A)=p$, freq $(a)=(1-p)$

- Randomly select 1 individual to be parent
$-\operatorname{Pr}(1 \mathrm{~A})=p$
$-\operatorname{Pr}(0 \mathrm{~A})=(1-p)$

Random Genetic Drift

In generation t, freq $(A)=p$, freq $(a)=(1-p)$

- Randomly select 1 individual to be parent
$-\operatorname{Pr}(1 \mathrm{~A})=p$
$-\operatorname{Pr}(0 \mathrm{~A})=(1-p)$
- Randomly select 2 individuals to be parents

Random Genetic Drift

In generation t, freq $(A)=p$, freq $(a)=(1-p)$

- Randomly select 1 individual to be parent
$-\operatorname{Pr}(1 A)=p$
$-\operatorname{Pr}(0 \mathrm{~A})=(1-p)$
- Randomly select 2 individuals to be parents
$-\operatorname{Pr}(2 A)=$

Random Genetic Drift

In generation t, freq $(A)=p$, freq $(a)=(1-p)$

- Randomly select 1 individual to be parent
$-\operatorname{Pr}(1 \mathrm{~A})=p$
$-\operatorname{Pr}(0 \mathrm{~A})=(1-p)$
- Randomly select 2 individuals to be parents
$-\operatorname{Pr}(2 \mathrm{~A})=p^{2}$

Random Genetic Drift

In generation t, freq $(A)=p$, freq $(a)=(1-p)$

- Randomly select 1 individual to be parent
$-\operatorname{Pr}(1 \mathrm{~A})=p$
$-\operatorname{Pr}(0 \mathrm{~A})=(1-p)$
- Randomly select 2 individuals to be parents
$-\operatorname{Pr}(2 \mathrm{~A})=p^{2}$
$-\operatorname{Pr}(\mathrm{OA})=$

Random Genetic Drift

In generation t, freq $(A)=p$, freq $(a)=(1-p)$

- Randomly select 1 individual to be parent

$$
\begin{aligned}
& -\operatorname{Pr}(1 \mathrm{~A})=p \\
& -\operatorname{Pr}(0 \mathrm{~A})=(1-p)
\end{aligned}
$$

- Randomly select 2 individuals to be parents
$-\operatorname{Pr}(2 \mathrm{~A})=p^{2}$
$-\operatorname{Pr}(0 \mathrm{~A})=(1-p)^{2}$

Random Genetic Drift

In generation t, freq $(A)=p$, freq $(a)=(1-p)$

- Randomly select 1 individual to be parent

$$
\begin{aligned}
& -\operatorname{Pr}(1 A)=p \\
& -\operatorname{Pr}(0 A)=(1-p)
\end{aligned}
$$

- Randomly select 2 individuals to be parents

$$
\begin{aligned}
& -\operatorname{Pr}(2 \mathrm{~A})=p^{2} \\
& -\operatorname{Pr}(1 \mathrm{~A})= \\
& -\operatorname{Pr}(0 \mathrm{~A})=(1-p)^{2}
\end{aligned}
$$

$$
\operatorname{Pr}=p(1-p)
$$

$$
\operatorname{Pr}=(1-p) p
$$

Random Genetic Drift

In generation t, freq $(A)=p$, freq $(a)=(1-p)$

- Randomly select 1 individual to be parent

$$
\begin{aligned}
& -\operatorname{Pr}(1 A)=p \\
& -\operatorname{Pr}(0 A)=(1-p)
\end{aligned}
$$

- Randomly select 2 individuals to be parents

$$
\begin{aligned}
& -\operatorname{Pr}(2 \mathrm{~A})=p^{2} \\
& -\operatorname{Pr}(1 \mathrm{~A})=2 p(1-p) \\
& \left.-\operatorname{Pr}(0 \mathrm{~A})=(1-p)^{2}\right)
\end{aligned}
$$

$$
\operatorname{Pr}=p(1-p)
$$

$$
\operatorname{Pr}=(1-p) p
$$

Random Genetic Drift

In generation t, freq $(A)=p$, freq $(a)=(1-p)$

- Randomly select 1 individual to be parent
$-\operatorname{Pr}(1 \mathrm{~A})=p$
$-\operatorname{Pr}(0 \mathrm{~A})=(1-p)$
- Randomly select 2 individuals to be parents
$-\operatorname{Pr}(2 \mathrm{~A})=p^{2}$
$-\operatorname{Pr}(1 \mathrm{~A})=2 p(1-p)$
$-\operatorname{Pr}(\mathrm{OA})=(1-p)^{2}$
- Randomly select 3 individuals to be parents

