SISG 2023 - Module 2

Introduction to Genetics and Genomics Genetic Ancestry

Block #10 – Wednesday, July 12

Joe Lachance and Greg Gibson

joseph.lachance@biology.gatech.edu

Terminology

- Race refers to a socially constructed classification based on perceived biological similarities
- Ethnicity refers to a socially constructed classification based on perceived <u>cultural</u> similarities (e.g., language and beliefs)
- Ancestry refers to a person's origin or descent, lineage, "roots," or heritage, including kinship (this term focuses on <u>genetics</u>)
- **Populations** are often defined in terms of sampling locations

The changing face of humanity

AIMs

- Ancestry Informative Markers (AIMs) have large allele frequency differences between populations
- Rare alleles are more likely to be population-specific
- No single AIM is a perfect classifier

Variance partitioning and Lewontin's Fallacy

- Richard Lewontin (1972)
 - 85% of genetic diversity is found within populations, as opposed to between populations or between continents

- A.W.F. Edwards (2003)
 - Individuals can be assigned to different populations if multilocus data are analyzed ("Lewontin's Fallacy")

HGDP

- The Human Genome Diversity Project (HGDP): >50 sampled populations
- Ethical issues:
 - Indigenous groups need not be isolated populations
 - Accusations of "helicopter science"

1000 Genomes Project

• Whole genome sequencing of 2504 samples from 26 global populations

SGDP and EGDP

Estonian Biocentre Human Genome Diversity Panel Pagani et al. (*Nature*, 2016)

• More granular sampling, but fewer samples per location

Dangers of limited sampling

- If highly divergent locations are sampled it can lead one to think human diversity falls into distinct categories
- Ideally, each living individual has an equal chance of being sampled in genetic studies

What do population genetic datasets look like?

Chrom	Position	SNP_ID	Ref	Alt	Sample_1	Sample_2	Sample_3	Sample_4	Sample_5	Sample_6	Sample_7	Sample_8
6	95632928	rs138026492	С	Т	00	00	00	00	00	00	00	00
6	95636167	rs7776290	С	Α	11	11	11	11	11	11	11	11
6	95638707	rs9490131	С	Т	01	01	11	01	00	00	00	01
6	95639314	rs111993428	G	С	00	00	01	00	00	00	00	00
6	95644518	rs76301071	G	Α	00	00	00	00	00	00	00	00
6	95658829	rs9320918	G	Т	11	11	11	11	11	11	11	11
6	95676882	rs73546580	G	Α	00	00	00	00	01	00	01	00
6	95677999	rs9491308	Т	С	01	00	00	00	00	00	00	00
6	95678247	rs117120297	Т	С	00	00	00	00	00	00	00	00
6	95689368	rs117996333	G	Α	00	00	00	00	00	00	00	00
6	95722603	rs143147841	Α	С	00	00	00	00	00	00	00	00
6	95726175	rs116190944	Т	С	00	00	00	00	00	00	00	00
6	95747602	rs112599693	G	С	00	00	00	00	00	00	00	00
6	95757249	rs73757480	G	С	00	00	01	00	00	00	00	00
6	95769070	rs62417884	С	Т	00	00	00	01	00	01	00	00
6	95788421	rs117816213	Т	С	00	00	00	00	00	00	00	00
6	95793344	rs147072022	Т	С	00	00	00	01	00	01	00	00
6	95795036	rs77874428	С	А	00	00	00	00	00	00	00	00

• Each row is a different SNP, and each column is a different individual

Dimensionality and PCA

- Principal Component Analysis (PCA) is one way to reduce the dimensionality of genetic datasets
- Each PC refers to an orthogonal (perpendicular) dimension each PC is an eigenvector and eigenvalues correspond to the % of variance explained by each PC
- PCA can be used to represent samples in a genetic "space" (samples closer together in this space share more alleles)

Genes mirror geography in Europe

Human diversity exists along a continuum

ADMIXTURE plots

- Human variation exists along a continuum
- Every individual's genome contains a mix of different ancestries
- Each genetic ancestry can be represented by a different color

Ancestry inference and DTC testing

European	93.6%	South Asian	0.0%	Sub-Saharan African	0.0%
Northwestern Europea	an 62.6%	Broadly South Asian	0.0%	West African	0.0%
British & Irish	9.8%			 East African 	0.0%
French & German	7.8%	East Asian & Native American	0.0%	Central & South African	0.0%
Scandinavian	3.1%	East Asian	0.0%	 Broadly Sub-Saharan African 	0.0%
Finnish	0.0%	Japanese	0.0%		
Broadly Northwestern	European 41.9%	Korean	0.0%	Middle Eastern & North African	5.5%
Southern European	21.6%	Yakut	0.0%	 Middle Eastern 	3.3%
Italian	8.4%	Mongolian	0.0%	North African	0.0%
Sardinian	0.0%	Chinese	0.0%	- Proadly Middle Factors & North	
Iberian	0.0%	Broadly East Asian	0.0%	African	2.2%
Balkan	0.0%	 Southeast Asian 	0.0%		
Broadly Southern Euro	ppean 13.2%	Native American	0.0%	Oceanian	0.0%
 Ashkenazi Jewish 	< 0.1%	 Broadly East Asian & Native American 	0.0%	 Broadly Oceanian 	0.0%
 Eastern European 	0.0%				0.0%
 Broadly European 	9.3%			Unassigned	0.9%
 Broadly European 	9.3%	23andMe			

