Introductory Models, Effective Population Size

Models

- Intentional simplification of complex relationships
 - Eliminate extraneous detail, focus on key parameters
 - Appropriate and useful first approximations
- Evaluate fit of data to model
 - Poor fit may implicate violation of model assumptions
 - Refining of models tells us which parameters most important
- Population genetics relies heavily on mathematical models
 - Specify the mathematical relationships among parameters that characterize a population

Random Mating

- One of the most important models in population genetics
- Frequency of mating pairs determined by genotype frequencies

```
\begin{array}{lll} \text{Male Genotype} & \text{Female Genotype Frequency} \\ \text{Frequency} & A_1A_1 \ (P_F) & A_1A_2 \ (H_F) & A_2A_2 \ (Q_F) \\ & A_1A_1 \ (P_M) & \\ & A_1A_2 \ (H_M) & \\ & A_2A_2 \ (Q_M) & \end{array}
```

Random Mating

- One of the most important models in population genetics
- Frequency of mating pairs determined by genotype frequencies

Random Mating

- One of the most important models in population genetics
- Frequency of mating pairs determined by genotype frequencies
- Also called 'panmictic' model

Non-overlapping Generations

Birth
Reproduction
Death

Birth
Reproduction
Death

Birth
Reproduction
Death

Generation t -2

Generation t -1

Generation t

Hardy-Weinberg Model

- Both models convenient first approximations for complex populations
- What happens when we combine them?
- What are consequences of random mating in a non-overlapping generation model?

Godfrey Harold Hardy

Wilhelm Weinberg

HW Model Assumptions

- Discrete generations
- Random mating
- Sexual reproduction
- Diploid
- Bi-allelic locus
- Allele frequencies equal in males, females
- Large population size
- No migration
- No mutation
- No selection

Hardy-Weinberg Principle

- One of first major principles in population genetics
- Describes relationship between genotype frequency and allele frequency
 - Equilibrium state
- Autosomal locus will alleles A, a
 - Frequencies of A, a: p, q
- Genotypes AA, Aa, aa

Hardy-Weinberg Principle

- One of first major principles in population genetics
- Describes relationship between genotype frequency and allele frequency
 - Equilibrium state
- Autosomal locus will alleles A, a
 - Frequencies of A, a: p, q
- Genotypes AA, Aa, aa
 - HW frequencies: p^2 , 2pq, q^2

HWE Genotype Frequencies

Hardy-Weinberg Principle

- One of first major principles in population genetics
- Describes relationship between genotype frequency and allele frequency
 - Equilibrium state
- Autosomal locus will alleles A, a
 - Frequencies of A, a: p, q
- Genotypes AA, Aa, aa
 - HW frequencies: p^2 , 2pq, q^2
- Once at HWE, allele & genotype freq constant

- Hardy-Weinberg equilibrium predicts:
 - 1) Allele frequencies remain constant
 - 2) Genotype frequencies predicted by allele frequencies
- HW model assumes infinite population size
- With finite population size, allele frequencies change over time due to sampling
- Random genetic drift: stochastic change in allele frequencies due to finite sampling of gametes

- Haploid population of size N
- Two alleles: A, a
- At generation t
 - Frequency of A is p
- Frequency of a is q = (1-p)

What is frequency of A at generation t + 1?

In generation t, freq(A) = p, freq(a) = (1-p)

Randomly select 1 individual to be parent

In generation t, freq(A) = p, freq(a) = (1-p)

Randomly select 1 individual to be parent

$$- Pr(1A) =$$

In generation t, freq(A) = p, freq(a) = (1-p)

Randomly select 1 individual to be parent

$$- Pr(1A) = p$$

- Randomly select 1 individual to be parent
 - Pr(1A) = p
 - Pr(0A) =

- Randomly select 1 individual to be parent
 - Pr(1A) = p
 - $-\Pr(0A) = (1-p)$

- Randomly select 1 individual to be parent
 - Pr(1A) = p
 - $-\Pr(0A) = (1-p)$
- Randomly select 2 individuals to be parents

- Randomly select 1 individual to be parent
 - Pr(1A) = p
 - Pr(0A) = (1 p)
- Randomly select 2 individuals to be parents
 - Pr(2A) =

- Randomly select 1 individual to be parent
 - Pr(1A) = p
 - Pr(0A) = (1 p)
- Randomly select 2 individuals to be parents
 - $-\Pr(2A) = p^2$

