Pathway and Gene Set Analysis Part 2

Alison Motsinger-Reif, PhD Bioinformatics Research Center Department of Statistics North Carolina State University motsinger@stat.ncsu.edu

Goals

Some methods in more detail

- TopGO
- Global Ancova
- Pathvisio/Genmapp
- Impact Factor Analysis
- GSEA

Some methods in detail

 There are far too many methods to give a comprehensive overview

> BRIEFINGS IN BIOINFORMATICS. VOL 9. NO 3. 189–197 Advance Access publication January 17, 2008

doi:10.1093/bib/bbn001

Gene-set approach for expression pattern analysis

Dougu Nam and Seon-Young Kim

Submitted: 7th November 2007; Received (in revised form): 28th December 2007

Abstract

Recently developed gene set analysis methods evaluate differential expression patterns of gene groups instead of those of individual genes. This approach especially targets gene groups whose constituents show subtle but coordinated expression changes, which might not be detected by the usual individual gene analysis. The approach has been quite successful in deriving new information from expression data, and a number of methods and tools have been developed intensively in recent years. We review those methods and currently available tools, classify them according to the statistical methods employed, and discuss their pros and cons. We also discuss several interesting extensions to the methods.

Keywords: gene set analysis; DNA microarray; differential expression of genes

Table of methods (from Nam & Kim)

 Table I: Cutoff-free gene set analysis methods

Authors	Year	Name	Statistical test	Self-contained versus competitive	Gene versus ample randomization	Reference	
Virtaneva et al.	2001		sample randomization	self-contained	sample	[8]	
Pavlidis et al.	2002		gene randomization	competitive	gene	[9]	
Mootha et al.	2003	GSEA	sample randomization	mixed	sample	[7]	
Breslin et al.	2004	Catmap	gene randomization	competitive	gene	[3]	
Goeman et al.	2004	globaltest	sample randomization	self-contained	sample	[17]	
Smid et al.	2004	GO-Mapper	z-test	competitive	gene	[38]	
Volinia et al.	2004	GOAL	gene randomization	competitive	gene	[39]	
Barry et al.	2005	SAFE	sample randomization	competitive	sample	[19]	
Beh-Shaul et al.	2005		Kolmogorov–Smirnov test	competitive	gene	[5]	
Boorsma e al.	2005	T-profiler	t-test	competitive	gene	[15]	
Kim et al.	2005	PAGE	z-test	competitive	gene	[14]	
Lee et al.	2005	ErmineJ	sample randomization	competitive	gene	[16]	
Subramanian et al.	2005	GSEA	sample randomization	mixed	gene	[25]	
Tian et al.	2005	QI, Q2	gene or sample randomization	competitive or self-contained	gene or sample	[10]	
Tomfohr et al.	2005	PLAGE	sample randomization	self-contained	sample	[20]	
Edelman et al.	2006	ASSESS	sample randomization	competitive	sample	[28]	
Kong et al.	2006		Hotelling's T squared	self-contained	sample	[21]	
Nam et al.	2006	ADGO	z-test	competitive	gene	[29]	
Saxena et al.	2006	AE	sample randomization	competitive	sample	[31]	
Scheer et al.	2006	JProGO	Fisher's exact test, Kolmogorov–Smirnov test, t-test, unpaired Wilcoxon's test	competitive	gene	[40]	
Al-Shahrour et al.	2007	Fatiscan	Fisher's exact test, hypergeometric test	competitive	gene	[41]	
Backes et al.	2007	GeneTrail	Fisher's exact test, hypergeometric test, sample randomization	competitive	gene or sample	[42]	
Cavalieri et al.	2007	Eu.Gene Analyzer	Fisher's exact test, sample randomization	competitive	gene or sample	[43]	
Dinu et al.	2007	SAM-GS	sample randomization	self-contained	sample	[22]	
Efron et al.	2007	GSA	sample randomization	mixed	sample	[26]	
Newton et al.	2007	Random set	z-test	competitive	gene	[44]	

Table of software (from Nam & Kim)

Table 2: Gene set analysis tools

Name	Organism ^a	Application Type	URL	Reference
ADGO	H, M, R, Y	Web server	http://array.kobic.re.kr/ADGO	[29]
ASSESS	H, M, R	Octave/Java standalone	http://people.genome.duke.edu/~jhg9/assess/	[28]
Babelomics	H, M, R, DM, S, C	Web server	http://www.babelomics.org	[45]
Catmap	н	Perl script	http://bioinfo.thep.lu.se/catmap.html	[3]
ErmineJ	H, M, R	Java standalone	http://www.bioinformatics.ubc.ca/ermineJ/	[16]
Eu.Gene Analyzer	H, M, R, Y	Windows/Unix standalone	http://www.ducciocavalieri.org/bio/Eugene.htm	[43]
FatiScan	H, M, R, Y, B, D, G, C, A, S, DM	Web server	http://fatiscan.bioinfo.cipf.es/	[41]
GAZER	H, M, R, Y	Web server	http://integromics.kobic.re.kr/GAzer/index.faces;	[13]
GeneTrail	H, M, R, Y, SA, CG, AT	Web server	http://genetrail.bioinf.uni-sb.de/	[42]
Global test	NA	R package	http://bioconductor.org/packages/2.0/bioc/html/globaltest.html	[17]
GOAL	H, M	Web server	http://microarrays.unife.it	[39]
GO-Mapper	H, M, R, Z, DM, Y	Windows standalone, Perl script	http://www.gatcplatform.nl/	[38]
GSA	Н	R package	http://www-stat.stanford.edu/~tibs/GSA/	[26]
GSEA	Н	Java standalone, R package	http://www.broad.mit.edu/gsea/	[25]
JProGO	Various prokaryotes	Web server	http://www.jprogo.de/	[40]
MEGO	Н	Windows standalone	http://www.dxy.cn/mego/	[46]
PAGE	H, M, R, Y	Python script	From the author (kimsy@kribb.re.kr)	[14]
PLAGE	H, M	Web server	http://dulci.biostat.duke.edu/pathways/	[20]
SAFE	NA	R package	http://bioconductor.org/packages/2.0/bioc/html/safe.html	[19]
SAM-GS	NA	Windows Excel Add-In	http://www.ualberta.ca/~yyasui/homepage.html	[22]
T-profiler	Y, CA	Web server	http://www.t-profiler.org/	[15]

^aH: Homo sapiens; M: Mus musculus; R: Rattus norvegicus; Y: Sacchaomyces cerevisiae; B: BosTaurus; D: Daniel rerio; G: Gallus gallus; C: Caenorhabditis elegans; A: Arabidopsis thaliana; DM: Drosophila melanogaster; Z: Zebra fish; CA: Candida albicans; SA: Staphylococcus aureus; CG: Corynebacterium glutamicum; AT: Arabidopsis thaliana.