Northwestern Europe	28%
Southwestern Europe	23%
Asia Minor	16%
Northeastern Europe	10%
Jewish Diaspora	9%
Eastern Europe	8%
Southwest Asia/Persian Gulf	6%

10%

Scandinavia 32%
 Western Norway
 Europe South 13%
 Ireland/Scotland/Wales 11%
 Great Britain 11%
 Middle East 11%

Syrian-Lebanese

Caucasus

40%	Southwestern Europe	
20%	Northern and Central Europe	
16%	Eastern Mediterranean	
9%	Northeast Europe	
8%	Central Indian subcontinent	
5%	Middle East	
2%	Anatolia, Caucasus, Iranian Plateau	
•	🖌 gencove	

Chromosome painting

Comparisons between SIRE and ancestry

 Self-identified race and ethnicity (SIRE) is positively correlated with genetic ancestry

Inferring history from ancestry bocks

Maternal (mtDNA) lineages

Paternal (Y chromosome) lineages

- Y chromosome lineages are more diverse in Africa
- Mendez et al. (*AJHG*, 2013)
 - Highly divergent Y lineage (A00)... 388kya ← exact date is under contention
 - Found in African American and Central African samples

Movement into Europe

 The spread of agriculture was due to the spread of farmers, not the spread of technology

Admixture

• Admixture refers to the mixing of divergent evolutionary lineages

Archaic introgression

Non-African genomes contain Neanderthal DNA

Green et al. (Science, 2010)

Sebastien Chabal (Rugby player or Neanderthal?)

 Some modern humans also have Denisovan DNA Reich et al. (Nature, 2010)

Ancient population structure

Complex historical patterns

• Many archaic lineages died out (including *H. florensiensis*)

 Some archaic populations may have mated with our ancestors

Genetics and language

Luca Cavalli-Sforza

population language group Mbuti Pygmy unknown West African Niger-Kordofanian Bantu Nilosaharan Nilosaharan San (Bushmen) Khoisan Ethiopian Afro-Asiatic Berber Southwest Asian Iranian European Indo-European Sardinian o Indian Southeast Indian Dravidian Lapp Uralic-Yukaghir Samoyed Mongol Tibetan Sino-Tibetan Korean Altaic Japanese Ainu North Turkic Eskimo-Aleut Eskimo Chukchi-Kamchatkan o Chukchi South Amerind o Central Amerind Amerind North Amerind Na-Dene Northwest Amerind Sino-Tibetan South Chinese Mon Khmer Austroasiatic Daic Thai Indonesian Austric Malaysian Filipino Austronesian Polynesian Micronesian Melanesian Indo-Pacific New Guinean Australian Australian

- Pioneering work using blood groups
- Populations with similar languages tend to have similar genetics

Biparental inheritance and shared ancestry

- Ancestry involves more than just DNA
- Number of ancestors t generations ago $\approx 2^t$
 - Chang (Adv. Appl. Prob., 1999)
- Spain and Jewish ancestry
 - Weitz (*PLoS One*, 2014)
- Shared biparental ancestry as recent as 2500 years ago?
 - Rohde et al. (Nature, 2004)
 - Lachance (Theo. Pop. Biol., 2009)

The generalizability problem

Polygenic risk scores (PRS)

- Counts of risk-increasing alleles can be used to generate individualize predictions of disease risk
- Importantly, frequencies of risk-increasing alleles differ across populations
- Effect sizes and the ability of PRS variants to tag causal alleles can also differ across populations

Polygenic predictions do not generalize well

Most GWAS have used European samples

• This sampling exacerbates existing health disparities

SNP ascertainment bias

 The set of known disease-associations is biased (there is enrichment for SNPs with intermediate allele frequencies in Europe)

Genotyping technologies contribute to bias

Why might GWAS findings replicate poorly across populations?

• Allele frequency differences (including private alleles)

 Linkage disequilibrium varies across populations (tag SNPs need not be causal)

 Effect size differences (including genotype-by-environment interactions)

Case study: Prostate cancer genetics

- Prostate cancer has a high heritability ($h^2 = 58\%$)
- The relative risk of men with affected fathers is 2.1-fold higher compared to men without a family history
- However, much of what we know about this disease comes from studies of individuals of European descent

Men of African decent have higher risks of prostate cancer

African-American %

Prostate cancer mortality

Ancestry-matched risk scores perform better

Source of polygenic risk score	AUC _{UKBB}	
Conti (Multi-ancestry)	0.703	0.579
Conti (European)	0.707	0.541
Conti (African)	0.671	0.585
Conti (Asian)	0.662	0.533
Conti (Hispanic)	0.678	0.527
Karunamuni (European)	0.612	0.502
Karunamuni (European + African)	0.608	0.547

biobank*

• Polygenic risk scores perform better if they are ancestry-matched

Going forward...

Image from HealthToday

- Evolutionary genomics and functional genomics can be leveraged to better understand human health and disease
- There is a need to conduct genetic studies in diverge populations

What will our genomes look like in the future?

• Genetic engineering

Changes in selection pressures

Population admixture

Columbia Pictures

Disnep · PIXAR

