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Terminology

Text

• Race refers to a socially constructed classification based on perceived 
biological similarities

• Ethnicity refers to a socially constructed classification based on 
perceived cultural similarities (e.g., language and beliefs)

• Ancestry refers to a person’s origin or descent, lineage, “roots,” or 
heritage, including kinship (this term focuses on genetics)

• Populations are often defined in terms of sampling locations



The changing face of humanity

Photos by Martin Schoeller for National Geographic



AIMs

• Ancestry Informative Markers (AIMs) have large allele frequency 
differences between populations

• Rare alleles are more likely to be population-specific

• No single AIM is a perfect classifier

Image source: GGV



Variance partitioning and Lewontin's Fallacy

Text

• Richard Lewontin (1972)
• 85% of genetic diversity is found within populations, as 

opposed to between populations or between continents

• A.W.F. Edwards (2003)
• Individuals can be assigned to different populations if 

multilocus data are analyzed ("Lewontin's Fallacy")



HGDP

Text

• The Human Genome Diversity Project (HGDP): >50 sampled populations

• Ethical issues: 
• Indigenous groups need not be isolated populations
• Accusations of “helicopter science”



1000 Genomes Project

Text

• Whole genome sequencing of 2504 samples from 26 global populations



SGDP and EGDP

Text

• More granular sampling, but fewer samples per location
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and Neanderthals, but before the main expansion of modern humans 
in Eurasia (main OoA).

We consider support for these two non-mutually exclusive  scenarios. 
Because the introgressing lineage has not been observed with aDNA, 
standard methods are limited in their ability to distinguish between 
these hypotheses. Furthermore, we show (Supplementary Information 
2.2.7) that single-site statistics, such as Patterson’s D9,18 and sharing of 
non-African Alleles (nAAs), are inherently affected by  confounding 
effects owing to archaic introgression in non-African populations23. 
Our approach therefore relies on multiple lines of evidence using 
haplotype-based MSMC and fineSTRUCTURE comparisons (which 
we show should have power at this timescale26; Supplementary 
Information 2.2.13).

We located and masked putatively introgressed27 Denisova haplo-
types from the genomes of Papuans, and evaluated phasing errors by 
symmetrically phasing Papuans and Eurasians genomes (Methods). 
Neither modification (Fig. 2a, Supplementary Information 2.2.9, 
Supplementary Table 1:2.2.9-I) changed the estimated split time (based 
on MSMC) between Africans and Papuans (Methods, Supplementary 
Information 2.2.8, Extended Data Fig. 8, Supplementary Table 1.2.8-I).  
MSMC dates behave approximately linearly under  admixture 
(Extended Data Fig. 8), implying that the hypothesized lineage 
may have split from most Africans around 120 kya (Supplementary 
Information 2.2.4 and 2.2.8).

We compared the effect on the MSMC split times of an xOoA or 
a Denisova lineage in Papuans by extensive coalescent simulations 
(Supplementary Information 2.2.8). We could not simulate the large 
Papuan–African and Papuan–Eurasian split times inferred from 
the data, unless assuming an implausibly large contribution from a 
Denisova-like population. Furthermore, while the observed shift in 
the African–Papuan MSMC split curve can be qualitatively  reproduced 

when including a 4% genomic component that diverged 120 kya from 
the main human lineage within Papuans, a similar quantity of Denisova 
admixture does not produce any significant effect (Extended Data 
Fig. 8). This favours a small presence of xOoA lineages rather than 
Denisova admixture alone as the likely cause of the observed deep 
African–Papuan split. We also show (Methods) that such a scenario is 
compatible with the observed mitochondrial DNA and Y chromosome 
lineages in Oceania, as also previously argued13,28.

We further tested our hypothesized xOoA model by analysing  
haplotypes in the genomes of Papuans that show African ancestry not 
found in other Eurasian populations. We re-ran fineSTRUCTURE 
adding the Denisova, Altai Neanderthal and the Human Ancestral 
Genome sequences29 to a subset of the diversity set. FineSTRUCTURE 
infers haplotypes that have a most recent common ancestor (MRCA) 
with another individual. Papuan haplotypes assigned as African had, 
 regardless, an elevated level of non-African derived alleles (that is, 
nAAs fixed ancestral in Africans) compared to such haplotypes in 
Eurasians. They therefore have an older mean coalescence time with 
our African samples.