- Randomly select 1 individual to be parent
 - Pr(1A) = p
 - $-\Pr(0A) = (1-p)$
- Randomly select 2 individuals to be parents
 - $Pr(2A) = p^2$
 - -Pr(0A) =

- Randomly select 1 individual to be parent
 - Pr(1A) = p
 - $-\Pr(0A) = (1-p)$
- Randomly select 2 individuals to be parents
 - $-\Pr(2A) = p^2$
 - $Pr(0A) = (1 p)^2$

- Randomly select 1 individual to be parent
 - Pr(1A) = p
 - Pr(0A) = (1 p)
- Randomly select 2 individuals to be parents

$$-\Pr(2A) = p^2$$

$$- Pr(1A) =$$

$$-\Pr(0A) = (1-p)^2$$

- Randomly select 1 individual to be parent
 - Pr(1A) = p
 - Pr(0A) = (1 p)
- Randomly select 2 individuals to be parents

$$-\Pr(2A) = p^2$$

$$-\Pr(1A) = 2p(1-p)$$

$$-\Pr(0A) = (1-p)^2$$

- Randomly select 1 individual to be parent
 - Pr(1A) = p
 - Pr(0A) = (1 p)
- Randomly select 2 individuals to be parents
 - $-\Pr(2A) = p^2$
 - Pr(1A) = 2p(1-p)
 - $-\Pr(0A) = (1-p)^2$
- Randomly select 3 individuals to be parents

- Randomly select 1 individual to be parent
 - Pr(1A) = p
 - Pr(0A) = (1 p)
- Randomly select 2 individuals to be parents
 - $-\Pr(2A) = p^2$
 - Pr(1A) = 2p(1-p)
 - $-\Pr(0A) = (1-p)^2$
- Randomly select 3 individuals to be parents
 - -Pr(3A) =
 - Pr(2A) =
 - Pr(1A) =
 - Pr(0A) =

- Randomly select 1 individual to be parent
 - Pr(1A) = p
 - Pr(0A) = (1 p)
- Randomly select 2 individuals to be parents
 - $-\Pr(2A) = p^2$
 - Pr(1A) = 2p(1-p)
 - $Pr(0A) = (1 p)^2$
- Randomly select 3 individuals to be parents
 - $Pr(3A) = p^3$
 - $-\Pr(2A) = 3p^2(1-p)$
 - $Pr(1A) = 3p(1-p)^2$
 - $Pr(0A) = (1 p)^3$

In generation t, freq(A) = p, freq(a) = (1-p)

Randomly select N individuals to be parents

$$Pr(j \text{ alleles of type } A) = \binom{N}{j} p^{j} (1-p)^{N-j}$$

What is frequency of A at generation t + 1?

Frequency of A

Generation(t+1)

0/N

$$\binom{N}{0} (p_t)^0 (1-p_t)^{N-0}$$

1/N

$$\binom{N}{1} (p_t)^1 (1-p_t)^{N-1}$$

2/N

$$\binom{N}{2} (p_t)^2 (1-p_t)^{N-2}$$

-

N/N

$$\binom{N}{N}(p_t)^N(1-p_t)^0$$

Frequency of A

Generation(t+1)

Generation (t+2)

0/N

$$\binom{N}{0}(p_t)^0(1-p_t)^{N-0}$$

$$\binom{N}{0} (p_{t+1})^0 (1-p_{t+1})^{N-0}$$

1/N

$$\binom{N}{1} (p_t)^1 (1-p_t)^{N-1}$$

$$\binom{N}{1} (p_{t+1})^1 (1-p_{t+1})^{N-1}$$

2/N

$$\binom{N}{2}(p_t)^2(1-p_t)^{N-2}$$

$$\binom{N}{2}(p_{t+1})^2(1-p_{t+1})^{N-2}$$

•

•

N/N

$$\binom{N}{N}(p_t)^N(1-p_t)^0$$

$$\binom{N}{N} (p_{t+1})^N (1-p_{t+1})^0$$

Frequency of A

Generation(t+1)

Generation (t+2)

Generation(t+3)

0/N

$$\binom{N}{0}(p_t)^0(1-p_t)^{N-0}$$

$$\binom{N}{0} (p_{t+1})^0 (1-p_{t+1})^{N-0}$$

$$\binom{N}{0}(p_{t+1})^0(1-p_{t+1})^{N-0} \qquad \binom{N}{0}(p_{t+2})^0(1-p_{t+2})^{N-0}$$