Random Genetic Drift

In generation t, freq $(A)=p$, freq $(a)=(1-p)$

- Randomly select 1 individual to be parent
$-\operatorname{Pr}(1 A)=p$
$-\operatorname{Pr}(0 \mathrm{~A})=(1-p)$
- Randomly select 2 individuals to be parents
$-\operatorname{Pr}(2 \mathrm{~A})=p^{2}$
$-\operatorname{Pr}(1 \mathrm{~A})=2 p(1-p)$
$-\operatorname{Pr}(\mathrm{OA})=(1-p)^{2}$
- Randomly select 3 individuals to be parents
$-\operatorname{Pr}(3 A)=$
$-\operatorname{Pr}(2 A)=$
$-\operatorname{Pr}(1 A)=$
$-\operatorname{Pr}(0 \mathrm{~A})=$

Random Genetic Drift

In generation t, freq $(A)=p$, freq $(a)=(1-p)$

- Randomly select 1 individual to be parent

$$
\begin{aligned}
& -\operatorname{Pr}(1 A)=p \\
& -\operatorname{Pr}(0 A)=(1-p)
\end{aligned}
$$

- Randomly select 2 individuals to be parents

$$
\begin{aligned}
& -\operatorname{Pr}(2 \mathrm{~A})=p^{2} \\
& -\operatorname{Pr}(1 \mathrm{~A})=2 p(1-p) \\
& -\operatorname{Pr}(0 \mathrm{~A})=(1-p)^{2}
\end{aligned}
$$

- Randomly select 3 individuals to be parents
$-\operatorname{Pr}(3 \mathrm{~A})=p^{3}$
$-\operatorname{Pr}(2 \mathrm{~A})=3 p^{2}(1-p)$
$-\operatorname{Pr}(1 \mathrm{~A})=3 p(1-p)^{2}$
$-\operatorname{Pr}(\mathrm{OA})=(1-p)^{3}$

Random Genetic Drift

In generation t, freq $(A)=p$, freq $(a)=(1-p)$

- Randomly select N individuals to be parents

$$
\operatorname{Pr}(j \text { alleles of type } A)=\binom{N}{j} \mathrm{p}^{\mathrm{j}}(1-\mathrm{p})^{\mathrm{N}-\mathrm{j}}
$$

What is frequency of A at generation $t+1$?

Random Genetic Drift

$$
\begin{array}{ll}
\text { Frequency of A } & \text { Generation }(\mathrm{t}+1) \\
0 / \mathrm{N} & \binom{\mathrm{~N}}{0}\left(p_{t}\right)^{0}\left(1-p_{t}\right)^{\mathrm{N}-0} \\
1 / \mathrm{N} & \binom{\mathrm{~N}}{1}\left(p_{t}\right)^{1}\left(1-p_{t}\right)^{\mathrm{N}-1} \\
2 / \mathrm{N} & \binom{\mathrm{~N}}{2}\left(p_{t}\right)^{2}\left(1-p_{t}\right)^{\mathrm{N}-2} \\
\cdot & \\
\cdot & \binom{\mathrm{~N}}{\mathrm{~N}}\left(p_{t}\right)^{\mathrm{N}}\left(1-p_{t}\right)^{0}
\end{array}
$$

Random Genetic Drift

Frequency of A	Generation $(t+1)$	Generation (t+2)
$0 / \mathrm{N}$	$\binom{\mathrm{N}}{0}\left(p_{t}\right)^{0}\left(1-p_{t}\right)^{\mathrm{N}-0}$	$\binom{\mathrm{~N}}{0}\left(p_{t+1}\right)^{0}\left(1-p_{t+1}\right)^{\mathrm{N}-0}$
$1 / \mathrm{N}$	$\binom{\mathrm{N}}{1}\left(p_{t}\right)^{1}\left(1-p_{t}\right)^{\mathrm{N}-1}$	$\binom{\mathrm{~N}}{1}\left(p_{t+1}\right)^{1}\left(1-p_{t+1}\right)^{\mathrm{N}-1}$
$2 / \mathrm{N}$	$\binom{\mathrm{N}}{2}\left(p_{t}\right)^{2}\left(1-p_{t}\right)^{\mathrm{N}-2}$	$\binom{\mathrm{~N}}{2}\left(p_{t+1}\right)^{2}\left(1-p_{t+1}\right)^{\mathrm{N}-2}$
\cdot		
\cdot	$\binom{\mathrm{~N}}{\mathrm{~N}}\left(p_{t}\right)^{\mathrm{N}}\left(1-p_{t}\right)^{0}$	$\binom{\mathrm{~N}}{\mathrm{~N}}\left(p_{t+1}\right)^{\mathrm{N}\left(1-p_{t+1}\right)^{0}}$