Owing to the deep divergence between the sampled Denisova and the 
one introgressed into modern humans, it is possible that some archaic 
haplotypes have a MRCA with an African instead of Denisova and are 
assigned as ‘African’. We can resolve the coalescence time, and hence 
origin, of these haplotypes by their sequence similarity with modern 
Africans. To account for the archaic introgression we modelled these 
genomic segments as a mixture of haplotypes assigned a) as African 
or b) as Denisova in Eurasians and c) haplotypes assigned as Denisova 
in Papuans. These haplotypes are modelled (see Methods, Extended 
Data Fig. 9) in terms of the distribution of length and mutation rate 
measured as a density of non-African derived alleles. Since Eurasians 
(specifically Europeans) have not experienced Denisova admixture, 

Figure 1 | Genetic barriers across space. Spatial visualization of genetic 
barriers inferred from genome-wide genetic distances, quantified as the 
magnitude of the gradient of spatially interpolated allele frequencies  
(value denoted by colour bar; grey areas have been land during the last 
glacial maximum but are currently underwater). Here we used a spatial 
kernel smoothing method based on the matrix of pairwise average 
heterozygosity and a MATLAB script that plots the hexagons of the grid 
with a colour coding to represent gradients. Inset, partial correlation 

between magnitude of genetic gradients and combinations of different 
geographic factors, elevation (E), temperature (T) and precipitation (R), 
for genetic gradients from fineSTRUCTURE (red) and allele frequencies 
(blue). This analysis (Supplementary Information 2.2.2 for details) shows 
that genetic differences within this region display some correlation with 
physical barriers such as mountain ranges, deserts, forests, and open  
water (such as the Wallace line).

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Simons Genome Diversity Project
Mallick et al. (Science, 2106)

Estonian Biocentre Human Genome Diversity Panel
Pagani et al. (Nature, 2016)



Dangers of limited sampling

Text

• If highly divergent locations are sampled it can lead one to think human 
diversity falls into distinct categories

• Ideally, each living individual has an equal chance of being sampled in 
genetic studies

Image: VectorStock



What do population genetic datasets look like?

• Each row is a different SNP, and each column is a different individual



Dimensionality and PCA

• Principal Component Analysis (PCA) is one way to reduce the dimensionality 
of genetic datasets

• Each PC refers to an orthogonal (perpendicular) dimension – each PC is an 
eigenvector and eigenvalues correspond to the % of variance explained by 
each PC

• PCA can be used to represent samples in a genetic “space”             
(samples closer together in this space share more alleles)

Hypercube image from Wikipedia



Genes mirror geography in Europe

Novembre et al. (Nature, 2008)



Human diversity exists along a continuum

Belbin et al. (eLife, 2017)



ADMIXTURE plots

• Human variation exists along a 
 continuum

• Every individual’s genome contains 
 a mix of different ancestries

• Each genetic ancestry can be
 represented by a different color

Figure from Pfennig et al. (GBE, 2023)



Ancestry inference and DTC testing

Kristen V. Brown (Gizmodo, 1/16/2018)



Chromosome painting



Comparisons between SIRE and ancestry

• Self-identified race and ethnicity (SIRE) is positively correlated with 
genetic ancestry

Data from All of Us (courtesy of Shivam Sharma and King Jordan)



Inferring history from ancestry bocks

TextMoreno-Estrada et al. (PLoS Genetics, 2013)



Maternal (mtDNA) lineages 

Human mtDNA Migrations 
from http://www.mitomap.org  

Mutation rate = 2.2 – 2.9% / MYR 
Time estimates are YBP 

Olivieri et al. 2006 (Science, 2006)

Scally and Durbin
 (Nature Reviews Genetics, 2012)



Paternal (Y chromosome) lineages 

• Y chromosome lineages are more diverse in Africa

• Mendez et al. (AJHG, 2013)
• Highly divergent Y lineage (A00)… 388kya ß exact date is under contention
• Found in African American and Central African samples

Underhill et al. 2001 (Ann Hum Genet, 2000)



• The spread of agriculture was due to the spread of farmers, 
not the spread of technology

