SISG 2022 - Module 2
Introduction to Genetics and Genomics

Population Genetics

4pm EDT, Tuesday, July 12t

Joe Lachance and Greg Gibson

joseph.lachance@biology.gatech.edu



mailto:joseph.lachance@biology.gatech.edu?subject=SISG%202020

The importance of population genetics

“Nothing in biology makes sense except in the light of
evolution.”

- T. Dobzhansky

“Nothing in evolution makes sense except in the light
of population genetics.”

- M. Lynch

Can you think of any exceptions?




Gene pool metaphor

« Gene pool: aggregate total of all the alleles in a population

« Contributions to next generation's gene pool are weighted by fitness

« Genotypes next generation found by binomial sampling (w/ replacement)

Image : Georgia Tech CRC



The birth of population genetics (1908)

« The rediscovery of Mendelian genetics in early 20t century
was not without some misinterpretations...

« Brachydactyly is a dominant trait N (L
* Yule: "75% of people should have short fingers" ype E BrachAsey
* Punnett: "Something is amiss with that thinking"

« G. H. Hardy correctly inferred the genotype proportions in a
randomly mating population, but not without writing:

"l would have expected the very simple point which | wish G. H. Hardy
to make to have been familiar to biologists"

« Wilhelm Weinberg, a German physician, independently
derived the same result as Hardy

Wilhelm Weinberg




Clearing up some common misconceptions

Dominant alleles need not be the major (most common) allele

Higher fitness alleles are not always dominant (and vice versa)

Higher fitness alleles need not be major alleles

Image: Affe mit Schadel by Hugo Rheinhold



Hardy-Weinberg principle

Allele frequencies used to calculate genotype frequencies

Equilibrium reached in a single generation
(so long as assumptions hold)

Allele frequencies
* Frequency of allele A: p

« Frequency of allele B: q Maternal
allele
frequency

p p pq

Genotype frequencies
 Frequency of AA homozygotes: p? q { pg 2
* Frequency of AB heterozygotes: 2pq
« Frequency of BB homozygotes: g2

%/_/

p q

Paternal allele frequency

ptq=1
(p+q)=p*+2pq+q*=1




Assumptions of the Hardy-Weinberg principle

 Infinite population size

* No selection
Maternal p* ol
. No mutation reqtoncy
* No migration ’ { i .
p g

« Random mating Paternal allele frequency




Hardy-Weinberg example

Present generation
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« Under Hardy-Weinberg conditions the gene pool remains unchanged

« Subsequent generations will have the same equilibrium genotype frequencies




Testing for departures from HW proportions

« Chi-square test with 1 degree of freedom

« Chi-square (x?) > 3.84 indicates statistical significance (p-value < 0.05)

 Example:
Genotype Observed ‘ Expected ‘ Chi-square B 145 & 68 /2 o
AA 145 131.31 1.426 b= 1454+ 68 +31
AB 68 95.37 7.854
=3 (O —E)?
BB 31 17.32 10.815 E
Total 244 244 20.095




Using the Hardy Weinberg principle to infer the unseen

« The wild soybean Glycine soja, is polymorphic for flower color, and this
trait is controlled by the W4 locus

« The C allele confers white flowers, and it is recessive to the T allele
(which confers purple flowers)

« If 9% of flowers are white....
« What proportion of all soybean plants do not have a C allele?

¥

Flower images from Park et al. 2017 (Crop Science, 2017)




Major processes of population genetics

Genetic drift
Natural selection
Mutation

Migration (gene-flow)

CHANGE

Population structure & mating patterns

Each of these processes can lead to departures from Hardy-
Weinberg proportions

These processes are mechanisms of evolutionary change

Image source: Zazzle



Genetic drift: key points

Genetic drift is unbiased

Random fluctuations in allele frequencies are larger in smaller
populations

Drift causes genetic variation to be lost
Drift causes populations that are initially identical to become different

An allele can become fixed without the benefit of natural selection




Allele frequency in Europe (bottlenecked)

Simulating genetic drift
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Population bottlenecks and founder effects

Initial population Bottleneck Modified population

Population bottleneck: A sharp reduction in the size of a population

Founder effect: Bottleneck caused by the founding of a new population

Random chance determines whether an allele increases or decreases in
frequency



Non-African genomes contain less variation
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» Serial founder effects reduce the proportion of sites in an individual’s

genome that are heterozygous

Figure from Pagani et al. (Nature, 2016)