TopGO

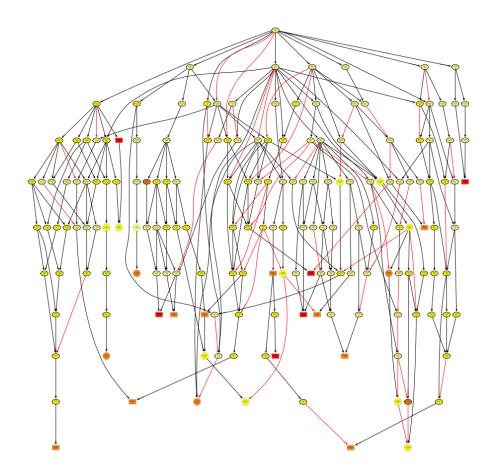
- TopGO is a GO term analysis program available from Bioconductor
- It takes the GO hierarchy into account when scoring terms
- If a parent term is only significant because of child term, it will receive a lower score
- TopGO uses the Fisher-test or the KS-test (both competitive)
- TopGO also gives a graphical representation of the results in form of a tree

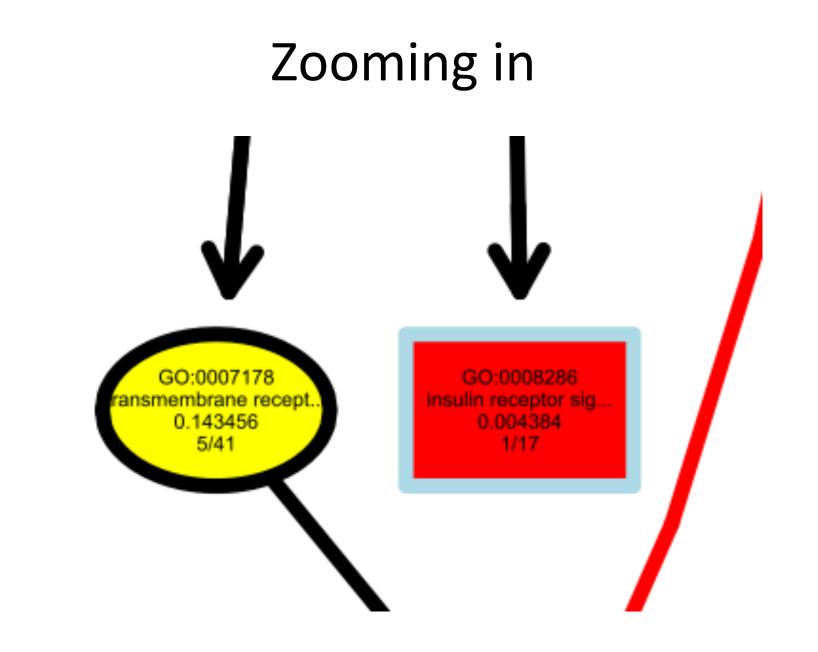
 BOINFORMATICS
 ORIGINAL PAPER
 Vol. 22 no. 13 2008, pages 1600-1807
doi:10.1093/bioinformatics/bt/140

 Gene expression
 Gene expression

 Improved scoring of functional groups from gene expression data
by decorrelating GO graph structure

 Adrian Alexa*, Jörg Rahnenführer and Thomas Lengauer


 Max-Planck-Institute for Informatics, Stuhlsatzenhausweg 85, D-66123 Saarbrücken, Germany


 Received on September 28, 2005; revised on March 30, 2006; accepted on April 4, 2006

 Advance Access publication April 10, 2006

 Associate Editor: Martin Bishop

Tree showing the 15 most significant GO terms

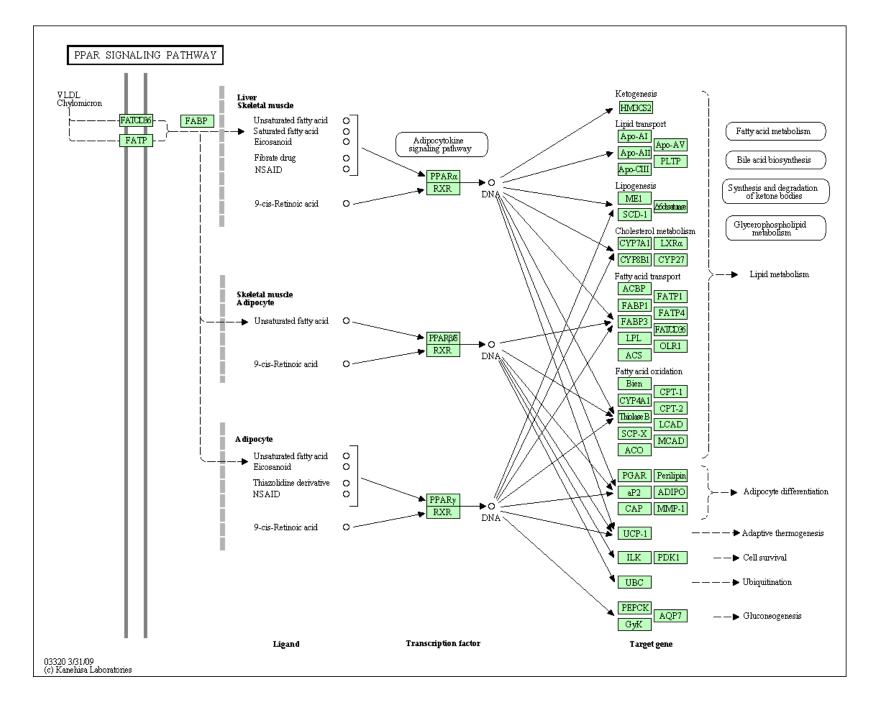
Global Ancova

- Uses all data (instead of summary statistics)
- NOT a multivariate method (MANOVA)
- One linear model for all genes within the gene set