Movement into Europe

Lazaridis et al. (Nature, 2016)

ancient individual being one of the references (Supplementary Infor-
mation section 11). Europeans almost always have their lowest f3 with
either (EEF, ANE) or (WHG,Near East) (Supplementary Information
section 11, Table 1 and Extended Data Table 1), which would not be
expected if there were just two ancient sources of ancestry (in which
case the best references for all Europeanswould be similar). The lowest
f3 statistic for Near Easterners always takes Stuttgart as one of the ref-
erence populations, consistentwith aNear Easternorigin for Stuttgart’s
ancestors (Table 1). We also computed the statistic f4(Test, Stuttgart;
MA1,Chimp),whichmeasures whetherMA1 sharesmore alleles with
a Test population or with Stuttgart. This statistic is significantly posi-
tive (Extended Data Fig. 4 and Extended Data Table 1) if Test is nearly
any present-dayWest Eurasian population, showing thatMA1-related
ancestry has increased since the time of early farmers like Stuttgart (the
same statistic using Native Americans instead of MA1 has the same

sign but is smaller inmagnitude (ExtendedData Fig. 5), indicating that
MA1 is a better surrogate than theNativeAmericanswhowere first used
to documentANEancestry inEurope7,8). The analogous statistic f4(Test,
Stuttgart; Loschbour,Chimp) is nearly alwayspositive inEuropeans and
negative inNearEasterners, indicating thatEuropeanshavemore ancestry
frompopulations related toLoschbour thandoNearEasterners (Extended
Data Fig. 4 and Extended Data Table 1). Extended Data Table 2 docu-
ments the robustnessof key f4 statistics by recomputing themusing trans-
versionpolymorphismsnot affected by ancientDNAdamage, and also
using whole-genome sequencing data not affected by SNP ascertain-
ment bias. Extended Data Fig. 6 shows the geographic gradients in the
degree of allele sharing of present-dayWest Eurasians (asmeasured by
f4 statistics)with Stuttgart (EEF), Loschbour (WHG) andMA1 (ANE).
To determine the minimum number of source populations needed

to explain the data for many European populations taken together, we
studied the matrix of all possible statistics of the form f4(Testbase, Testi;
Obase, Oj) (Supplementary Information section 12).Testbase is a reference
European population,Testi is the set of all other EuropeanTest popula-
tions,Obase is a reference outgroup, andOj is the set of other outgroups
(ancientDNAsamples,Onge,Karitiana, andMbuti). The rankof the (i, j)
matrix reflects theminimumnumber of sources that contributed to the
Testpopulations16,17. For a pool of individuals from23Testpopulations
representing most present-day European groups, this analysis rejects
descent from just two sources (P, 10212 by aHotelling t-test17). How-
ever, three source populations are consistent with the data after exclud-
ing theSpanishwhohave evidence forAfricanadmixture18–20 (P5 0.019,
not significant aftermultiple-hypothesis correction), consistentwith the
results fromADMIXTURE(Supplementary Information section9),PCA
(Fig. 2 and Supplementary Information section 10) and f statistics (Ex-
tendedDataTable 1, ExtendedDataFig. 6, Supplementary Information
sections 11 and12).Wecaution that the findingof three sources couldbe
consistentwith a larger numberofmixture events.Moreover, the source

Motala

Loschbour Stuttgart

Figure 1 | Map of west Eurasian populations. Geographical locations of
analysed samples, with colour coding matching the PCA (Fig. 2). We show all
sampling locations for each population, which results in multiple points for
some (for example, Spain).
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Western European hunter−gatherers

Early European farmers

Scandinavian hunter−gatherers
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Figure 2 | Principal Component Analysis.
PCA on all present-day west Eurasians, with
ancient samples projected. European hunter-
gatherers fall beyond present-day Europeans in the
direction of European differentiation from the
Near East. Stuttgart clusters with other Neolithic
Europeans and present-day Sardinians. MA1 falls
outside the variation of present-day west Eurasians
in the direction of southern–northern
differentiation along dimension 2.
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Admixture

• Admixture refers to the mixing of divergent evolutionary lineages



Archaic introgression

Ars Technica

• Non-African genomes contain Neanderthal DNA
   Green et al. (Science, 2010)

• Some modern humans also have Denisovan DNA 
    Reich et al. (Nature, 2010)

Sebastien Chabal
(Rugby player or Neanderthal?)