1/N

$$\binom{N}{1} (p_t)^1 (1-p_t)^{N-1}$$

$$\binom{N}{1}(p_{t+1})^{1}(1-p_{t+1})^{N-1} \qquad \binom{N}{1}(p_{t+2})^{1}(1-p_{t+2})^{N-1}$$

$$\binom{N}{1}(p_{t+2})^1(1-p_{t+2})^{N-1}$$

2/N

$$\binom{\mathsf{N}}{\mathsf{2}}(p_t)^2(1-p_t)^{\mathsf{N}-\mathsf{2}}$$

$$\binom{N}{2} (p_{t+1})^2 (1-p_{t+1})^{N-2}$$

$$\binom{N}{2}(p_{t+1})^2(1-p_{t+1})^{N-2}$$
 $\binom{N}{2}(p_{t+2})^2(1-p_{t+2})^{N-2}$

N/N

$$\binom{N}{N}(p_t)^N(1-p_t)^0$$

$$\binom{N}{N} (p_{t+1})^N (1-p_{t+1})^C$$

$$\binom{N}{N} (p_{t+1})^N (1-p_{t+1})^0 \qquad \binom{N}{N} (p_{t+2})^N (1-p_{t+2})^0$$

Transitions between states are random, but defined by a probability

Transitions have no memory beyond previous step

Frequency of A	Generation(t+1)	Generation (t+2)	Generation(t+3)
0/N	$\binom{N}{0} (p_t)^0 (1-p_t)^{N-0}$	$\binom{N}{0} (p_{t+1})^0 (1 - p_{t+1})^{N-0}$	$\binom{N}{0} (p_{t+2})^0 (1-p_{t+2})^{N-0}$
1/N	$\binom{N}{1}(p_t)^1(1-p_t)^{N-1}$	$\binom{N}{1}(p_{t+1})^1(1-p_{t+1})^{N-1}$	$\binom{N}{1} (p_{t+2})^1 (1-p_{t+2})^{N-1}$
2/N	$\binom{N}{2} (p_t)^2 (1-p_t)^{N-2}$	$\binom{N}{2} (p_{t+1})^2 (1 - p_{t+1})^{N-2}$	$\binom{N}{2} (p_{t+2})^2 (1 - p_{t+2})^{N-2}$
•			
N/N	$\binom{N}{N} (p_t)^{N} (1-p_t)^{O}$	$\binom{N}{N} (p_{t+1})^N (1-p_{t+1})^0$	$\binom{N}{N} (p_{t+2})^N (1-p_{t+2})^0$

Transitions between states are random, but defined by a probability

Transitions have no memory beyond previous step

Diploid Model

- N diploid individuals
 - 2N alleles in population
- Two alleles: A, a (frequencies p, q)
- Randomly draw 2N gametes to found next generation

$$Pr(j \text{ alleles of type } A) = {2N \choose j} p^{j} (1-p) 2^{N-j}$$

Wright-Fisher Model

Wright-Fisher Model

Assumptions:

- N diploid organisms (2N alleles)
- Infinite gametes
- Discrete Generations
- Random mating
- No mutation
- No selection

$$P_{ij} = {2N \choose j} \left(\frac{i}{2N}\right)^j \left(1 - \frac{i}{2N}\right)^{2N-j} = {2N \choose j} p^j q^{2N-j}$$

- Alleles are eventually fixed or lost
- 2N alleles
 - Each equally likely to fix (selectively equivalent)
 - Pr(fixation) =

- Alleles are eventually fixed or lost
- 2N alleles
 - Each equally likely to fix (selectively equivalent)
 - Pr(fixation) = 1/2N

- Alleles are eventually fixed or lost
- 2N alleles
 - Each equally likely to fix (selectively equivalent)
 - Pr(fixation) = 1/2N
 - If i copies of allele, Pr(fixation) = i/2N

- Alleles are eventually fixed or lost
- 2N alleles
 - Each equally likely to fix (selectively equivalent)
 - Pr(fixation) = 1/2N
 - If i copies of allele, Pr(fixation) = i/2N
- Pr(fixation) = p

Probabilities of fixation, loss

- Alleles are eventually fixed or lost
- 2N alleles
 - Each equally likely to fix (selectively equivalent)
 - Pr(fixation) = 1/2N
 - If i copies of allele, Pr(fixation) = i/2N
- Pr(fixation) = p
- Pr(loss) = 1-p

