SISG 2022 - Module 2

Introduction to Genetics and Genomics Population Genetics

4pm EDT, Tuesday, July 12th

Joe Lachance and Greg Gibson

joseph.lachance@biology.gatech.edu

The importance of population genetics

"Nothing in biology makes sense except in the light of evolution."

- "Nothing in evolution makes sense except in the light of population genetics."
 - M. Lynch

- T. Dobzhansky

• Can you think of any exceptions?

Gene pool metaphor

- Gene pool: aggregate total of all the alleles in a population
- Contributions to next generation's gene pool are weighted by fitness
- Genotypes next generation found by binomial sampling (w/ replacement)

The birth of population genetics (1908)

- The rediscovery of Mendelian genetics in early 20th century was not without some misinterpretations...
 - Brachydactyly is a dominant trait
 - Yule: "75% of people should have short fingers"
 - Punnett: "Something is amiss with that thinking"
- G. H. Hardy correctly inferred the genotype proportions in a randomly mating population, but not without writing:

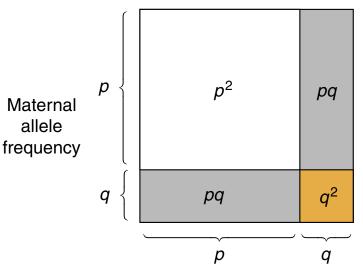
"I would have expected the very simple point which I wish to make to have been familiar to biologists"

• Wilhelm Weinberg, a German physician, independently derived the same result as Hardy

Type E Brachydactyly

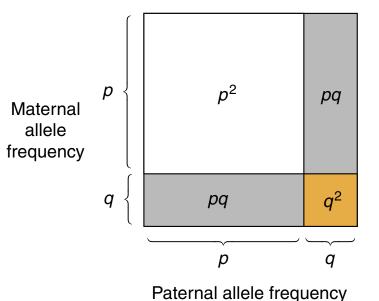
G. H. Hardy

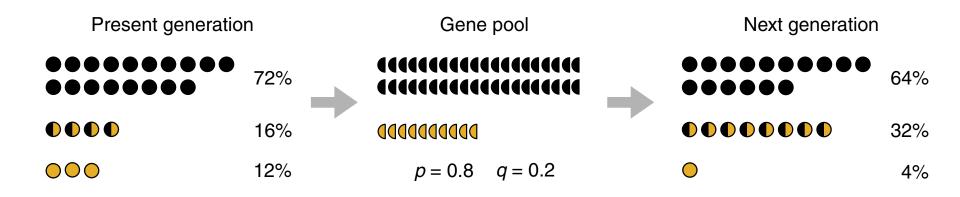
Wilhelm Weinberg


Clearing up some common misconceptions

- Dominant alleles need not be the major (most common) allele
- Higher fitness alleles are not always dominant (and vice versa)
- Higher fitness alleles need not be major alleles

Hardy-Weinberg principle


- Allele frequencies used to calculate genotype frequencies
- Equilibrium reached in a single generation (so long as assumptions hold)
- Allele frequencies
 - Frequency of allele A: p
 - Frequency of allele B: q
- Genotype frequencies
 - Frequency of AA homozygotes: p^2
 - Frequency of *AB* heterozygotes: 2*pq*
 - Frequency of *BB* homozygotes: *q*²
- *p* + *q* = 1
- $(p+q)^2 = p^2 + 2pq + q^2 = 1$


Paternal allele frequency

Assumptions of the Hardy-Weinberg principle

- Infinite population size
- No selection
- No mutation
- No migration
- Random mating

Hardy-Weinberg example

- Under Hardy-Weinberg conditions the gene pool remains unchanged
- Subsequent generations will have the same equilibrium genotype frequencies

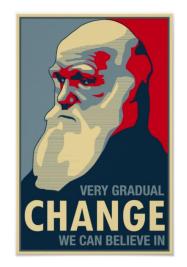
Testing for departures from HW proportions

- Chi-square test with 1 degree of freedom
- Chi-square $(\chi^2) > 3.84$ indicates statistical significance (p-value < 0.05)
- Example:

Genotype	Observed	Expected	Chi-square
AA	145	131.31	1.426
AB	68	95.37	7.854
BB	31	17.32	10.815
Total	244	244	20.095

$$p = \frac{145 + 68/2}{145 + 68 + 31} = 0.7336$$
$$\chi^2 = \sum \frac{(O - E)^2}{E}$$

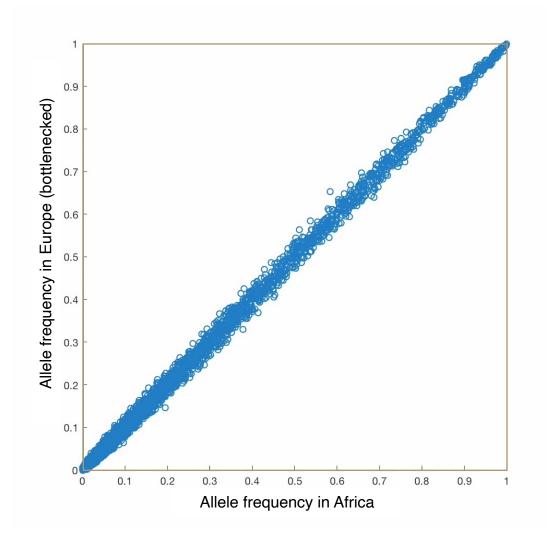
Using the Hardy Weinberg principle to infer the unseen



