SISG 2023 - Module 2

Introduction to Genetics and Genomics What is a gene?

Block #1 – Monday, July 10

Joe Lachance and Greg Gibson

joseph.lachance@biology.gatech.edu

Date	Time (PDT)	Reading	Торіс	Instructor
Monday, July 10	8:30am – 8:45am		Introductions	
	8:45am – 10:00am	Portin and Wilkins (Genetics, 2017)	What is a Gene ?	JL
	10:00am – 10:30am		Break	
	10:30am – 11:45am	Visscher et al. (Nat Rev Genet, 2008)	Heritability	GG
	11:45am – noon		Q&A Discussions	
Monday, July 10	1:30pm – 3:00pm	Goddard et al. (Proc Roy Soc B, 2016)	Quantitative Genetics	GG
	3:00pm – 3:30pm		Break	
	3:30pm – 4:45pm	Deichmann (Dev Biol, 2016)	Molecular Biology	JL
	4:45pm – 5:00pm		Q&A Discussions	
Tuesday, July 11	8:30am – 10:00am	Abdellaoui et al. (Am J Hum Genet, 2023)	Genome-Wide Association Studies	GG
	10:00am – 10:30am		Break	
	10:30am – 11:45am	Christmas et al. (Science, 2023)	Molecular Evolution	JL
	11:45am – noon		Q&A Discussions	
Tuesday, July 11	1:30pm – 3:00pm	Wang et al. (Nat Rev Genet, 2009)	Gene Expression Profiling	GG
	3:00pm – 3:30pm		Break	
	3:30pm – 4:45pm	Prohaska et al. (Cell, 2023)	Population Genetics	JL
	4:45pm – 5:00pm		Q&A Discussions	
Wednesday, July 12	8:30am – 10:00am	Ashley (Nat Rev Genet, 2016)	Genomic Medicine	GG
	10:00am - 10:30am		Break	
	10:30am – 11:45am	Bergström et al. (Nature, 2021)	Genetic Ancestry	JL
	11:45am – noon		Q&A Discussions	

What is a gene?

- How would you define a gene?
- Which matters more, structure or function?

Terminology

- Genes: DNA sequences that encode a functional protein or RNA molecule
- Allele: one of two or more alternative forms of a gene
- **Genotype:** the genetic makeup of an individual
- **Phenotype:** the observable characteristics and traits of an organism
- Genome: the complete set of genetic material in a cell or organism
- Haplotype: closely linked DNA sequencies on the same chromosome that are co-inherited

Mendel's laws of inheritance

- Law of segregation (1st law)
 - Parental pairs of alleles separate during gamete formation
- Law of independent assortment (2nd law)
 - Pairs of alleles for different traits segregate independently
- Law of dominance (3rd law)
 - Heterozygotes manifest the trait associated with the dominant allele
- These rules are often broken!

Mendelian ratios

- Punnett squares can be used to predict the products of breeding
- Genetics is not always this simple!

	Prokaryotes	Eukaryotes
Internal structures	No organelles	Organelles
DNA	Circular No introns DNA in cytoplasm	Linear Introns DNA in nucleus
Genome size	Tend to be < 5Mb	10Mb-100,000Mb
Chromatin	No histones	Histones
Ploidy	Haploid	Usually diploid
Reproduction	Asexual (binary fission)	Asexual (mitosis) and sexual (meiosis)

The structure of (protein coding) genes

- Exons: nucleotide sequence not removed by splicing (coding DNA)
- Introns: nucleotide sequence removed by splicing (noncoding DNA)
- Cis-regulatory elements
 - Enhancers: increase the likelihood of transcription when bound to activators
 - Silencers: decrease likelihood of transcription when bound to repressors
 - Promoters: region of DNA where transcription is initiated
- UTRs: untranslated regions

The structure of (protein coding) genes

• Which parts would you consider to be part of a gene?

 DNA sequences which encode function non-coding RNA are called RNA genes

• Transfer RNAs (tRNAs)

• Ribosomal RNAs (rRNAs)

• Different types of small RNAs (e.g., microRNAs, siRNAs)

The locus of evolution

• What sort of genetic changes underlie morphological adaptations?

- Hopi Hoekstra and Jerry Coyne
 - Protein-coding DNA matters

- Sean Carroll
 - It's all about regulatory DNA

Polymorphism near genes

Exons contain less genetic variation than non-coding DNA

GeneCards

- How to find more information about a particular gene?
- <u>https://www.genecards.org</u>

Different species share many of the same genes

 Homologous genes are two or more genes that descend from a common ancestral DNA sequences

Genes do not exist in isolation

- Genes are found on chromosomes
- DNA sequences that are close together on the same chromosome tend to be inherited together (linkage)
- Genes can interact with other genes (epistasis)

Genomic fractions

- Most of the human genome is non-coding
- Transposons (selfish DNA) make up a large % of the human genome

Whole genome sequencing (WGS)

• WGS is sometimes called next-generation sequencing

 Depth of coverage: average number of reads per base pair in a genome (low coverage = 5-10X, high coverage: >30X)

• One error per 100,000 base pairs (high coverage)

• Relatively expensive, but getting cheaper

NovaSeq 6000 illumina

Declining sequencing costs

UCSC Genome Browser

- An online resource for exploring the human genome
- <u>https://genome.ucsc.edu</u>

dbSNP

- A comprehensive resource of known polymorphisms
- rs numbers refer to specific genetic variants
- https://www.ncbi.nlm.nih.gov/snp/

Environmental context matters

Incomplete penetrance

- Genotype-phenotype maps are not always one-to-one (e.g., some alleles increase your chances of getting hypertension)
- **Penetrance** refers to the proportion of individuals with a given genotype that show the expected phenotype

Pleiotropy

- Be careful to avoid terminology like "cancer gene" or "height gene"
- This is because genes often contribute to multiple phenotypes (i.e., they are **pleiotropic**)
- Example: A mutation in the *Frizzle* gene results in feathers that curve outward, fewer eggs laid, and high body temperatures

Cis and trans in genetics

Units of analysis in genetics

• Genetic data be analyzed on **population** as well as **individual** scales

• Sometimes we are more focused on traits...

The mapping problem

- SNPs can affect more than one gene (or none)
- Gene to pathway mappings are hindered by ascertainment bias
- Mappings need not be one-to-one