Ancient population structure

• Complex historical patterns 

• Many archaic lineages died out 
(including H. florensiensis)

• Some archaic populations may 
have mated with our ancestors



Genetics and language

• Luca Cavalli-Sforza

• Pioneering work using blood groups

• Populations with similar languages tend to have 
similar genetics



Biparental inheritance and shared ancestry

• Ancestry involves more than just DNA

• Number of ancestors t generations ago ≈ 2t
• Chang (Adv. Appl. Prob., 1999)

• Spain and Jewish ancestry
• Weitz (PLoS One, 2014)

• Shared biparental ancestry as recent as 2500 years ago?
• Rohde et al. (Nature, 2004)
• Lachance (Theo. Pop. Biol., 2009)

Writing on page 562 of this issue,
Rohde, Olson and Chang1 address
a simple but fascinating question:

how far back in time must we go to find 
an individual who was the ancestor of all 
present-day humans? After a little considera-
tion, the existence of such an individual (the
‘universal ancestor’ or, as the authors put it,
our ‘most recent common ancestor’) should
not surprise: I have two parents, four grand-
parents, and the growth in the population of
my ancestors is close to exponential as I trace
them back in time. This is true for anybody’s
ancestors, and there must soon be an overlap
between the ancestors of two or more ran-
domly chosen individuals (Fig.1).

In simplified models, which assume ran-
dom mating, the average number of genera-
tions back to a universal common ancestor
has been estimated2–4 to be around log2n,
where n is the population size. So if, for
instance, the present-day population were to
consist of 1,000 people, the average number
of generations back to the universal ancestor
would be log2(1,000) — about 10 genera-
tions. For populations of size 106, or the 
present human population of size 6!109, it
would be 20 or 33 generations, correspon-
ding to 500 or a bit more than 800 years,
respectively (assuming a generation time of
25 years).This is surprisingly recent.

And an even more surprising conclusion
from such models is that, only a little farther
back in time, a large fraction of the popula-
tion will be the ancestors of everybody alive
today. The remaining individuals back then
will be the ancestors of no one. As Rohde et
al.1 describe it, “When genealogical ancestry
is traced back beyond the [universal ances-
tor],more and more people in earlier genera-
tions become ancestors of the [whole] pre-
sent-day population”. At a certain point in
history (the ‘identical ancestors’ point),
people can be divided into two groups: either
they are common ancestors of all present-
day humans, or their lineages have died 
out. Being the ancestor of only some living
humans is not an option. At this point,
Rohde et al. say, “everyone alive now had
exactly the same ancestors”. In the simplest
model, the fraction of ‘ancestors-of-all’ is
about 80%, and in most estimates so far, the
time back to the ‘identical ancestors’ point is
a bit less than twice the number of genera-
tions back to the first universal ancestor.

These estimates are not only astonishing,
however; they are also unrealistically low,

because of the simplicity of the underlying
models. Key missing factors are geography
(which influences population structure) and
history (which affects population growth),
and these are the ingredients that Rohde et al.
have taken seriously to arrive at more credi-
ble estimates of the time back to the universal
and identical ancestors.

The authors carried out simulations
based on several scenarios, incorporating dif-
ferent degrees of population growth and dif-
ferent degrees of isolation of subpopulations,
with occasional migration linking these sub-
populations. The authors’ first model is rela-
tively simple and includes up to ten large sub-
populations, which exchange just one pair of
migrants per generation. In one set of esti-
mates based on this model, the mean time
back to the universal ancestor is 2,300 years
(76 generations, assuming a generation time
of a bit less than 30 years) and to the identical
ancestors it is 5,000 years (169 generations)
— the time of Aristotle and the first pyra-
mids,respectively.The latter date is especially
startling:had you entered any village on Earth

in around 3,000 BC, the first person you
would have met would probably have been
your ancestor! A considerably more detailed
model, which describes population density
within continents, the opening of ports and
more,does not change these estimates much.

The main weakness in the models comes
from migration. As the authors point out, if
one region is totally isolated (something that
they do not simulate),with no migrants con-
necting it to other subpopulations, then the
universal ancestor must logically have lived
before the period of isolation began. Only
after that period ends would the dates for 
the universal ancestor become less distant.
Because of the effects of isolation, had we
been living in 1700,say,and tried to work out
when our universal and identical ancestors
lived, the answers would have been further
back in time than the answers we obtain now.
Tasmania, for instance, was conceivably
completely isolated at the time,and probably
had been for millennia; this would therefore
have pushed back the dates for universal and
identical ancestry. So uncertainties about
population structure introduce uncertainty
into the proposed dates.