Natural selection

Natural selection: The differential survival and/or reproduction of different
genotypes due to unequal fitnesses

Natural selection is not the same thing as evolution

Selection coefficient (s)
 An s of 0.01 indicates a 1% fitness advantage
* |s| tends to be close to 0

Operates on short time scales

The outcome of natural selection depends on fithesses and initial frequencies

Probability of fixation: ~2s
» Most advantageous mutations are not fixed



Selection changes gene pools
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Mathematics of natural selection:

pw
Ap=p —p=—>-=—p
w

« General equation for single generation allele frequency change:

P(UJA_— W)

Ap =

* The response to selection hinges on:
- Allele frequencies (p)
- The relative fitness of an allele (w4 )
« Mean fitness of a population (w)



Industrial melanism and natural selection
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EPAS1 and adaptation to high-altitude

Reduced [O,] is a strong selective pressure

Allele frequencies compared between Tibetans
(TIB) and Han Chinese from Beijing (HAN)

Outlier SNPs are located near EPAS1, a
hypoxia-induced transcription factor

10000

1000
The Tibetan EPAS1 haplotype comes from

Denisovans (Huerta-Sanchez et al. 2014)!!! 100

10

Positively selected EPAS1 haplotype contains a
deletion that occurred 12kya (Lou et al. 2015)

Yi et al. (Science, 2010)



Mutation

 Human mutation rates
« £=25x10"bp 'gen™" from comparative genomics (phylogenetic approach)

« u=12x10"bp~'gen”" from direct sequencing of families

« A “Goldilocks” scenario:

« Too low a mutation rate and a population will lack genetic diversity

» Too high of a mutation rate and a population will be unable to purge
mutations via natural selection (mutational meltdown, Muller’s rachet)

« Mutation does not lead to large allele frequency changes in of itself



Mutation example: super-cows?!

» Double-muscling caused by a mutation in the myostatin (GDF8) gene

« Recurrent mutation in Belgian Blue cattle

Image source: imgur.com




Distribution of fithess effects (DFE)
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« Most mutations are deleterious or neutral (they do not increase fitness)

« Mutations of large phenotypic effect are more likely reduce fitness




Mutation-selection balance

Mutation ~ Selection

Low Allele frequency (p) High

Deleterious alleles are maintained due to a balance between mutation
and selection

5oy P 5
Equilibrium allele frequencies: P S P~ sn
(recessive) (non-recessive)

Implications:
» Recessive disease alleles can segregate at moderate frequencies
« Strongly selected disease alleles tend to be rare



Migration

When population geneticists refer to migration, they mean gene flow

The parameter m equals the proportion of alleles in a population that
are from immigrants

Gene flow homogenizes populations

Local differentiation occurs when there is
< 1 migrant per generation (Nm < 1)

Image source: Sam Falconer/New Scientist



Simulations of migration (and genetic drift)

No gene flow: N=100, m =0

Allelic Frequency ( p)

Genera tions (t)

Substantial gene flow: N =100, m = 0.01

Allelic Frequency ( p)
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Allele frequency trajectories generated using Populus



Migration example

» Geographic proximity results in genetic similarity

« The Y-chromosome legacy of Ghengis Khan

(Zerjal et al. 2003, American Journal of Human Genetics)




Assortative mating

» Positive assortative mating
* Phenotypically similar individuals prefer to mate with each other
« Can result in the maintenance of different phenotypes

* Negative assortative mating
« Phenotypically different individuals prefer to mate with each other
« Maintains genetic variation despite loss of phenotypic variation

Images: ECNS and Getty Images



Population structure: Fgt
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 Fgr measures how much genetic variation can be explained by sub-populations
within the total population

1 t
« Fgr between divergent populations increases over time Fsr =1 — (1 — ﬁ)



Inbreeding is widespread
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© Alan Bittles 2015

Inbreeding: preferential mating between relatives

Inbreeding coefficients quantify excess amounts of homozygosity




Effects of inbreeding
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Inbreeding can have negative consequences if disease

alleles are recessive

Painting by Juan Carrefio de Miranda



Effects of each major process

Genetic Natural . . . Mating
Drift Selection Mutation Migration Structure
Time-scale Medium Fast Slow Medium Fast
Effect on Reduced "It depends" Increased Homogenized | "It depends”

variation




