SISG 2022 - Module 2

Introduction to Genetics and Genomics What is a gene?

11:20am EDT, Monday, July 11th

Joe Lachance and Greg Gibson

joseph.lachance@biology.gatech.edu

Instructors

Greg Gibson

Joe Lachance

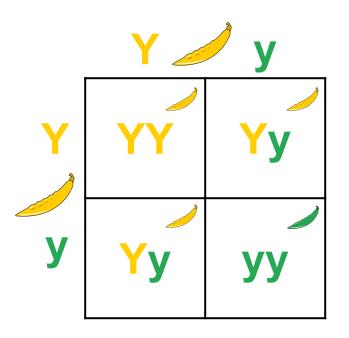
Date	Time (PDT)	Time (EDT)	Topic	Instructor
Monday, July 11	8:00 - 8:20	11:00 – 11:20	Introductions	
	8:20 - 9:05	11:20 – 12:05	What is a Gene?	JL
	9:05– 9:20	12:05 – 12:20	Break	
	9:20 – 10:15	12:20 – 1:15	Heritability	GG
	10:15 – 10:45	1:15 – 1:45	Q&A Discussions	
Monday, July 11	11:45 – 12:45	2:45 – 3:45	Quantitative Genetics	GG
	12:45 – 1:00	3:45 – 4:00	Break	
	1:00 - 2:00	4:00 - 5:00	Molecular Biology	JL
	2:00 - 2:30	5:00 - 5:30	Q&A Discussions	
Tuesday, July 12	8:00 – 9:00	11:00 – 12:00	Genome-Wide Association Studies	GG
	9:00 - 9:15	12:00 – 12:15	Break	
	9:15 – 10:15	12:15 – 1:15	Molecular Evolution	JL
	10:15 – 10:45	1:15 – 1:45	Q&A Discussions	
Tuesday, July 12	11:45 – 12:45	2:45 - 3:45	Gene Expression Profiling	GG
	12:45 – 1:00	3:45 – 4:00	Break	
	1:00 - 2:00	4:00 - 5:00	Population Genetics	JL
	2:00 – 2:30	5:00 - 5:30	Q&A Discussions	
Wednesday, July 13	8:00 - 9:00	11:00 – 12:00	Genomic Medicine	GG
	9:00 - 9:15	12:00 – 12:15	Break	
	9:15 – 10:15	12:15 – 1:15	Genetic Ancestry	JL
	10:15 – 10:45	1:15 – 1:45	Q&A Discussions	

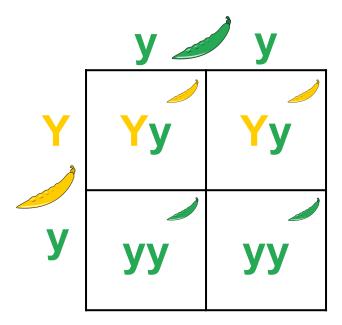
Format

- Lectures will be recorded and posted online. Please remind us we accidentally forget to hit the record button on Zoom!
- Student microphones will be muted during each lecture, but please use the chat feature – the more questions you ask, the more you will learn
- Every few minutes we check to see if there are any questions in chat
- After each block of lectures, we will form small breakout rooms so that classmates can get to know each other via chat or video
- We will also hold open question and answer sessions (these informal "office hours" will not be recorded)

What is a gene?

- How would you define a gene?
- Which matters more, structure or function?


Terminology


- Genes: DNA sequences that encode a functional protein or RNA molecule
- Allele: one of two or more alternative forms of a gene
- Genotype: the genetic makeup of an individual
- Phenotype: the observable characteristics and traits of an organism
- Genome: the complete set of genetic material in a cell or organism
- Haplotype: closely linked DNA sequencies on the same chromosome that are co-inherited

Mendel's laws of inheritance

- Law of segregation (1st law)
 - Parental pairs of alleles separate during gamete formation
- Law of independent assortment (2nd law)
 - Pairs of alleles for different traits segregate independently
- Law of dominance (3rd law)
 - Heterozygotes manifest the trait associated with the dominant allele
- These rules are often broken!

Mendelian ratios

- Punnett squares can be used to predict the products of breeding
- Genetics is not always this simple!