Testing Differential Gene Expression in Functional Groups

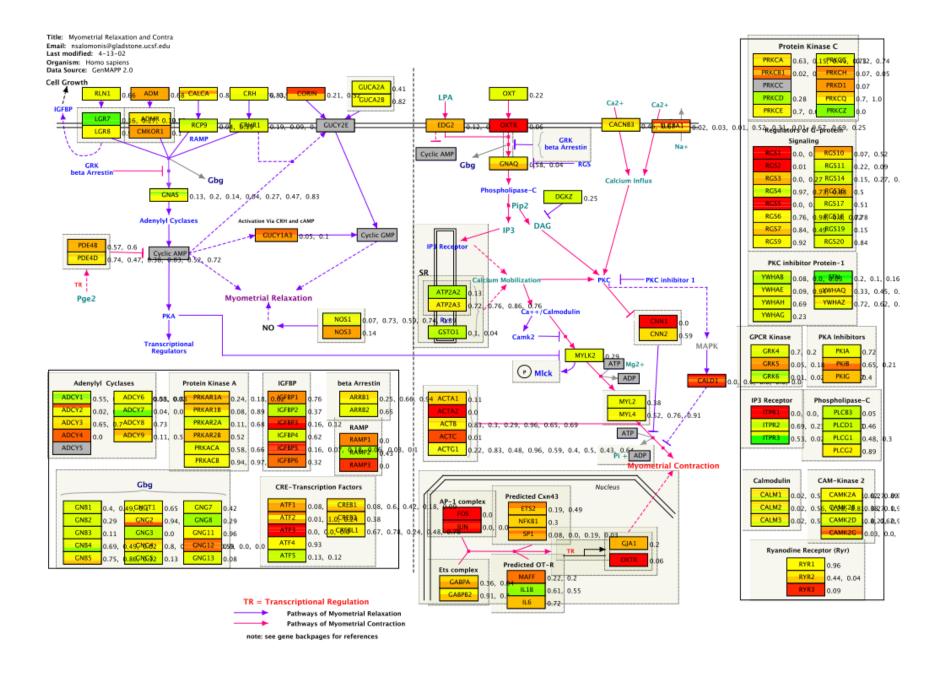
Goeman's Global Test versus an ANCOVA Approach

U. Mansmann¹, R. Meister² ¹IBE, Biometry and Bioinformatics, University of Munich, Munich, Germany ²Fachbereich II, University of Applied Sciences, Berlin, Germany


- Gene is a factor in the model that interacts with other factors
- Full model (e.g. including difference between lean and obsese) is compared with restricted model (no difference)
- P-values are calculated by group label resampling
- Algorithm allows for complex linear models including covariates
- Related to Goeman's Globaltest, which reverses roles of gene expression and groups: Goeman uses gene expression to explain groups (logistic regression)

10 most significant KEGG pathways according to Global Ancova

Pathway Name	path.size	sig.genes	perc.sig	p.gs	p.fisher	p.globaltest	p.globalAncova
Pantothenate and CoA biosynthesis	11	3	27.27%	7.05%	9.08%	0.55%	0.01%
Valine, leucine and isoleucine biosynthesis	4	2	50.00%	4.10%	5.29%	0.22%	0.02%
Cell Communication	60	10	16.67%	8.77%	7.51%	1.02%	0.03%
PPAR signaling pathway	37	10	27.03%	11.01%	0.28%	1.64%	0.07%
Inositol metabolism	1	1	100.00%	8.46%	10.06%	0.19%	0.10%
Valine, leucine and isoleucine degradation	35	7	20.00%	49.56%	5.65%	1.42%	0.11%
Fatty acid metabolism	27	6	22.22%	49.59%	4.81%	1.54%	0.31%
ECM-receptor interaction	49	8	16.33%	4.91%	11.45%	1.47%	0.83%
Focal adhesion	122	16	13.11%	76.63%	16.40%	2.59%	0.87%
Purine metabolism	78	14	17.95%	26.82%	2.26%	3.42%	1.21%


p.gs = A GSEA related competitive method (available in Limma)

p.fisher = Fisher-Test (competitive)

Genmapp/Pathvisio

- These are two pathway visualisation tools that collaborate
 - http://www.genmapp.org
 - <u>http://www.pathvisio.org</u>
- Both do some basic statistical analysis too (Fisher-Test with normal approximation)
- Main focus is on visually displaying pathways
 - Genes/nodes can be color-coded according to the data
 - Results (p-values, fold changes) can be displayed next to genes/nodes

- Impact Factor (IF) analysis combines both ORA and FCS approach, while accounting for the topology of the pathway
- IF analysis computes Perturbation Factor (PF) for each gene in each pathway, which is a gene-level statistic, as follows:

$$PF(g_i) = \Delta F(g_i) + \sum_{j=1}^n \beta_{ji} \cdot \frac{PF(g_j)}{N_{ds}(g_j)}$$

- The first term, $\Delta F(g_i)$, represents the signed normalized measured expression change (i.e., fold change) of the gene g_i
- The second term accounts for the topology of the pathway, where gene g_j is upstream of gene g_i
- In the second term, β_{ji} represents the type and strength of interaction betweer g_j and g_i
- If g_j activates g_i , $\beta_{ji} = 1$, and if g_j inhibits g_i , $\beta_{ji} = -1$
- Note that the PF of the upstream gene g_j is normalized by the number of downstream genes it interacts with, $N_{ds}(g_i)$
- The second term is repeated for every gene g_j that is upstream of gene g_i

