SISG 2022 - Module 2

Introduction to Genetics and Genomics Molecular Biology

4pm EDT, Monday, July 11th

Joe Lachance and Greg Gibson

joseph.lachance@biology.gatech.edu

What are genes made of?

- What is the hereditary molecule?
- Schrödinger incorrectly suggested that genetic information is contained in the form of aperiodic crystals

DNA is the transforming factor

- Avery, MacLeod, and McCarty (1944)
- DNA from virulent type S bacteria is able to transform nonvirulent type R bacteria

DNA is the hereditary material

Hershey and Chase (1952)

Watson and Crick: double helix structure of DNA

Photo 51: X-ray diffraction of DNA (Gosling and Franklin)

Information and genetics

- How much information is contained in DNA?
 - 133 base pairs $\rightarrow 4^{133}$ possibilities
 - $4^{133} = 10^{80}$ (the number of atoms in the universe)
- Information flow in genetics: genotype \rightarrow phenotype

Genotype-phenotype map

Nature Reviews | Genetics

Central Dogma of Molecular Biology*

*Things are not quite this simple!

What are some exceptions to the Central Dogma?

Central Dogma: implications

- Mendelism vs. Lamarckism (acquired characteristics)
- Germline vs. soma (Weismann)
- Genes as information decoupling of structure and function
- Biological "laws" are full of exceptions

RNA world

Image rights: NASA/Aaron Gronstal

DNA

Figure 2.4b Human Evolutionary Genetics, 2nd ed. (© Garland Science 2014)

- The structure of DNA is a double helix that looks like a twisted ladder
- The sides of the ladder are made of alternating sugar (deoxyribose) and phosphate molecules, while the steps of the ladder are made of nucleobases
- The two DNA strands are antiparallel to each other

DNA packaging

Figure 2.11 Human Evolutionary Genetics, 2nd ed. (© Garland Science 2014)

Chromatin and TADs

- Chromomes are not visible during most of the cell cycle
- Chromatin is in its least condenced state during interphase
- TAD: topologically associating domains

DNA packaging: implications

• Exposed DNA is more likely to be functional

• Proximity in 3D space matters

• Histone code

Ploidy

Recombination

- Recombination occurs in meiosis
- It is a byproduct of the need to pair homologous chromosomes

Recombination: implications

• Genetic maps and linkage disequilibrium

• Benefits of sex

DNA replication

• Stages: initiation, elongation, and termination

DNA replication: implications

- Semi-conservative replication
- 5' \rightarrow 3' directionality causes problems (solved by evolution)
- Potential for miscopying → mutations
- Comparative genomics

Transcription factors and gene regulation

RNA comes in many different flavors

• mRNA: messenger RNA

tRNA: transfer RNA

• rRNA: ribosomal RNA

• Regulatory RNAs (miRNA, siRNA, piRNA)

Proteins are made of amino acids

Note: This chart only shows those amino acids for which the human genetic code directly codes for. Selenocysteine is often referred to as the 21st amino acid, but is encoded in a special manner. In some cases, distinguishing between asparagine/aspartic acid and glutamine/glutamic acid is difficult. In these cases, the codes asx (B) and glx (Z) are respectively used.

From DNA to RNA to protein

Transcription: DNA serves as a template

5' ... CGATCGGACTACGGACTAGCGACTACGA ... 3'Sense strand of DNA3' ... GCTAGCCTGATGCCTGATCGCTGATGCT ... 5'Antisense strand of DNA

5' ... CGAUCGGACUACGGACUAGCGACUACGA ... 3' RNA

Transcription (DNA to RNA)

• Major steps: initiation, promoter escape, elongation, and termination

Splicing

Transcription: implications

• Gene expression: transcriptional activity of a gene that results in RNA

• Inducible system that allows organisms to respond to environments

• Helps explain how different cell types can share same DNA

Copyright © 2006 Nature Publishing Group Nature Reviews | Genetics

Translation (RNA to protein)

• Stages: initiation, elongation, and termination

The genetic code

Seond letter						
		U	с	А	G	
First letter	U	UUU UUC UUA UUG]Leu	UCU UCC UCA UCG	UAU UAC UAA UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G
	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG Gin	CGU CGC CGA CGG	
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC]Asn AAA AAG]Lys	AGU AGC] Ser AGA AGG] Arg	U C A G
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG GIu	GGU GGC GGA GGG	U C A G

Does the codon table look random?

Translation: implications

• The genetic code is (relatively) arbitrary... frozen accident?

Phase and frameshift mutations

• Post-translational modifications (e.g., glycosylation)

• **Enzymes**: a substance produced by a living organism that catalyzes a specific biochemical reaction. Enzymes are made of proteins

Building blocks of life

• Carbohydrates

• Proteins

• Lipids

• Nucleic acids

From biochemistry to dominance and recessivity

- Kacser and Burns (*Genetics*, 1981)
- Dominance can arise as an emergent property of metabolic flux

• Having half as much of an enzyme is much better than having none

Movie clips

• DNA packaging: <u>https://www.youtube.com/watch?v=ttu3sCFpp-M</u>

Transcription: <u>https://www.youtube.com/watcus_v=-AnsJILjbz8</u>

Translation: <u>https://www.youtube.com/watch?v=tTIZQQtoq5Q</u>