Prokaryotes

Eukaryotes

Internal structures

No organelles

Organelles

DNA

Circular No introns DNA in cytoplasm Linear Introns DNA in nucleus

Genome size

Tend to be < 5Mb

10Mb-100,000Mb

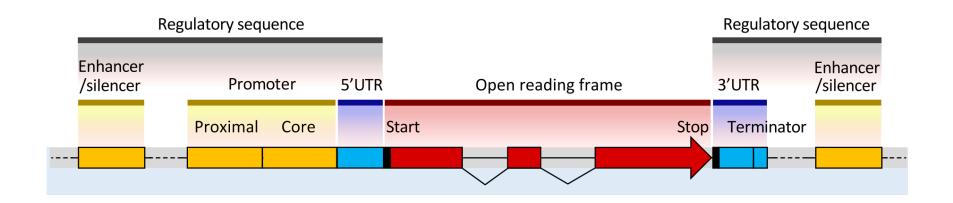
Chromatin

No histones

Histones

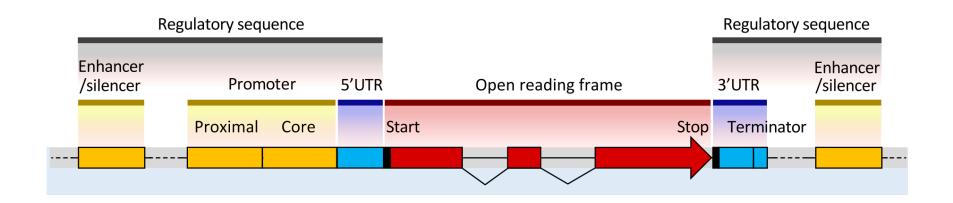
Ploidy

Haploid


Usually diploid

Reproduction

Asexual (binary fission)


Asexual (mitosis) and sexual (meiosis)

The structure of (protein coding) genes

- Exons: nucleotide sequence not removed by splicing (coding DNA)
- Introns: nucleotide sequence removed by splicing (noncoding DNA)
- Cis-regulatory elements
 - Enhancers: increase the likelihood of transcription when bound to activators
 - Silencers: decrease likelihood of transcription when bound to repressors
 - Promoters: region of DNA where transcription is initiated
- UTRs: untranslated regions

The structure of (protein coding) genes

Which parts would you consider to be part of a gene?

RNA genes

 DNA sequences which encode function non-coding RNA are called RNA genes

Transfer RNAs (tRNAs)

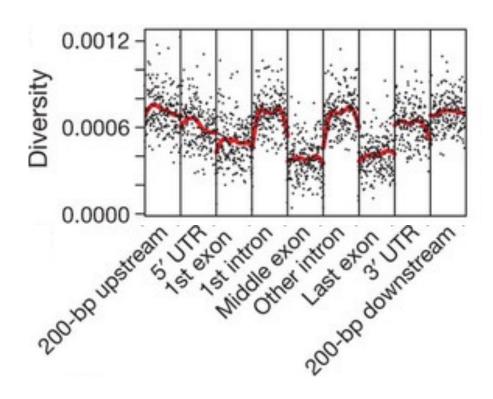
Ribosomal RNAs (rRNAs)

Different types of small RNAs (e.g., microRNAs, siRNAs)

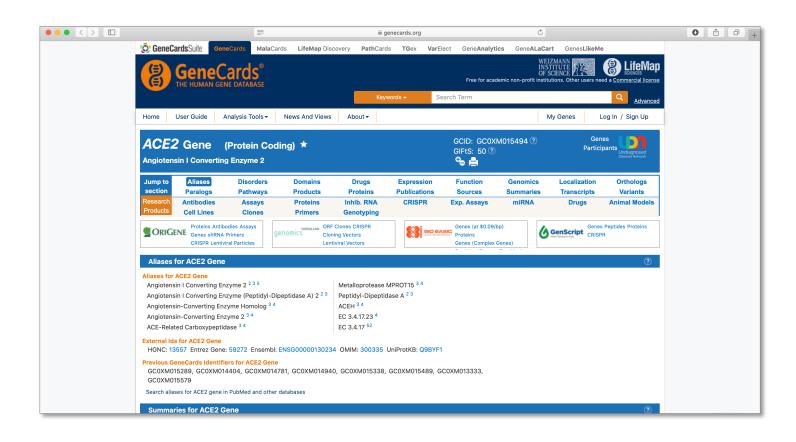
The locus of evolution

What sort of genetic changes underlie morphological adaptations?