• Next, Impact Factor (IF), is computed:

$$IF(P_i) = \log\left(\frac{1}{p_i}\right) + \frac{\left|\sum_{g \in P_i} PF(g)\right|}{N_{de}(P_i)}$$

• Next, Impact Factor (IF), is computed:

$$IF(P_i) = \log\left(\frac{1}{p_i}\right) + \frac{\left|\sum_{g \in P_i} PF(g)\right|}{N_{de}(P_i)}$$

The 1st term captures the significance of the given pathway P_i as provided by ORA, where p_i corresponds to the probability of obtaining a value of the statistic used at least as extreme as the one observed when the null hypothesis is true

• Next, Impact Factor (IF), is computed:

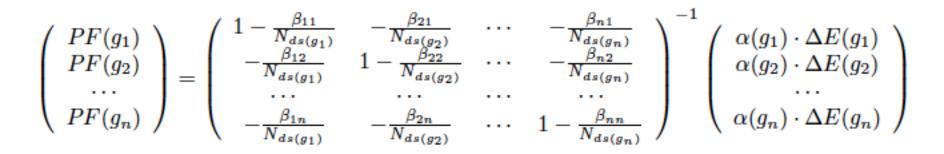
$$IF(P_i) = \log\left(\frac{1}{p_i}\right) + \frac{\left|\sum_{g \in P_i} PF(g)\right|}{N_{de}(P_i)}$$

Because IF should be large for severely impacted pathways (i.e., small p-values), the 1^{st} term uses $1/p_i$ rather than p_i

• Next, Impact Factor (IF), is computed:

$$IF(P_i) = \log\left(\frac{1}{p_i}\right) + \frac{\left|\sum_{g \in P_i} PF(g)\right|}{N_{de}(P_i)}$$

Log function is necessary to map the exponential scale of the p-values to a linear scale in order to keep the model linear

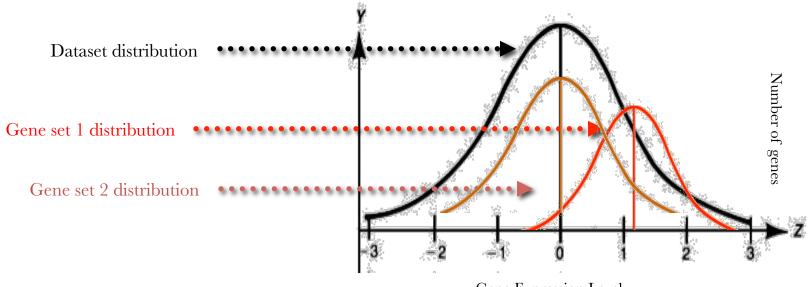

• Next, Impact Factor (IF), is computed:

$$IF(P_i) = \log\left(\frac{1}{p_i}\right) + \frac{\left|\sum_{g \in P_i} PF(g)\right|}{N_{de}(P_i)}$$

The 2nd term sums up the values of the PFs for all genes g on the given pathway P_i , and is normalized by the number of differentially expressed genes on the given pathway P_i

- Note that Eq. 1 essentially describes the perturbation factor PF for a gene g_i as a linear function of the perturbation factors of all genes in a given pathway
- Therefore, the set of all equations defining the PFs for all genes in a given pathway P_i form a system of simultaneous equations
- Expanding and re-arranging Equation 1 for all genes g₁, g₂, ..., g_n in a pathway Pi can be re-written as follows:

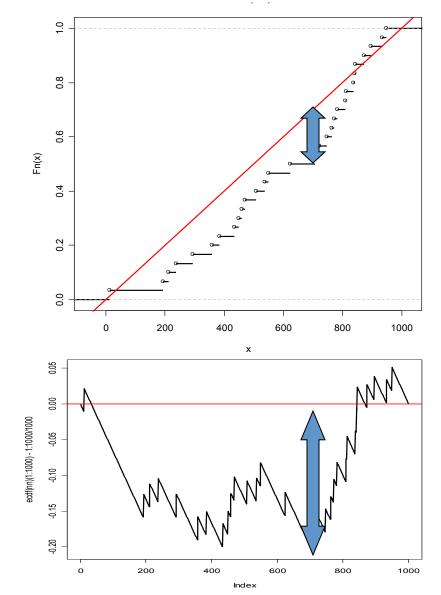
$$\begin{pmatrix} PF(g_1) \\ PF(g_2) \\ \cdots \\ PF(g_n) \end{pmatrix} = \begin{pmatrix} 1 - \frac{\beta_{11}}{N_{ds(g_1)}} & -\frac{\beta_{21}}{N_{ds(g_2)}} & \cdots & -\frac{\beta_{n1}}{N_{ds(g_n)}} \\ -\frac{\beta_{12}}{N_{ds(g_1)}} & 1 - \frac{\beta_{22}}{N_{ds(g_2)}} & \cdots & -\frac{\beta_{n2}}{N_{ds(g_n)}} \\ \cdots & \cdots & \cdots & \cdots \\ -\frac{\beta_{1n}}{N_{ds(g_1)}} & -\frac{\beta_{2n}}{N_{ds(g_2)}} & \cdots & 1 - \frac{\beta_{nn}}{N_{ds(g_n)}} \end{pmatrix}^{-1} \begin{pmatrix} \alpha(g_1) \cdot \Delta E(g_1) \\ \alpha(g_2) \cdot \Delta E(g_2) \\ \cdots \\ \alpha(g_n) \cdot \Delta E(g_n) \end{pmatrix}$$

