SISG 2022 - Module 2

Introduction to Genetics and Genomics

Genetic Ancestry

12:15pm EDT, Wednesday, July $13^{\text {th }}$
Joe Lachance and Greg Gibson
joseph.lachance@biology.gatech.edu

Terminology

- Race refers to an individual's self-identification with one or more social groups (as defined by the US census bureau)
- Ethnicity refers to the way in which one identifies learned aspects of themselves (e.g., language and culture)
- Ancestry refers to the populations that individuals are descended from (this term is preferred by geneticists)
- Populations are often defined in terms of sampling locations

The changing face of humanity

AIMs

- Ancestry Informative Markers (AIMs) have large allele frequency differences between populations
- Rare alleles are more likely to be population-specific
- No single AIM is a perfect classifier

Variance partitioning and Lewontin's Fallacy

- Richard Lewontin (1972)
- Shannon's diversity index used
- 85% of genetic diversity is found within populations, as opposed to between populations or between continents

- A.W.F. Edwards (2003)
- Individuals can be assigned to different populations if multilocus data are analyzed ("Lewontin's Fallacy")

- Variance partitioning and classification are separate issues

HGDP

- The Human Genome Diversity Project (HGDP): >50 sampled populations
- Ethical issues:
- Indigenous groups need not be need not be isolated populations
- Accusations of "helicopter science"

1000 Genomes Project

- Whole genome sequencing of 2504 samples from 26 global populations

SGDP and EGDP

Simons Genome Diversity Project Mallick et al. (Science, 2106)

Estonian Biocentre Human Genome Diversity Panel
Pagani et al. (Nature, 2016)

- More granular sampling, but fewer samples per location

Dangers of limited sampling

- If highly divergent locations are sampled it can lead one to think human diversity falls into distinct categories
- Ideally, each living individual has an equal chance of being sampled in genetic studies

What do population genetic datasets look like?

Chrom	Position	SNP_ID	Ref	Alt	Sample_1	Sample_2	Sample_3	Sample_4	Sample_5	Sample_6	Sample_7	Sample_8
6	95632928	rs138026492	C	T	00	00	00	00	00	00	00	00
6	95636167	rs7776290	C	A	11	11	11	11	11	11	11	11
6	95638707	rs9490131	C	T	01	01	11	01	00	00	00	01
6	95639314	rs111993428	G	C	00	00	01	00	00	00	00	00
6	95644518	rs76301071	G	A	00	00	00	00	00	00	00	00
6	95658829	rs9320918	G	T	11	11	11	11	11	11	11	11
6	95676882	rs73546580	G	A	00	00	00	00	01	00	01	00
6	95677999	rs9491308	T	C	01	00	00	00	00	00	00	00
6	95678247	rs117120297	T	C	00	00	00	00	00	00	00	00
6	95689368	rs117996333	G	A	00	00	00	00	00	00	00	00
6	95722603	rs143147841	A	C	00	00	00	00	00	00	00	00
6	95726175	rs116190944	T	C	00	00	00	00	00	00	00	00
6	95747602	rs112599693	G	C	00	00	00	00	00	00	00	00
6	95757249	rs73757480	G	C	00	00	01	00	00	00	00	00
6	95769070	rs62417884	C	T	00	00	00	01	00	01	00	00
6	95788421	rs117816213	T	C	00	00	00	00	00	00	00	00
6	95793344	rs147072022	T	C	00	00	00	01	00	01	00	00
6	95795036	rs77874428	C	A	00	00	00	00	00	00	00	00

- Each row is a different SNP, and each column is a different individual

Dimensionality and PCA

- Principal Component Analysis (PCA) is one way to reduce the dimensionality of genetic datasets
- Each PC refers to an orthogonal (perpendicular) dimension - each PC is an eigenvector and eigenvalues correspond to the \% of variance explained by each PC
- PCA can be used to represent samples in a genetic "space" (samples closer together in this space share more alleles)

Genes mirror geography in Europe

Human diversity exists along a continuum

STRUCTURE Plots

- Every individual's genome is a combination of different ancestries
- Each genetic ancestry is represented as a different color ($\mathrm{K}=14$ indicates that there are 14 different colors/ancestries)

ADMIXTURE plots of African diversity

MADCaP NETWORK

Study site	Location	Cases	Controls
Hôpital Général de Grand Yoff (HOGGY) 37 Military Hospital (37 Military) Korle-Bu Teaching Hospital (KBTH)	Dakar, Senegal University College Hospital (UCH)	56	59
University of Abuja Teaching Hospital (UATH) WITS Health Consortium (WITS)	Ghana Accra, Ghana	59	59
Stellenbosch University (SU)	Abadan, Nigeria, Nigeria	53	58

Ancestry inference and DTC testing

Chromosome painting

Boxer German Shepherd Dog Golden Retriever Chow Chow American Staffordshire Terrier Collie Supermutt

Inferring history from ancestry bocks

Maternal (mtDNA) lineages

Scally and Durbin
(Nature Reviews Genetics, 2012)

Paternal (Y chromosome) lineages

Underhill et al. 2001 (Ann Hum Genet, 2000)

- Y chromosome lineages are more diverse in Africa
- Mendez et al. (AJHG, 2013)
- Highly divergent Y lineage (A00)... 388kya \leftarrow exact date is under contention
- Found in African American and Central African samples

Movement into Europe

- The spread of agriculture was due to the spread of farmers, not the spread of technology

Archaic introgression

- Non-African genomes contain Neanderthal DNA

Green et al. (Science, 2010)

Sebastien Chabal
(Rugby player or Neanderthal?)

- Some modern humans also have Denisovan DNA Reich et al. (Nature, 2010)

Ancient population structure

- Complex historical patterns
- Many archaic lineages died out (including H. florensiensis)
- Some archaic populations may have mated with our ancestors

Genetics and language

- Luca Cavalli-Sforza

- Pioneering work using blood groups
- Populations with similar languages tend to have similar genetics

Biparental inheritance and shared ancestry

- Ancestry involves more than just DNA
- Number of ancestors t generations ago $\approx 2^{t}$
- Chang (Adv. Appl. Prob., 1999)
- Spain and Jewish ancestry
- Weitz (PLoS One, 2014)
- Shared biparental ancestry as recent as 2500 years ago?
- Rohde et al. (Nature, 2004)
- Lachance (Theo. Pop. Biol., 2009)

Ancestry and health disparities

Prostate cancer mortality rate

Deaths per 100000 population

Proportion African-American

Most GWAS have used European samples

- This sampling exacerbates existing health disparities

SNP ascertainment bias

Bias in polygenic risk scores

- Polygenetic risk scores do not always generalize well across populations
- Ascertainment bias can create the illusion of genetic health disparities
- Evolutionary information can yield improved risk scores

Polygenic risk scores can be applied to ancient DNA

Ancient genomes

GWAS Catalog
The NHGRI-EBI Catalog of published genome-wide association studies

Curated set of ~ 3000 LD-pruned disease associations

Modern PRS distribution

Ötzi the Tyrolean Iceman's genetic risk profile

What will our genomes look like in the future?

- Genetic engineering

- Population admixture