The genealogical questions addressed by
Rohde et al. are distinct from questions
about the history of our genetic material. In
models that trace genetic material back in
time, any given nucleotide position in our
genomes can eventually be found in a single
individual and on a single chromosome.
Thus,being in the pedigree of all of humanity

news and views

518 NATURE | VOL 431 | 30 SEPTEMBER 2004 | www.nature.com/nature

Figure 1 Searching for our universal common ancestor. The figure shows how the number of
ancestors of two people alive today builds up in a manner that is close to exponential. Because the
human population has a finite size, however, we do not need to go back many generations before we
find an ancestor that is common to both people. The same applies in searching for the ancestor of all
living humans (universal ancestors are represented as grey balls). In simplified models, the expected
time back to this universal ancestor is log2n, where n is the population size. If we were to trace not
both parents of each individual, but only one random parent for each (thick lines), we would in 
effect be tracing the history of gene variants (alleles). In standard models, the number of generations
back to the common ancestor of a particular allele will be of the order 2n, which is much longer ago.
If we trace the history of genomes, not genes, recombination would complicate matters; this genetic
‘shuffling’ ensures that each child does not inherit exactly the same genomic information as its
siblings, and means that the genealogical relationship of different genome segments can be different.
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Human evolution

Pedigrees for all humanity
Jotun Hein

Simulations based on a model of human population history and
geography find that an individual that is the genealogical ancestor 
of all living humans existed just a few thousand years ago.

30.9 n&v 515 MH  24/9/04  5:41 pm  Page 518

©  2004 Nature  Publishing Group

Image from Hein (Nature, 2004)



The generalizability problem
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traditional analytic strategy for monogenic mutations, we defined 
‘carriers’ as individuals with GPSCAD above a given threshold and 
‘non-carriers’ as all others.

We found that 8% of the population had inherited a genetic  
predisposition that conferred ≥  threefold increased risk for CAD 
(Table 2). Strikingly, the polygenic score identified 20-fold more 
people at comparable or greater risk than were found by familial 
hypercholesterolemia mutations in previous studies6,7. Moreover, 
2.3% of the population (‘carriers’) had inherited ≥  fourfold 
increased risk for CAD and 0.5% (‘carriers’) had inherited ≥  five-
fold increased risk. GPSCAD performed substantially better than 
two previously published polygenic scores for CAD that included 
50 and 49,310 variants, respectively (Supplementary Table 7 and 
Supplementary Fig. 1)17,18.

GPSCAD has the advantage that it can be assessed from the time 
of birth, well before the discriminative capacity emerges for the risk 
factors (for example, hypertension or type 2 diabetes) used in clini-
cal practice to predict CAD. Moreover, even for our middle-aged 
study population, practising clinicians could not identify the 8% of 
individuals at ≥  threefold risk based on GPSCAD using conventional 
risk factors in the absence of genotype information (Supplementary 
Table 8). For example, conventional risk factors such as hypercholes-
terolemia were present in 20% of those with ≥  threefold risk based 
on GPSCAD versus 13% of those in the remainder of the distribution. 
Hypertension was present in 32 versus 28%, and a family history 
of heart disease was present in 44 versus 35%, respectively. Making 
high GPSCAD individuals aware of their inherited susceptibility may 
facilitate intensive prevention efforts. For example, we previously 
showed that a high polygenic risk for CAD may be offset by one of 
two interventions: adherence to a healthy lifestyle or cholesterol-
lowering therapy with statin medications19–21.

Our results for CAD generalized to the four other diseases: 
risk increased sharply in the right tail of the GPS distribution 
(Fig. 3). For each disease, the shape of the observed risk gradi-
ent was consistent with predicted risk based only on the GPS 
(Supplementary Figs. 2 and 3).

Atrial fibrillation is an underdiagnosed and often asymptomatic 
disorder in which an irregular heart rhythm predisposes to blood 
clots and is a leading cause of ischemic stroke22. The polygenic  
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Fig. 2 | Risk for CAD according to GPS. a, Distribution of GPSCAD in the UK Biobank testing dataset (n!= !288,978). The x!axis represents GPSCAD, with values 
scaled to a mean of 0 and a standard deviation of 1 to facilitate interpretation. Shading reflects the proportion of the population with three-, four-, and 
fivefold increased risk versus the remainder of the population. The odds ratio was assessed in a logistic regression model adjusted for age, sex, genotyping 
array, and the first four principal components of ancestry. b, GPSCAD percentile among CAD cases versus controls in the UK Biobank testing dataset.  
Within each boxplot, the horizontal lines reflect the median, the top and bottom of each box reflect the interquartile range, and the whiskers reflect 
the maximum and minimum values within each grouping. c, Prevalence of CAD according to 100 groups of the testing dataset binned according to the 
percentile of the GPSCAD.