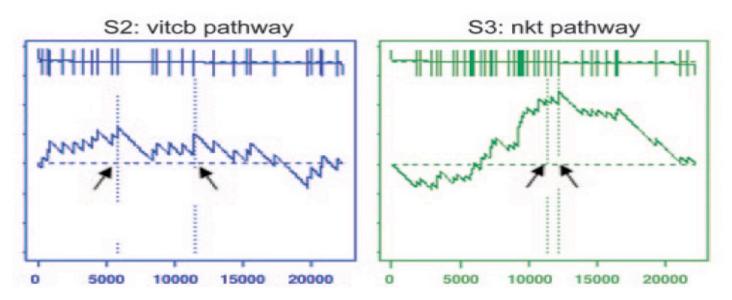

- After computing the PFs of all genes in a given pathway as the solution of this linear system, Eq. 2 is used to calculate the impact factor of each pathway
- The impact factor of each pathway is then used as a score to assess the impact of a given gene expression data set on all pathways (the higher the impact factor the more significant the pathway)

Gene Set Enrichment Analysis (GSEA)

- GSEA can be used with any gene set
- It is available as a standalone program, and versions of GSEA available within R/Bioconductor
- GSEA has many options and is a mix of a competitive and self-contained method
 - Default methods is to use a Kolmogorov Smirnov-type statistic to test the distribution of the gene set in the ranked gene list (competitive)
 - Typically that statistic ("enrichment score") is tested by permuting/ reshuffling the group labels (self-contained)
- Two Key Papers
 - Mootha et al., Nature Genetics 34, 267–273 (2003)
 - Subramanian et al., PNAS 102(43), 15545–15550 (2005).
 - Note the description of GSEA changed between the two papers.

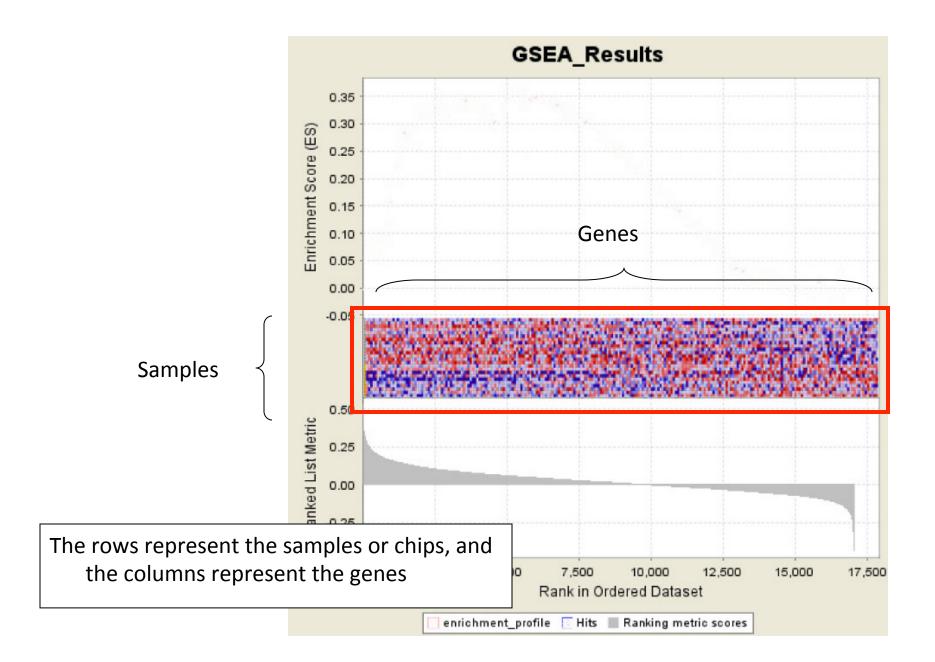
K-S Test


The Kolmogorov–Smirnov test is used to determine whether two underlying one-dimensional probability distributions differ, or whether an underlying probability distribution differs from a hypothesized distribution, in either case based on finite samples.


Gene Expression Level

Kolmogorov-Smirnov Test

- Based on statistics of 'Brownian Bridge'
 - random walk fixed end
- Maximum difference is test statistic
 - Null distribution known
- Reformulated by GSEA as difference of CDF – uniform from axis

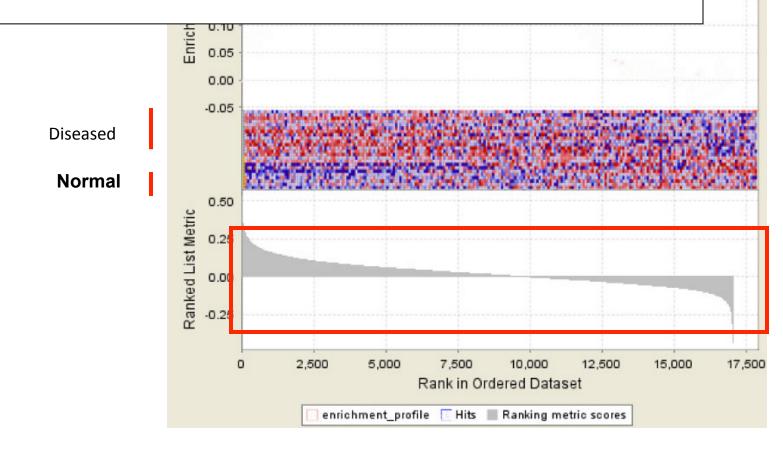


K-S Test Finds Irrelevant Sets

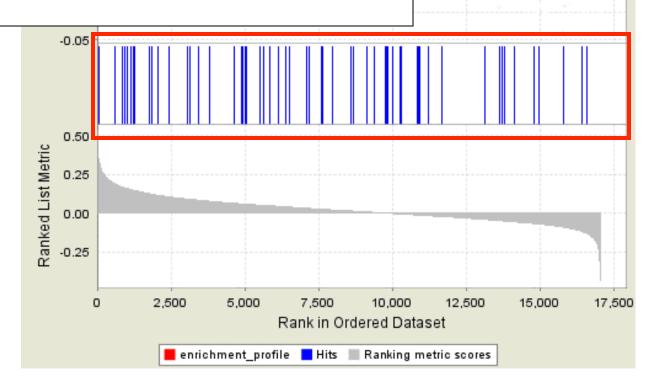
- Sometimes ranks concentrated in middle
 K-S statistic high, but not meaningful for path change
- Fix: ad-hoc weighting by actual t-scores emphasizes departures at extreme ends
- No theory
- Generate null distribution by permutation

