Summer Institutes of Statistical Genetics, 2021

Module 2: INTRODUCTION TO GENETICS AND GENOMICS

Greg Gibson and Joe Lachance
Georgia Institute of Technology

Lecture 9: PERSONALIZED MEDICINE

PHARMACOGENETICS

Pharmacodynamics and Pharmacokinetics

PRECISION MEDICINE

Peri-Natal Screening

Genetic carrier screening

Noninvasive prenatal testing

© 강 Harmony
s seavenom aboratories

Prenatal paternity testing

Miscarriage testing

Preimplantation genetic screening

Newborn Screening

Type of Disorder	Disease	Gene	Prevalence
Red blood cells	Sickle-cell anemia	HB (coding)	1/400 (African American)
	β-Thalassemia	$H B$ (regulatory)	1/50,000
Inborn errors of amino acid metabolism	Tyrosinemia	FAH/TAT/HPD	1/100,000
	Argininosuccinic aciduria	ASL	1/100,000
	Citrullinenmia	ASS/SLC25A13	1/100,000
	Phenylketonuria	PAH	1/25,000
	Maple syrup urine disease	DBT/BCKDH	1/100,000
	Homocysteinuria	CBS	
Inborn errors of organic acid metabolism	Glutaric academia type I	GCDH	1/75,000
	HMG-lyase deficiency	HMGCL	1/100,000
	Isovaleric academia	IVD	1/100,000
	3MCC deficiency	MOCC1,2	1/75,000
	MM-CoA mutase deficiency	MUT	1/75,000
	Methylmalonic aciduria	MMA A,B,C,D	1/100,000
	Beta-ketothiolase deficiency	ACAT1	1/100,000
	Propionic academia	PCCA, B	1/75,000
	Mutiple-CoA carboxylase deficiency	HLCS/BTD	1/100,000
Inborn errors of fatty acid metabolism	LCHAD	HADHA	1/75,000
	MCAD	ACADM	1/25,000
	VLCAD	ACADVL	1/75,000
	Trifunctional protein deficiency	HADH A, B	1/100,000
	Carnitine uptake defect	OCTN2 (SLC22A5)	1/100,000
Miscellaneous multisystem diseases	Cystic fibrosis	CFTR	1/5000
	Congenital hypothyroidism	TSHR/TSHB/PAX8	1/5000
	Biotinidase deficiency	BTD	1/75,000
	Congenital adrenal hyperplasia	CYP21A	1/25,000
	Classical galactosemia	GALE,K1,T	1/50,000
Screened by other methods	Severe combined immune deficiency		1/50,000
	Congenital deafness		1/5000
	Critical congenital heart defects		1/100

Source: American Cologe of Medical Genetics 2006.

Diagnostic Sequencing: Miller Syndrome

| | $\mathbf{1}$ individual | | | 3 kindreds | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Filter | Dominant | Recessive | | Dominant | Recessive |
| NS/SS/I | 4650 | 2850 | | 2650 | 1525 |
| Novel | 460 | 32 | | 8 | 1 |
| Damaging | 228 | 9 | | 2 | 0 |

(B)

Number of Variants in a Typical Human Genome

N=1 Genetics

How do we know if a newly identified mutation is pathogenic?

1. Previously ascribed clinical function
2. Bioinformatic prediction from protein structure or attributes
3. Evolutionary conservation
4. Experimental validation (animal models, cellular manipulation, in vitro studies)

What could possibly go wrong?
5. It is easy to get trapped in a genetically deterministic worldview:

- even Mendelian variants have incomplete penetrance
- expressivity is modified by genetics and environment
- deleterious to the protein is not necessarily deleterious to the organism

6. We do not have parallel methods for evaluating function of regulatory variants
7. Ethical concerns: reporting incidental findings, prescribing off-label drugs, false positives

Project Baby Bear

Table 2. Number of infants with a change in care due to an rWGS result	
Intervention type	n
Any change	58
Surgical (n =24)	5
Surgical procedure added	16
Surgical procedure removed	5
Surgical procedure changed	16
Medication (n =23)	8
Medication added	0
Medication stopped	9
Medication changed	
Dietary (n =9)	0
Diet changed	30
Length of hospital course (n = 30)	
Hospital days added	Hospital days avoided
Please note that children may have experienced more than one change, for	
example, a medicine added and a medicine stopped.	

Dimmock et al (2021) Am J Hum. Genet. 108: 1231-1238

PREDICTIVE HEALTH

Personalized Diagnostics Rationale

Current Medicine

One Treatment Fits All

Future Medicine More Personalized Diagnostics

The Western Approach to Predictive Health

Risk-o-Grams
A.

B.

Risk Radars

Polygenic Risk Scores

Sensitivity, Specificity, and Precision

	ACTUAL CASES	ACTUAL CONTROLS	
PREDICTED CASES	200	100 (False Positives)	Precision $=67 \%$ (FDR $=33 \%)$
PREDICTED HEALTHY	50	900	
	(False Negatives)		
	Sensitivity $=80 \%$	Specificity $=90 \%$	

The NNT: Number Needed to Treat

This is the number of people who would need to be treated in order to save one life.

It is computed as 100 over the percent reduction in mortality, namely

$$
\text { NNT }=\quad 100
$$

The \% who die without treatment minus The \% who die with treatment

For example if 20% of High Cholesterol patients will die of a heart attack in the next 10 years unless they get a Statin, in which case the proportion is 18%, then NNT is $100 /(20-18)=50$

It is solely a function of the difference in numbers, not the proportion (eg 100/(80-78) $=50$.
The bigger the difference, the more people benefit: $100 /(50-30)=5$

Usually doctors tell you just the relative reduction in risk: (2/20 = 10\%; 2/80 = 2.5\%)

Going to the Negative

Clinical Risk

Combined risk $=20 / 120 ;$ Events after treatment $=15 / 120 ;$ NNT $=24$
Assessed risk $=19 / 80 ;$ Events after treatment $=14 / 80 ;$ NNT $=16$

Where we are really headed

Gambhir et al (2019) Science Translational Medicine 10: aao3612