- Hopi Hoekstra and Jerry Coyne
 - Protein-coding DNA matters

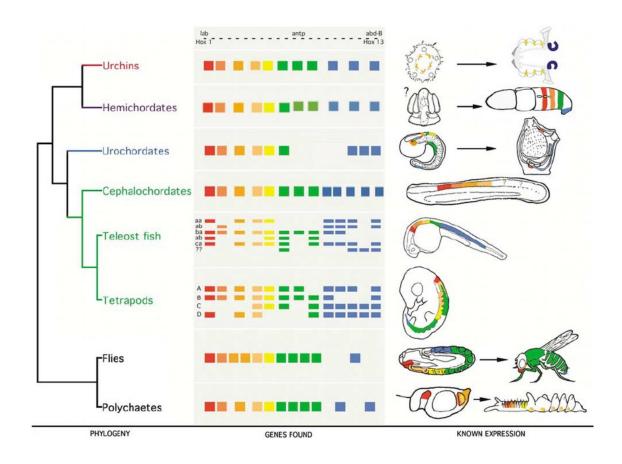


- Sean Carroll
 - It's all about regulatory DNA

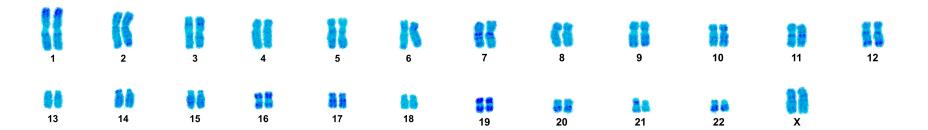


Polymorphism near genes

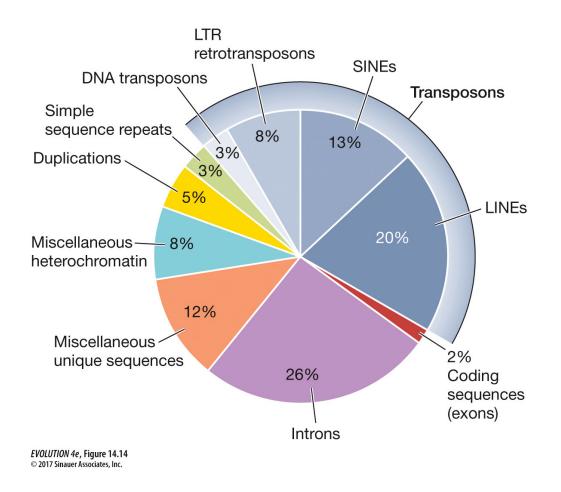
Exons contain less genetic variation than non-coding DNA


GeneCards

- How to find more information about a particular gene?
- https://www.genecards.org



Different species share many of the same genes


 Homologous genes are two or more genes that descend from a common ancestral DNA sequences

Genes do not exist in isolation

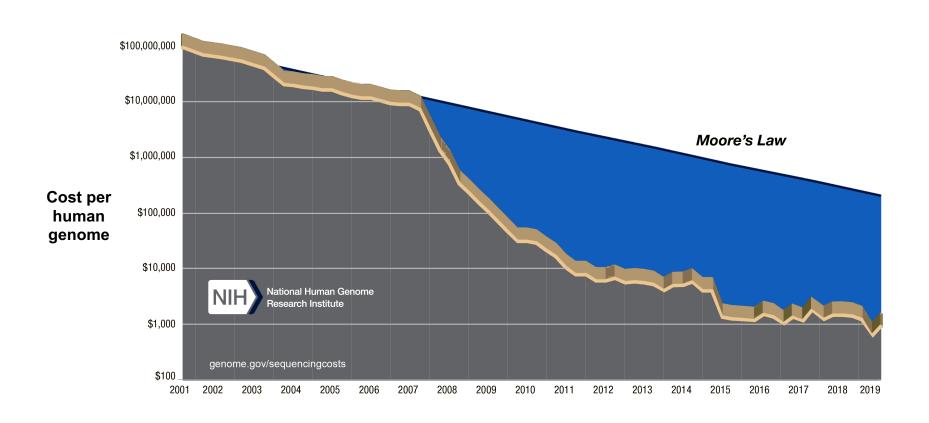
- Genes are found on chromosomes
- DNA sequences that are close together on the same chromosome tend to be inherited together (linkage)
- Genes can interact with other genes (epistasis)

Genomic fractions

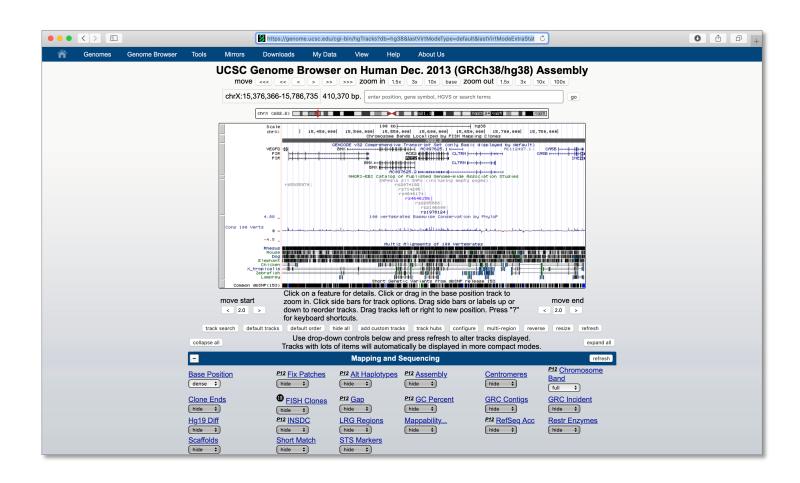
- Most of the human genome is non-coding
- Transposons (selfish DNA) make up a large % of the human genome