Random Genetic Drift

Frequency of A	Generation(t+1)	Generation (t+2)	Generation(t+3)
0/N	$\binom{\mathrm{N}}{0}\left(p_{t}\right)^{0}\left(1-p_{t}\right)^{\mathrm{N}-0}$	$\binom{\mathrm{N}}{0}\left(p_{t+1}\right)^{0}\left(1-p_{t+1}\right)^{\mathrm{N}-0}$	$\binom{\mathrm{N}}{0}\left(p_{t+2}\right)^{0}\left(1-p_{t+2}\right)^{\mathrm{N}-0}$
1/N	$\binom{\mathrm{N}}{1}\left(p_{t}\right)^{1}\left(1-p_{t}\right)^{N-1}$	$\binom{\mathrm{N}}{1}\left(p_{t+1}\right)^{1}\left(1-p_{t+1}\right)^{\mathrm{N}-1}$	$\binom{\mathrm{N}}{1}\left(p_{t+2}\right)^{1}\left(1-p_{t+2}\right)^{\mathrm{N}-1}$
2/N	$\binom{\mathrm{N}}{2}\left(p_{t}\right)^{2}\left(1-p_{t}\right)^{\mathrm{N}-2}$	$\binom{\mathrm{N}}{2}\left(p_{t+1}\right)^{2}\left(1-p_{t+1}\right)^{\mathrm{N}-2}$	$\binom{\mathrm{N}}{2}\left(p_{t+2}\right)^{2}\left(1-p_{t+2}\right)^{\mathrm{N}-2}$
N/N	$\binom{\mathrm{N}}{\mathrm{N}}\left(p_{t}\right)^{\mathrm{N}}\left(1-p_{t}\right)^{\text {o }}$	$\binom{\mathrm{N}}{\mathrm{N}}\left(p_{t+1}\right)^{\mathrm{N}}\left(1-p_{t+1}\right)^{0}$	$\binom{\mathrm{N}}{\mathrm{N}}\left(p_{t+2}\right)^{\mathrm{N}}\left(1-p_{t+2}\right)^{\mathrm{O}}$

Transitions between states are random, but defined by a probability
Transitions have no memory beyond previous step

Random Genetic Drift

$0 / \mathrm{N}$ Generation $(t+1) \quad$ Generation ($t+2$)

Generation(t+3)

0/N	$\left.\binom{\mathrm{N}}{0}^{\left(p_{t}\right.}\right)^{0}\left(1-p_{t}\right)^{N-0}$	$\left.\binom{\mathrm{N}}{0}^{\left(p_{t+1}\right.}\right)^{0}\left(1-p_{t+1}\right)^{N-0}$	$\left.\binom{\mathrm{N}}{0}^{\left(p_{t+2}\right.}\right)^{0}\left(1-p_{t+2}\right)^{N-0}$
1/N	$\binom{\mathrm{N}}{1}\left(p_{t}\right)^{\prime}\left(1-p_{t}\right)^{\mathrm{N}-1}$	$\binom{\mathrm{N}}{1}\left(p_{t+1}\right)^{1}\left(1-p_{t+1}\right)^{\mathrm{N}-1}$	$\binom{\mathrm{N}}{1}\left(p_{t+2}\right)^{\prime}\left(1-p_{t+2}\right)^{\mathrm{N}-1}$
2/N	$\binom{\mathrm{N}}{2}\left(p_{t}\right)^{2}\left(1-p_{t}\right)^{\mathrm{N}-2}$	$\binom{\mathrm{N}}{2}\left(p_{t+1}\right)^{2}\left(1-p_{t+1}\right)^{\mathrm{N}-2}$	$\binom{\mathrm{N}}{2}\left(p_{t+2}\right)^{2}\left(1-p_{t+2}\right)^{N-2}$
N/N	$\binom{\mathrm{N}}{\mathrm{~N}}^{\left(p_{t}\right)^{\mathrm{N}}\left(1-p_{t}\right)^{0}}$	$\binom{\mathrm{N}}{\mathrm{~N}}^{2}\left(p_{t+1}\right)^{\mathrm{N}}\left(1-p_{t+1}\right)^{0}$	$\binom{\mathrm{N}}{\mathrm{N}}\left(p_{t+2}\right)^{\mathrm{N}}\left(1-p_{t+2}\right)^{\text {d }}$