Table 2 | Proportion of the population at three-, four- and 
fivefold increased risk for each of the five common diseases

High GPS definition Individuals in testing 
dataset (n)

% of individuals

Odds ratio ≥3.0
 CAD 23,119/288,978 8.0

 Atrial fibrillation 17,627/288,978 6.1
 Type 2 diabetes 10,099 288,978 3.5

 Inflammatory bowel 
disease

9,209 288,978 3.2

 Breast cancer 2,369/157,895 1.5
 Any of the five diseases 57,115/288,978 19.8
Odds ratio ≥4.0

 CAD 6,631/288,978 2.3
 Atrial fibrillation 4,335/288,978 1.5
 Type 2 diabetes 578/288,978 0.2
 Inflammatory bowel 
disease

2,297/288,978 0.8

 Breast cancer 474/157,895 0.3
 Any of the five diseases 14,029/288,978 4.9
Odds ratio ≥5.0

 CAD 1,443/288,978 0.5
 Atrial fibrillation 2,020 288,978 0.7
 Type 2 diabetes 144/288,978 0.05
 Inflammatory bowel 
disease

571/288,978 0.2

 Breast cancer 158/157,895 0.1

 Any of the five diseases 4,305/288,978 1.5

For each disease, progressively more extreme tails of the GPS distribution were compared with the 
remainder of the population in a logistic regression model with disease status as the outcome, and 
age, sex, the first four principal components of ancestry, and genotyping array as predictors. The 
breast cancer analysis was restricted to female participants.

NATURE GENETICS | www.nature.com/naturegenetics
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• Counts of risk-increasing alleles can be used to generate individualize predictions 
of disease risk

• Importantly, frequencies of risk-increasing alleles differ across populations

• Effect sizes and the ability of PRS variants to tag causal alleles can also differ 
across populations

i : SNP #
j : individual #
d : allele dose
b : effect size
L : total # of SNPs

Polygenic risk scores (PRS)

Khera et al. (Nature Genetics, 2018)



Polygenic predictions do not generalize well

TextPrivé et al. (AJHG, 2022)



Most GWAS have used European samples

Text

• This sampling exacerbates existing health disparities

Popejoy and Fullerton (Nature, 2016)



SNP ascertainment bias

Text

• The set of known disease-associations is biased (there is enrichment for 
SNPs with intermediate allele frequencies in Europe)

Kim et al. (Genome Biology, 2018)

Choice of study population contributes to misestimates
of genetic disease risk
Most disease associations have been discovered in study
cohorts with European ancestry, and this can bias the es-
timation of genetic disease risks in diverse global popu-
lations. Empirical data reveal the effects of GWAS study
populations; many disease-associated alleles segregate at
intermediate frequencies in non-African populations but
are found at extremely low or high frequencies in Africa
(compare the vertical and horizontal borders of Fig. 3b).
This occurs because statistical power is maximized at
intermediate frequencies, and most disease-associated
loci have been discovered in non-African populations.
Existing GWAS have discovered relatively few disease al-
leles that segregate only in African populations.
To further isolate the effects of different study popula-

tions, we simulated a large number of GWAS results,
varying the continental ancestry of each study cohort.
Importantly, our GWAS simulations did not assume that

there are any underlying differences in hereditary disease
risks across populations. We find that computer simula-
tions recapitulate empirical patterns at known disease
loci and that GWAS of bottlenecked non-African popu-
lations yield different results than GWAS of African
populations (Fig. 4). Simulated GWAS that use an Afri-
can (AFR) cohort yield similar risk allele frequencies
across each of the five continental populations. However,
simulated GWAS that use American (AMR), East Asian
(EAS), European (EUR), or South Asian (SAS) cohorts
produce a set of disease-associated loci with elevated fre-
quencies of ancestral risk alleles in Africa (Fig. 4a) and
reduced frequencies of derived risk alleles in Africa
(Fig. 4b). These simulation results indicate that system-
atic allele frequency differences between populations
need not be due to any underlying difference in risk (re-
call that our simulations did not assume the existence of
any underlying differences in disease risks across popula-
tions). The effects of European study cohorts are still