Whole genome sequencing (WGS)

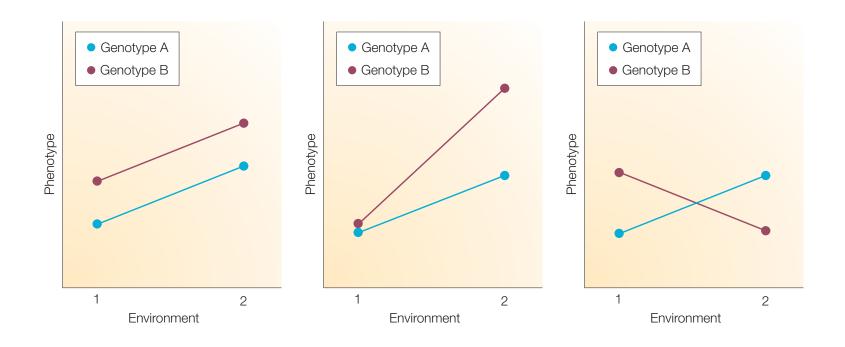
WGS is sometimes called next-generation sequencing

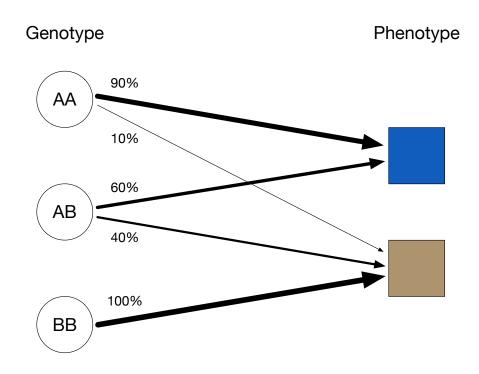

 Depth of coverage: average number of reads per base pair in a genome (low coverage = 5-10X, high coverage: >30X)

One error per 100,000 base pairs (high coverage)

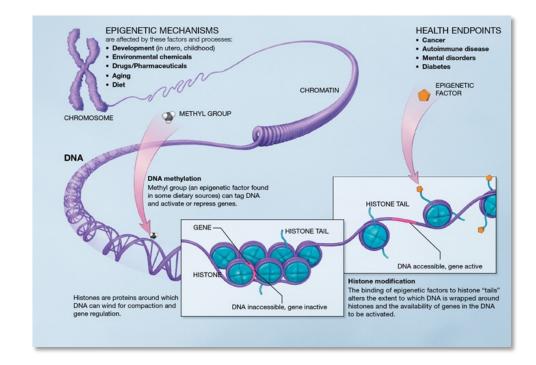

Relatively expensive, but getting cheaper

Declining sequencing costs


UCSC Genome Browser


- An online resource for exploring the human genome
- https://genome.ucsc.edu

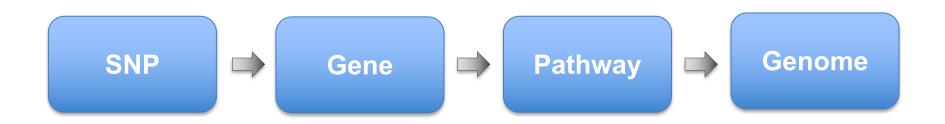
Environmental context matters


Incomplete penetrance

- Genotype-phenotype maps are not always one-to-one (e.g., some alleles increase your chances of getting hypertension)
- Penetrance refers to the proportion of individuals with a given genotype that show the expected phenotype

Epigenetics

- DNA methylation (methylated CpGs)
- Histone modification
- X-inactivation
- · Genomic imprinting


- Different people have different epigenetic marks
- Most of these epigenetic marks are erased each generation

Pleiotropy

- Be careful to avoid terminology like "cancer gene" or "height gene"
- This is because genes often contribute to multiple phenotypes (i.e., they are pleiotropic)
- Example: A mutation in the *Frizzle* gene results in feathers that curve outward, fewer eggs laid, and high body temperatures

Units of analysis in genetics

• Genetic data be analyzed on **population** as well as **individual** scales

Sometimes we are more focused on traits...