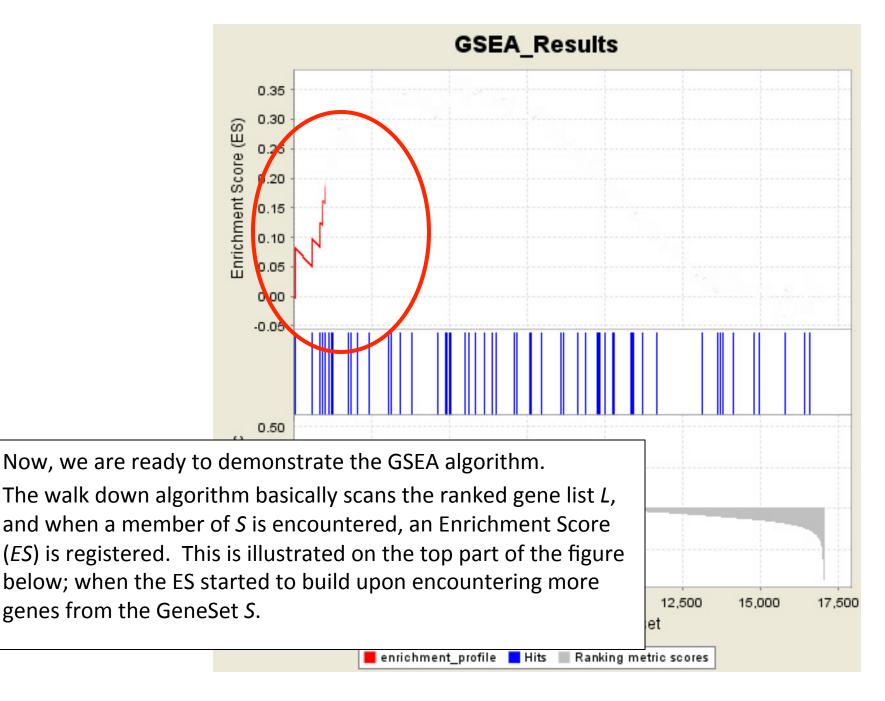
- Calculate an Enrichment Score:
 - Rank genes by their expression difference
 - Compute cumulative sum over ranked genes:
 - Increase sum when gene in set, decrease it otherwise
 - Magnitude of increment depends on correlation of gene with phenotype.
- Record the maximum deviation from zero as the enrichment score

