Summer Institutes of Statistical Genetics, 2021

Module 2: INTRODUCTION TO GENETICS AND GENOMICS

Greg Gibson and Joe Lachance

Georgia Institute of Technology

Lecture 9: PERSONALIZED MEDICINE

greg.gibson@biology.gatech.edu

http://www.cig.gatech.edu

PHARMACOGENETICS

Pharmacodynamics and Pharmacokinetics

PRECISION MEDICINE

Peri-Natal Screening

Genetic carrier screening

Noninvasive prenatal testing

Fetal sex testing

Prenatal paternity testing

Miscarriage testing

Preimplantation genetic screening

Newborn Screening

	Type of Disorder	Disease	Gene	Prevalence
	Red blood cells	Sickle-cell anemia	HB (coding)	1/400 (African American)
		β-Thalassemia	HB (regulatory)	1/50,000
	Inborn errors of amino acid metabolism	Tyrosinemia	FAH/TAT/HPD	1/100,000
		Argininosuccinic aciduria	ASL	1/100,000
		Citrullinenmia	ASS/SLC25A13	1/100,000
		Phenylketonuria	PAH	1/25,000
		Maple syrup urine disease	DBT/BCKDH	1/100,000
		Homocysteinuria	CBS	
	Inborn errors of organic	Glutaric academia type I	GCDH	1/75,000
	acid metabolism	HMG-lyase deficiency	HMGCL	1/100,000
		Isovaleric academia	IVD	1/100,000
		3MCC deficiency	MCCC1,2	1/75,000
		MM-CoA mutase deficiency	MUT	1/75,000
		Methylmalonic aciduria	MMA A,B,C,D	1/100,000
		Beta-ketothiolase deficiency	ACAT1	1/100,000
		Propionic academia	PCC A,B	1/75,000
		Multiple-CoA carboxylase deficiency	HLCS/BTD	1/100,000
	Inborn errors of fatty	LCHAD	HADHA	1/75,000
	acid metabolism	MCAD	ACADM	1/25,000
		VLCAD	ACADVL	1/75,000
		Trifunctional protein deficiency	HADH A,B	1/100,000
		Carnitine uptake defect	OCTN2 (SLC22A5)	1/100,000
	Miscellaneous multisystem diseases	Cystic fibrosis	CFTR	1/5000
		Congenital hypothyroidism	TSHR/TSHB/PAX8	1/5000
		Biotinidase deficiency	BTD	1/75,000
		Congenital adrenal hyperplasia	CYP21A	1/25,000
		Classical galactosemia	GAL E,K1,T	1/50,000
	Screened by other methods	Severe combined immune deficiency		1/50,000
		Congenital deafness		1/5000
		Critical congenital heart defects		1/100

Source: American College of Medical Genetics 2006.

Diagnostic Sequencing: Miller Syndrome

	1 individual		3 kindreds	
Filter	Dominant	Recessive	Dominant	Recessive
NS/SS/I	4650	2850	2650	1525
Novel	460	32	8	1
Damaging	228	9	2	0

Number of Variants in a Typical Human Genome

N=1 Genetics

How do we know if a newly identified mutation is pathogenic?

- 1. Previously ascribed clinical function
- 2. Bioinformatic prediction from protein structure or attributes
- 3. Evolutionary conservation
- 4. Experimental validation (animal models, cellular manipulation, in vitro studies)

What could possibly go wrong?

- 5. It is easy to get trapped in a genetically deterministic worldview:
 - even Mendelian variants have incomplete penetrance
 - expressivity is modified by genetics and environment
 - deleterious to the protein is not necessarily deleterious to the organism
- 6. We do not have parallel methods for evaluating function of regulatory variants
- 7. Ethical concerns: reporting incidental findings, prescribing off-label drugs, false positives

Project Baby Bear

Cable 2. Number of infants with a change in care due to an rWGS result				
ntervention type	n			
Any change	58			
Surgical $(n = 24)$				
Surgical procedure added	5			
Surgical procedure removed	16			
Surgical procedure changed	5			
Medication (n =23)				
Medication added	16			
Medication stopped	8			
Medication changed	0			
Dictary (n = 9)				
Diet changed	9			
ength of hospital course (n = 30)				
Hospital days added	0			
Hospital days avoided	30			

Dimmock et al (2021) Am J Hum. Genet. **108**: 1231-1238

PREDICTIVE HEALTH

Personalized Diagnostics Rationale

Future Medicine More Personalized Diagnostics

https://blog.crownbio.com/pdx-personalized-medicine

The Western Approach to Predictive Health

Genetic data Clinical data Family	history
9p21rs1333049CCCholesterolGrandfatherMRASrs9818870CTResult: 272 mg/dLGrandfatherLPArs3798220CCNormal: 140 mg/dL–200 mg/dLGrandfatherAPOrs579450CTGrandfather	С
ABO ISS79459 C1 APOA5 rs964184 GG PHACTR1 rs9349379 GG HHIPL1 rs2895811 CT PPAP2B rs17114036 AA	Aur
ADAMTS7 rs3825807 CT TCF21 rs12190287 CC Normal: 0 mg/dL–129 mg/dL	eart attack
Statistical genetics, medical bioinformatics	
Genetic relative risk of heart disease = 1.68 Recommend	
Cholesterol > 200 mg/dL Grandfather, aunt died of heart attack	

Aunt

Risk-o-Grams

Α.

В.

Risk Radars

MET

Polygenic Risk Scores

Khera et al,. 2018. Nature Genetics 50: 1219-24

Sensitivity, Specificity, and Precision

	ACTUAL CASES	ACTUAL CONTROLS	
PREDICTED CASES	200	100 (False Positives)	Precision = 67% (FDR = 33%)
PREDICTED HEALTHY	50 (False Negatives)	900	
	Sensitivity = 80%	Specificity = 90%	

The NNT: Number Needed to Treat

This is the number of people who would need to be treated in order to save one life.

It is computed as 100 over the percent reduction in mortality, namely

NNT = <u>100</u> The % who die without treatment minus The % who die with treatment

For example if 20% of High Cholesterol patients will die of a heart attack in the next 10 years unless they get a Statin, in which case the proportion is 18%, then NNT is 100/(20-18) = 50

It is solely a function of the difference in numbers, not the proportion (eg 100/(80-78) = 50.

The bigger the difference, the more people benefit: 100/(50-30) = 5

Usually doctors tell you just the relative reduction in risk: (2/20 = 10%; 2/80 = 2.5%)

Going to the Negative

Combined risk = 20/120; Events after treatment = 15/120; NNT = 24 Assessed risk = 19/80; Events after treatment = 14/80; NNT = 16

Gibson G (2019) Nature Reviews Genetics 20: 1-2

Where we are really headed

Gambhir et al (2019) Science Translational Medicine 10: aao3612