a b

c d

Fig. 3 Empirical patterns depend on whether disease-associated alleles are ancestral or derived. a Mean derived allele frequencies of non-disease
SNPs from whole genome sequencing and genotyping arrays. 1000 Genomes Project data are shown. b Joint SFS of published GWAS loci.
Ancestral risk alleles are labeled red and derived risk alleles are labeled blue. c The frequencies of ancestral risk alleles are higher in Africa (+ 9.51%
on average), and the frequencies of derived risk alleles are lower in Africa (− 5.40% on average). Dashed lines indicate mean values. d Continental
differences in risk allele frequencies are minimal for young SNPs. Disease-associated loci are binned by DAF and whether risk alleles are ancestral
or derived
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Genotyping technologies contribute to bias

Text



Why might  GWAS findings replicate 
poorly across populations?

Text

• Allele frequency differences
     (including private alleles)

• Linkage disequilibrium varies across populations
     (tag SNPs need not be causal)

• Effect size differences
     (including genotype-by-environment interactions)



Case study: Prostate cancer genetics

Text

• Prostate cancer has a high heritability (h2 = 58%)        
   
• The relative risk of men with affected fathers is 2.1-fold higher compared 

to men without a family history

• However, much of what we know about this disease comes from studies 
of individuals of European descent



Text
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rates from liver cancer (Figure 9) increased by 87.6% (95% UI,
77.5%-97.4%) from 3.6 (95% UI, 3.5-3.8) deaths per 100 000
in 1980 to 6.8 (95% UI, 6.6-7.1) deaths per 100 000 in 2014. In
1980, the mortality rates spanned from 11.2 (95% UI, 7.1-16.6)
in Kusilvak Census Area, Alaska, to 1.7 (95% UI, 1.3-2.1) in
Summit County, Colorado. In 2014, the highest rate was 37.6
(95% UI, 30.7-44.3) in Anderson County, Texas, while the low-
est rate was found to be 2.3 (95% UI, 1.7-3.1) in Summit County,
Colorado. Almost all counties (3069) had significant in-
creases in liver cancer death rates, and many of the counties
on the West Coast and in New Mexico and West Texas had

much larger increases. In 2014, there was a notable cluster
of counties along the Mexico border in Texas with high rates;
there were also high rates in a number of counties with large
Native American populations in South Dakota, New Mexico,
and Alaska.

Testicular Cancer
Between 1980 and 2014, 13 927 deaths due to testicular can-
cer were recorded. At the national level, the mortality rate
from testicular cancer (Figure 10) decreased by 36.8% (95%
UI, 29.3%-43.2%) between 1980 and 2014 from 0.2 (95% UI,

Figure 5. County-Level Mortality From Prostate Cancer (Males Only)
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A Age-standardized mortality rate from prostate cancer (males only), 2014 
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A, Age-standardized mortality rate
for males in 2014. B, Relative percent
change in the age-standardized
mortality rate for males between
1980 and 2014. In panels A, and B,
the color scale is truncated at
approximately the first and 99th
percentiles as indicated by the
range given in the color scale.
C, Age-standardized mortality rate
in 1980, 1990, 2000, and 2014.
The bottom border, middle line,
and top border of the boxes indicate
the 25th, 50th, and 75th percentiles,
respectively, across all counties;
whiskers, the full range across
counties; and circles, the
national-level rate.
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Men of African decent have higher risks 
of prostate cancer



Ancestry-matched risk scores perform better

Text

• Polygenic risk scores perform better if they are ancestry-matched

Source of polygenic risk score AUCUKBB AUCMADCaP

Conti (Multi-ancestry) 0.703 0.579

Conti (European) 0.707 0.541

Conti (African) 0.671 0.585

Conti (Asian) 0.662 0.533

Conti (Hispanic) 0.678 0.527

Karunamuni (European) 0.612 0.502

Karunamuni (European + African) 0.608 0.547

Kim et al. (Genome Biology, 2022)



Going forward…

Text

• Evolutionary genomics and functional genomics can be leveraged to 
better understand human health and disease

• There is a need to conduct genetic studies in diverge populations

Image from HealthToday



What will our genomes look like in the future?

• Genetic engineering

• Changes in selection pressures

• Population admixture

Columbia Pictures


