Summer Institutes of Statistical Genetics, 2022

Module 2: INTRODUCTION TO GENETICS AND GENOMICS

Greg Gibson and Joe Lachance
Georgia Institute of Technology

Lecture 5: GENOME-WIDE ASSOCIATION STUDIES

Principle of Association Studies

Individual	Site						Score	
1	A	T	C	C	G	A		9
2	A	C	T	C	G	A	8	
3	A	C	C	A	-	G		3
4	T	T	C	A	G	A	5	
5	A	T	C	A	G	A	2	
6	A	C	C	C	-	G	7	
7	T	C	T	A	-	G	4	
8	A	T	C	C	G	A	8	

Are the phenotype scores associated with each class of SNP drawn from the same or different distributions ?

Linkage versus Association

Linkage examines recent recombination events in a pedigree:

- over just several generations
- large chromosomal regions detected
- no information on allele frequency

Association examines historical recombination events in a population:

- basically a 10,000 generation pedigree
- resolution to single genes
- estimates effect size and frequency

Why LD (Linkage Disequlibrium) happens

\mathbf{A}	\mathbf{C}
\mathbf{G}	\mathbf{T}
\mathbf{C}	\mathbf{T}
\mathbf{A}	\mathbf{T}
\mathbf{G}	\mathbf{T}
\mathbf{G}	\mathbf{T}

When a mutation occurs, by definition it is only on one chromosome and hence "associated" with the genotypes elsewhere on that chromosome.

Over time, the mutation increases in frequency and becomes a polymorphism. It remains in LD with the genotypes on the chromosome it appeared on.

Eventually recombination breaks up the LD, in proportion to genetic distance.

Measurement of LD

LD is the non-random association of genotypes.

LD can be quantified as a proportion of the maximal possible LD given the allele frequencies (D^{\prime}), Or as the squared correlation between allele frequencies $\left(r^{2}\right)$.

Haplotypes and Tagging SNPs

Sequences

Visualizing LD: The LPL example

An LD Plot (for the LPL locus)

Case-Control and Family Designs

Observed
Expected

	Allele M	Allele m	Allele M	Allele m
Affected	34	278	61	265
Unaffected	69	256	62	269
		$\chi^{2}=14.0$	$P<0.001$	

Transmitted Allele

$\frac{M}{m} \times \frac{M}{m}$	Observed	78	m
$f(M)=0.63$	Expected	62	62
$\frac{1}{m}$		$\chi^{2}=8.2$	$P<0.001$

Repeatability and Forest Plots

Population Structure

If the allele frequency AND the trait frequency vary among hidden sub-populations, false positives can arise
Total population

Blue subpopulation				Red subpopulation			
	$A A$	$A G$	GG		AA	$A G$	GG
Case	80	640	1280	Case	200	400	200
Control	800	6400	12,800	Control	1000	2000	1000
Case/control	0.1	0.1	0.1	Case/control	0.2	0.2	0.2

Total population

	$\boldsymbol{A A}$	$\boldsymbol{A G}$	$\boldsymbol{G G}$
Case	280	1040	1480
Control	1800	8400	13,800
Case/control	0.155	0.124	0.107
Odds ratio $(A: G)=1.2$		$p=10^{-8}$	

GWAS in 2009: The WTCCC

GWAS first appeared 10 years ago, now several new diseases each month

Inflammatory diseases show multiple associations, with some common variants (notably the MHC)

Depression and Hypertension show nothing: likely no variants with a relative risk greater than 1.5

Q-Q Plots in 23andme studies

Other interesting traits:

Endurance Runner vs Sprinter (30\% of people change their answer if they know their ACTN3)

Left vs Right Handedness (nothing striking)

Have you ever needed braces or wisdom teeth surgery?

Breast size
(finds breast cancer risk loci)
Hand-clasp dominance ...

Genetics of Obesity

Heritability of obesity ~ 60%
2/3 Americans $\mathrm{BMI}>25$

RJ.F. Loos / Best Practice \& Research Clinical Endocrinology \& Metabolism 26 (2012) 211-226

One gene, FTO, is repeatedly associated with BMI, hip circumference and weight, in most human populations
Homozygote classes differ in weight by up to 2 kg

Study of 230,000 people \rightarrow 49 loci for WHR, many linked to adipose, insulin biology20 loci only in women

Study of 340,000 people \rightarrow
97 loci for BMI, many linked to neuronal function
Little overlap with WHR

Genetics of Schizophrenia

128 independent SNP associations from GWAS of 37,000 cases

Strong enrichment in genes expressed in certain neuronal cell types or implicated in synaptic transmission

But at least 5\% of cases attributable to CNV: copy number variation

3 major chromosomal deletions of $>100 \mathrm{~kb}$ at frequency $<1 \%$ are almost exclusively found in schizophrenics

Genetics of Educational Attainment (on 3M people)

A PGI for Educational Attainment is also predictive of a wide rang of health outcomes

Couples are much more genetically similar for EA (but not height) than expected given their phenotypes

Mendelian Randomization establishes Causality