Transitions between states are random, but defined by a probability
Transitions have no memory beyond previous step

Diploid Model

- N diploid individuals
-2 N alleles in population
- Two alleles: A, a (frequencies p, q)
- Randomly draw 2 N gametes to found next generation
$\operatorname{Pr}(j$ alleles of type $A)=\binom{2 N}{j} \mathrm{p}^{\mathrm{j}}(1-\mathrm{p}) 2^{\mathrm{N}-\mathrm{j}}$

Wright-Fisher Model

Wright-Fisher Model

- Assumptions:
- N diploid organisms (2N alleles)
- Infinite gametes
- Discrete Generations
- Random mating
- No mutation
- No selection

$$
P_{i j}=\binom{\mathrm{2N}}{j}\left(\frac{i}{2 \mathrm{~N}}\right)^{j}\left(1-\frac{i}{2 \mathrm{~N}}\right)^{2 \mathrm{~N}-j}=\binom{2 \mathrm{~N}}{j} p^{j} q^{2 \mathrm{~N}-j}
$$

Time, Probability of fixation

- Alleles are eventually fixed or lost
- 2 N alleles
- Each equally likely to fix (selectively equivalent)
$-\operatorname{Pr}($ fixation $)=$

Time, Probability of fixation

- Alleles are eventually fixed or lost
- 2 N alleles
- Each equally likely to fix (selectively equivalent)
$-\operatorname{Pr}($ fixation $)=1 / 2 \mathrm{~N}$

Time, Probability of fixation

- Alleles are eventually fixed or lost
- 2 N alleles
- Each equally likely to fix (selectively equivalent)
$-\operatorname{Pr}($ fixation $)=1 / 2 \mathrm{~N}$
- If i copies of allele, $\operatorname{Pr}($ fixation $)=i / 2 N$

Time, Probability of fixation

- Alleles are eventually fixed or lost
- 2 N alleles
- Each equally likely to fix (selectively equivalent)
$-\operatorname{Pr}($ fixation $)=1 / 2 \mathrm{~N}$
- If i copies of allele, $\operatorname{Pr}($ fixation $)=i / 2 N$
- $\operatorname{Pr}($ fixation $)=p$

Probabilities of fixation, loss

- Alleles are eventually fixed or lost
- 2 N alleles
- Each equally likely to fix (selectively equivalent)
$-\operatorname{Pr}($ fixation $)=1 / 2 \mathrm{~N}$
- If i copies of allele, $\operatorname{Pr}($ fixation $)=i / 2 \mathrm{~N}$
- $\operatorname{Pr}($ fixation $)=p$
- $\operatorname{Pr}($ loss $)=1-p$

Allele frequencies will change randomly over time

Frequency of Allele A in Population
$N=40$

Frequency of Allele A in Population
$N=2000$

Times to fixation, loss

$$
\begin{array}{ll}
t_{f i x}=\frac{-4 \mathrm{~N}(1-p) \ln (1-p)}{p} & \text { For } \mathrm{p}=1 / 2 \mathrm{~N}, \mathrm{t}_{\mathrm{fix}} \approx 4 \mathrm{~N} \\
t_{\text {loss }}=\frac{-4 \mathrm{~N}(p) \ln (p)}{1-p} & \text { For } \mathrm{p}=1 / 2 \mathrm{~N}, \mathrm{t}_{\text {loss }} \approx 2 \ln (2 \mathrm{~N})
\end{array}
$$

Decay of Heterozygosity

$$
2 \mathrm{~N}=2
$$

$\operatorname{Pr}(I B D)=2 / 4=1 / 2$
$\operatorname{Pr}(I B D)=1 / 2 N$
$\operatorname{Pr}($ not IBD) $=1-1 / 2 \mathrm{~N}$

$$
\begin{gathered}
\operatorname{Pr}\left(\mathrm{BD}_{t}\right)=F_{t}=\frac{1}{2 N}+\left(\left(1-\frac{1}{2 N}\right) F_{t-1}\right. \\
\text { If } F_{0}=0, F_{t}=1-\left(1-\frac{1}{2 N}\right)^{t}
\end{gathered}
$$

Figure 9. Increase of F_{t} in ideal populations as a function of time and effective population sze N.