Highly expressed in diseased

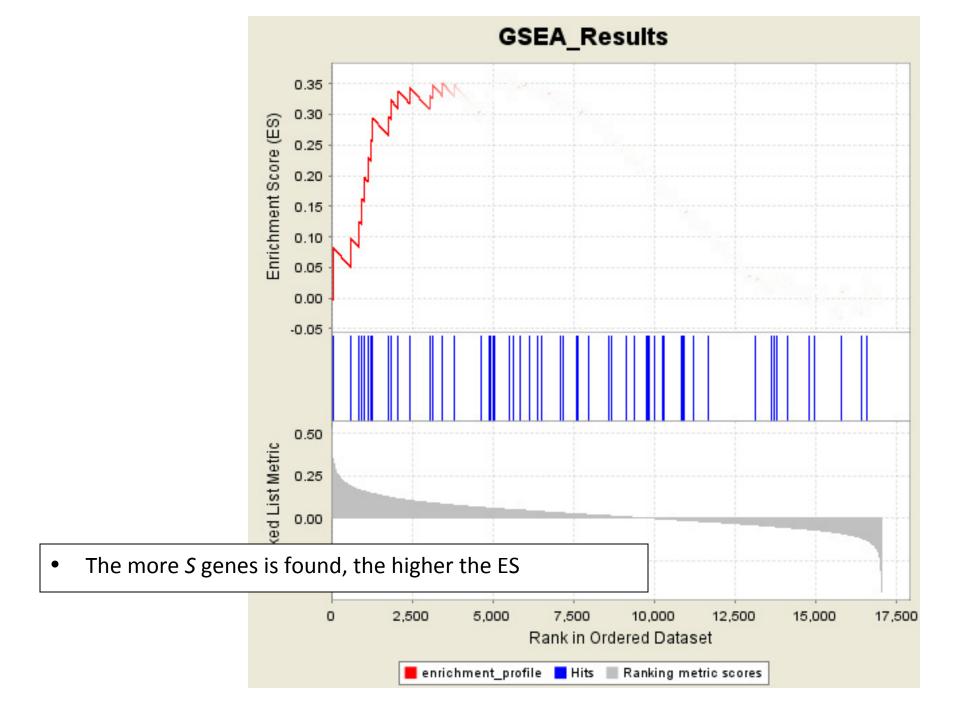

Diseased

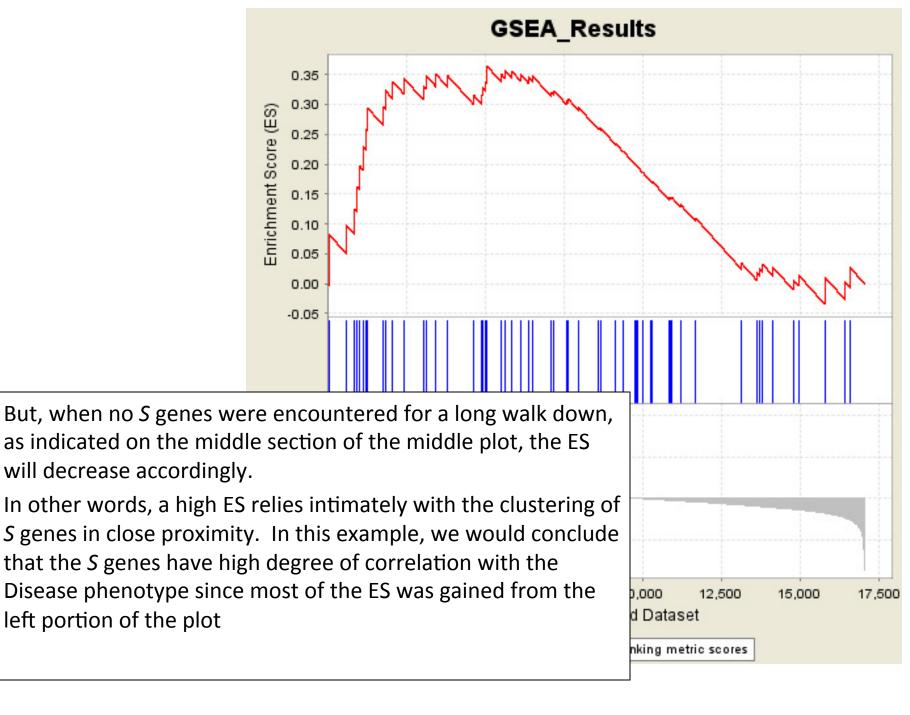
Normal

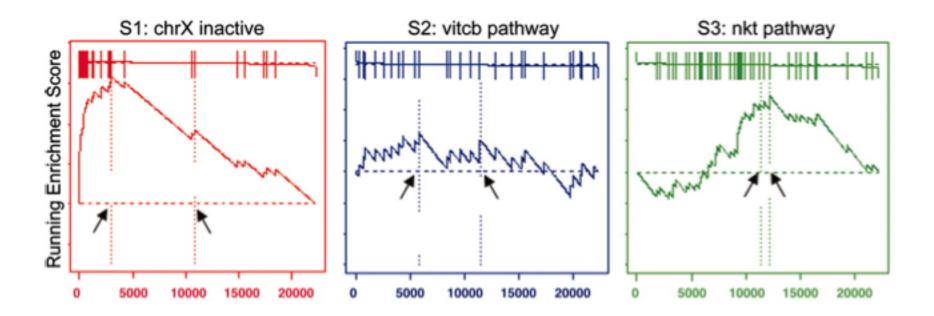

- Genes on the left side are highly expressed on the top half (indicated by red color) and lowly expressed on the bottom half (indicated by blue color). The reverse is shown on the right-most genes
- Created a gradient or ranked list corresponding to the degree of correlation with the two phenotypes


Lowly expressed in diseased

- This is depicted nicely by the graph on the bottom of the figure, where the positive ranks on the left represent the correlation to the Disease phenotype and the negative ranks on the right signify the correlation to the Normal phenotype
- The graph also generates a rank gradient that represents the order of the most up-regulated genes for the Disease sample on the left-most, and the most up-regulated genes for the Normal samples on the right-most

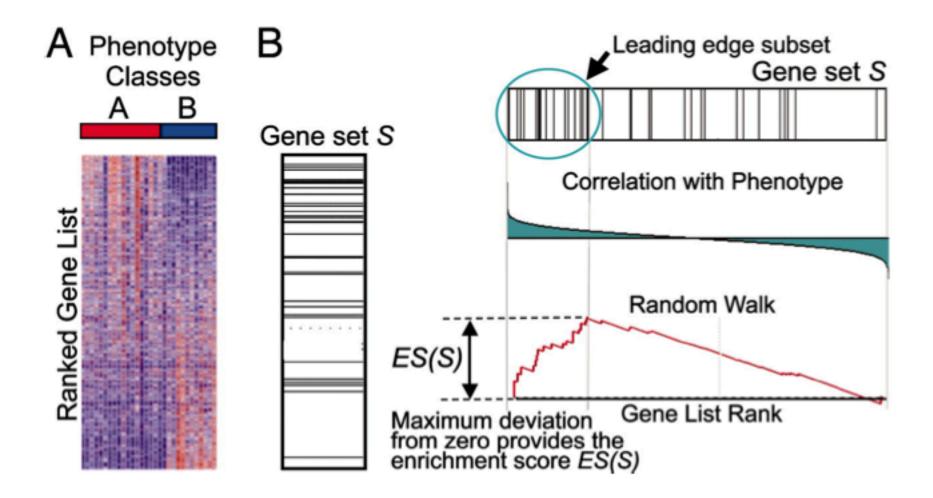



- Now, let's hide the heatmap and replace the middle part of the figure with genes from a specific geneset, say genes from the Glycolysis pathway.
- Each vertical blue bars represents a gene from the pathway, being mapped on the same location as the whole dataset
- Again, genes that are located on the left side are highly expressed on the Disease samples, and the opposite is true for the right-most genes


•

•

- Calculate an Enrichment Score:
 - Rank genes by their expression difference
 - Compute cumulative sum over ranked genes:
 - Increase sum when gene in set, decrease it otherwise
 - Magnitude of increment depends on correlation of gene with phenotype
- Record the maximum deviation from zero as the enrichment score


Subramanian et al., PNAS 102(43), 15545–15550 (2005).

- Assess significance:
 - Permute phenotype labels 1000 times
 - Compute ES score as above for each permutation
 - Compare ES score for actual data to distribution of ES scores from permuted data
- Permuting the phenotype labels instead of the genes maintains the complex correlation structure of the gene expression data

- Adjustment for multiple hypothesis testing:
 - Normalize the ES accounting for size of each gene set, yielding normalized enrichment score (NES)
 - Control proportion of false positives by calculating FDR corresponding to each NES, by comparing tails of the observed and null distributions for the NES

- The original method used equal weights for each gene
 - The revised method weighted genes according to their correlation with phenotype
 - This may cause an asymmetric distribution of ES scores if there is a big difference in the number of genes highly correlated to each phenotype
- Consequently, the above algorithm is performed twice: one for the positively scoring gene sets and once for the negatively scoring gene sets

Overview of GSEA

Subramanian et al., PNAS 102(43), 15545–15550 (2005).