Allele frequencies will change randomly over time

Frequency of Allele A in Population

N = 2000

N = 40

Times to fixation, loss

$$t_{fix} = \frac{-4N(1-p)\ln(1-p)}{p}$$

For p =
$$1/2N$$
, $t_{fix} \approx 4N$

$$t_{oss} = \frac{-4N(p)ln(p)}{1-p}$$

For p =
$$1/2N$$
, $t_{loss} \approx 2ln(2N)$

Decay of Heterozygosity

2N=2

$$Pr(IBD) = 2/4 = 1/2$$

$$Pr(IBD) = 1/2N$$

Pr(not IBD) = 1 - 1/2N
Pr(IBD_t) =
$$F_t = \frac{1}{2N} + (1 - \frac{1}{2N})F_{t-1}$$

If $F_0 = 0$, $F_t = 1 - (1 - \frac{1}{2N})^t$

Figure 9. Increase of F_t in ideal populations as a function of time and effective population size N.

Hartl & Clark

Decay of Heterozygosity

$$F_{t} = 1 - (1 - \frac{1}{2N})^{t}$$

$$H_{t} = H_{0} \left(1 - \frac{1}{2N} \right)^{t} \approx H_{0} e^{-t/2N}$$

Summary of Drift

- Stochastic fluctuations in allele frequencies due to sampling in a finite population
- Described by Wright-Fisher model
- Alleles are ultimately fixed or lost from population
 - $-\Pr(\text{fix}) = p$; $\Pr(\text{loss}) = 1 p$
 - Time(fix_{1/2N}) ≈ 4N; Time(loss_{1/2N}) ≈ 2ln(2N)
- H decreases (~1/2N) over time
- Hardy-Weinberg largely still applies
 - Allele frequency changes small
 - Deviation from expected genotype frequencies ~
 1/2N

How does drift come into play in conservation genetics?

Habitat loss

- Small, isolated populations are threatened
 - RGD

Habitat loss

- Small, isolated populations are threatened
 - RGD, inbreeding
- Consequences:
 - Reduction in genetic diversity

Genetically depauperate species

Species	Popula- tions (N)	Indi- viduals (N)	Loci (N)	Poly- morphic loci (%)	Average hetero- zygosity	Refer- ence
		All	ozyme			
Drosophila	43*	> 100	24	43.1	0.140	(10)
Mus musculus	2	87	46	20.5	0.088	(15)
Felis catus	1	56	55	22.0	0.076	(16)
Homo sapiens	Many	> 100	104	31.7	0.063	(43-45)
Acinonyx jubatus	2	55	47	0.0	0.0	, ,

$$Var(p) = Var\left(\frac{\#A}{2N}\right) = \left(\frac{1}{2N}\right)^2 Var(\#A)$$

$$= \left(\frac{1}{2N}\right)^2 2Npq$$

$$=\frac{pq}{2N}$$

$$Var(p) = Var\left(\frac{\#A}{2N}\right) = \left(\frac{1}{2N}\right)^2 Var(\#A)$$

$$= \left(\frac{1}{2N}\right)^2 2Npq$$

$$=\frac{pq}{2N}$$

- In reality, allele frequency changes > pq/2N
 - Fluctuations in population size, N_m≠N_f, etc.

- Number of individuals in a theoretically ideal population having the same magnitude of drift as the actual population
- Measure 'magnitude' in 3 ways

- Number of individuals in a theoretically ideal population having the same magnitude of drift as the actual population
- Measure 'magnitude' in 3 ways
 - Change in variance of allele frequency (variance N_e)
 - Change in Pr(IBD) (inbreeding $N_{\rm e}$)
 - Rate of loss of heterozygosity (eigenvalue $N_{\rm e}$)

- Number of individuals in a theoretically ideal population having the same magnitude of drift as the actual population
- Measure 'magnitude' in 3 ways
 - Change in variance of allele frequency (variance N_e)
 - Change in Pr(IBD) (inbreeding N_e)
 - Rate of loss of heterozygosity (eigenvalue $N_{\rm e}$)
- Typically smaller than census size N

- Number of individuals in a theoretically ideal population having the same magnitude of drift as the actual population
- Measure 'magnitude' in 3 ways
 - Change in variance of allele frequency (variance N_e)
 - Change in Pr(IBD) (inbreeding N_e)
 - Rate of loss of heterozygosity (eigenvalue $N_{\rm e}$)
- Typically smaller than census size N
 - Sex ratio
 - Variance in reproductive success
 - Population size changes