Hartl \& Clark

Decay of Heterozygosity

$$
\begin{gathered}
F_{t}=1-\left(1-\frac{1}{2 N}\right)^{t} \\
H_{t}=H_{0}\left(1-\frac{1}{2 N}\right)^{t} \approx H_{0} e^{-t / 2 N}
\end{gathered}
$$

Summary of Drift

- Stochastic fluctuations in allele frequencies due to sampling in a finite population
- Described by Wright-Fisher model
- Alleles are ultimately fixed or lost from population
$-\operatorname{Pr}(\mathrm{fix})=p ; \operatorname{Pr}($ loss $)=1-p$
$-\operatorname{Time}\left(\mathrm{fix}_{1 / 2 \mathrm{~N}}\right) \approx 4 \mathrm{~N}$; Time $\left(\right.$ loss $\left._{1 / 2 \mathrm{~N}}\right) \approx 2 \ln (2 \mathrm{~N})$
- H decreases ($\sim 1 / 2 \mathrm{~N}$) over time
- Hardy-Weinberg largely still applies
- Allele frequency changes small
- Deviation from expected genotype frequencies ~ 1/2N

How does drift come into play in conservation genetics?

Habitat loss

- Small, isolated populations are threatened -RGD

Habitat loss

- Small, isolated populations are threatened - RGD, inbreeding
- Consequences:
- Reduction in genetic diversity

Genetically depauperate species

Species	Popula- tions (N)	Indi- viduals (N)	Loci (N)	Poly- morphic loci (\%)	Average hetero- zygosity	Refer- ence
Allozyme						
Drosophila	43^{*}	>100	24	43.1	0.140	(10)
Mus musculus	2	87	46	20.5	0.088	(15)
Felis catus	1	56	55	22.0	0.076	(16)
Homo sapiens	Many	>100	104	31.7	0.063	$(43-45)$
Acinonyx jubatus	2	55	47	0.0	0.0	

O'Brien et al. 1983

Effective Population Size

Buri 1956

Effective Population Size

$$
\begin{aligned}
\operatorname{Var}(p)=\operatorname{Var}\left(\frac{\# A}{2 N}\right) & =\left(\frac{1}{2 N}\right)^{2} \operatorname{Var}(\# A) \\
& =\left(\frac{1}{2 N}\right)^{2} 2 N p c \\
& =\frac{p q}{2 N}
\end{aligned}
$$

Effective Population Size

$$
\operatorname{Var}(p)=\operatorname{Var}\left(\frac{\# A}{2 N}\right)=\left(\frac{1}{2 N}\right)^{2} \operatorname{Var}(\# A)
$$

$$
\begin{aligned}
& =\left(\frac{1}{2 N}\right)^{2} 2 N p c_{1} \\
& =\frac{p q}{2 N}
\end{aligned}
$$

- In reality, allele frequency changes > pq/2N
- Fluctuations in population size, $\mathrm{N}_{\mathrm{m}} \neq \mathrm{N}_{\mathrm{f}}$, etc.

Effective Population Size

- Number of individuals in a theoretically ideal population having the same magnitude of drift as the actual population
- Measure 'magnitude' in 3 ways

Effective Population Size

- Number of individuals in a theoretically ideal population having the same magnitude of drift as the actual population
- Measure 'magnitude' in 3 ways
- Change in variance of allele frequency (variance N_{e})
- Change in $\operatorname{Pr}($ IBD $)$ (inbreeding N_{e})
- Rate of loss of heterozygosity (eigenvalue N_{e})

Effective Population Size

- Number of individuals in a theoretically ideal population having the same magnitude of drift as the actual population
- Measure 'magnitude' in 3 ways
- Change in variance of allele frequency (variance N_{e})
- Change in $\operatorname{Pr}($ IBD $)$ (inbreeding N_{e})
- Rate of loss of heterozygosity (eigenvalue N_{e})
- Typically smaller than census size N

Effective Population Size

- Number of individuals in a theoretically ideal population having the same magnitude of drift as the actual population
- Measure 'magnitude' in 3 ways
- Change in variance of allele frequency (variance N_{e})
- Change in $\operatorname{Pr}($ IBD $)$ (inbreeding N_{e})
- Rate of loss of heterozygosity (eigenvalue N_{e})
- Typically smaller than census size N
- Sex ratio
- Variance in reproductive success
- Population size changes

Effective Population Size