GSEA results for our data set (using pathway gene sets)

Enrichment in phenotype: lean (10 samples)

- 19 / 44 gene sets are upregulated in phenotype lean
- O gene sets are significant at FDR < 25%
- O gene sets are significantly enriched at nominal pvalue < 1%
- 1 gene sets are significantly enriched at nominal pvalue < 5%
- · Snapshot of enrichment results
- Detailed enrichment results in html format
- Detailed enrichment results in excel format (tab delimited text)
- · Guide to interpret results

Enrichment in phenotype: obese (9 samples)

- 25 / 44 gene sets are upregulated in phenotype obese
- 0 gene sets are significantly enriched at FDR < 25%
- O gene sets are significantly enriched at nominal pvalue < 1%
- 3 gene sets are significantly enriched at nominal pvalue < 5%
- · Snapshot of enrichment results
- Detailed enrichment results in html format
- Detailed enrichment results in excel format (tab delimited text)
- <u>Guide to</u> interpret results

Dataset details

- The dataset has 12639 native features
- · After collapsing features into gene symbols, there are: 6465 genes

Gene set details

- Gene set size filters (min=25, max=500) resulted in filtering out 595 / 639 gene sets
- · The remaining 44 gene sets were used in the analysis
- List of gene sets used and their sizes (restricted to features in the specified dataset)

List of most significant up-regulated gene sets

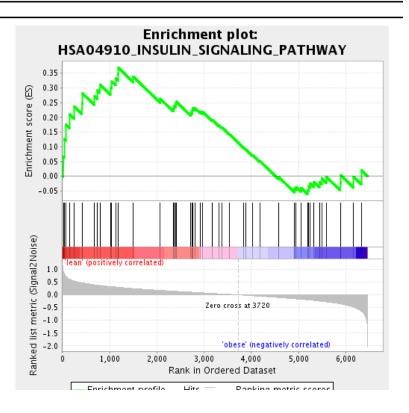

	GS follow link to MSigDB	GS DETAILS	SIZE	ES	NES	NOM p-val	FDR q-val	FWER p-val	RANK AT MAX
1	HSA04910_INSULIN_SIGNALING_PATHWAY	Details	51	0.37	1.41	0.036	0.960	0.620	1184
2	CALCINEURIN_NF_AT_SIGNALING	Details	32	0.39	1.33	0.074	0.833	0.800	2413
3	HSA04514_CELL_ADHESION_MOLECULES	Details	41	0.36	1.26	0.188	0.805	0.880	2038
4	HSA04310_WNT_SIGNALING_PATHWAY	Details	52	0.29	1.13	0.278	1.000	0.970	1086
5	HSA04350_TGF_BETA_SIGNALING_PATHWAY	Details	29	0.33	1.11	0.302	1.000	0.970	647
6	HSA05215_PROSTATE_CANCER	Details	28	0.38	1.11	0.291	0.914	0.970	1360
7	HSA04010_MAPK_SIGNALING_PATHWAY	Details	73	0.28	1.03	0.477	1.000	0.990	1482

Table: Gene sets enriched in phenotype lean (10 samples) [plain text format]

Table: GSEA	Results Summary				
Dataset	Pimaunlog2_collapsed_to_symbols.Pima				
Phenotype	Pima.cls				
Upregulated in class	lean				
GeneSet	HSA04910_INSULIN_SIGNALING_PATHWA				
Enrichment Score (ES)	0.3685702				
Normalized Enrichment Score (NES)	1.4148982				
Nominal p-value	0.035714287				
FDR q-value	0.96008533				
FWER p-Value	0.62				

The Enrichment score is based on the difference of the cumulative distribution of the gene-set minus the expected

This plot is basically the Kolmogorov-Smirnov plot rotated by 45 degrees

Zoom In on Enrichment Plot

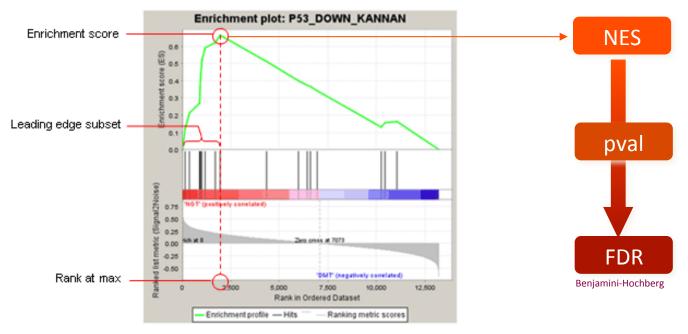
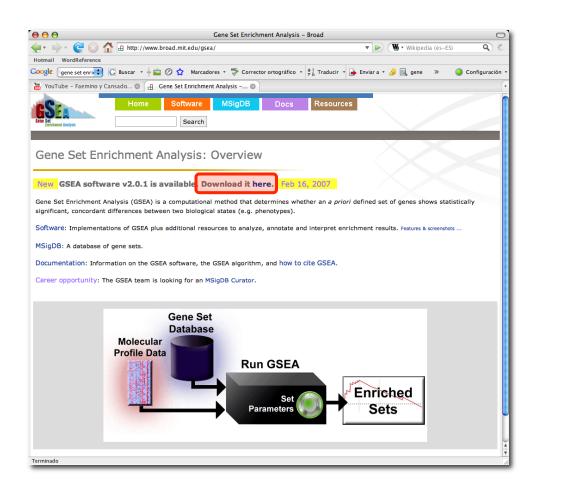



Fig 1: Enrichment plot: P53_DOWN_KANNAN Profile of the Running ES Score & Positions of GeneSet Members on the Rank Ordered List

GSEA Software

http://www.broad.mit.edu/gsea/

Outlook

- Gene Set and Pathway Analysis is a very active field of research: new methods are published all the time!
- One important aspect: taking pathway structure into account
 - All methods we discuss ignored this structure
 - New methods use and "Impact Factor" (IF), which gives more weight to gene that are key regulators in the pathway (Draghici et al (2007))
- Other Aspects:
 - Study the behavior of pathways across experiments in microarray databases like GEO or Array Express
 - Incorporate other data into the analysis (proteomics, metabolomics, sequence data)

Summary

- There are many popular databases/internet resources for pathways and gene sets
- Many important analysis issues
- It is impossible to explain all existing approaches but many of them are some combinations of the methods we discussed
- This is an active field: improvements and further developments are a really active area of research

Questions?