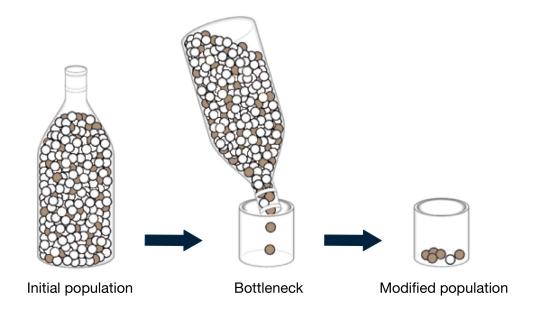
- The wild soybean *Glycine soja*, is polymorphic for flower color, and this trait is controlled by the *W4* locus
- The C allele confers white flowers, and it is recessive to the T allele (which confers purple flowers)
- If 9% of flowers are white....
 - What proportion of all soybean plants do not have a C allele?

Major processes of population genetics

- Genetic drift
- Natural selection
- Mutation
- Migration (gene-flow)
- Population structure & mating patterns

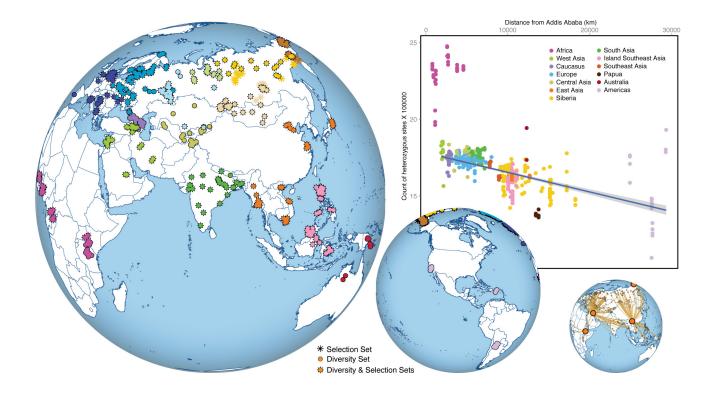


- Each of these processes can lead to departures from Hardy-Weinberg proportions
- These processes are mechanisms of evolutionary change


Genetic drift: key points

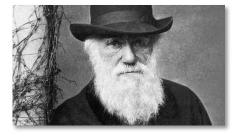
- Genetic drift is unbiased
- Random fluctuations in allele frequencies are larger in smaller populations
- Drift causes genetic variation to be lost
- Drift causes populations that are initially identical to become different
- An allele can become fixed without the benefit of natural selection

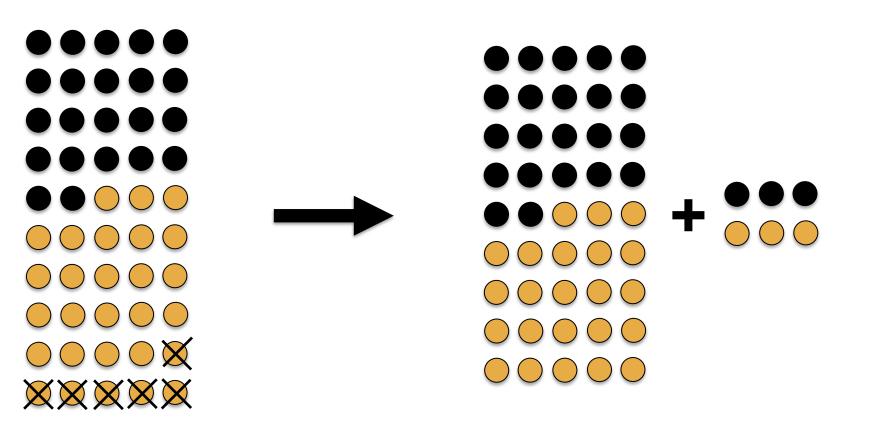
Simulating genetic drift



Population bottlenecks and founder effects

- **Population bottleneck**: A sharp reduction in the size of a population
- **Founder effect**: Bottleneck caused by the founding of a new population
- Random chance determines whether an allele increases or decreases in frequency


Non-African genomes contain less variation


 Serial founder effects reduce the proportion of sites in an individual's genome that are heterozygous

Natural selection

- **Natural selection**: The differential survival and/or reproduction of different genotypes due to unequal fitnesses
- Natural selection is not the same thing as evolution
- Selection coefficient (*s*)
 - An s of 0.01 indicates a 1% fitness advantage
 - |s| tends to be close to 0
- Operates on short time scales
- The outcome of natural selection depends on fitnesses and initial frequencies
- Probability of fixation: ~2s
 - Most advantageous mutations are not fixed

Selection changes gene pools

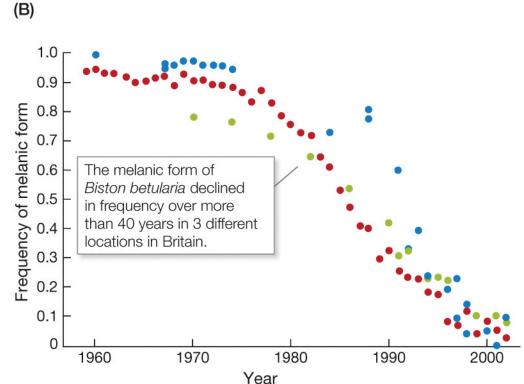
p = 0.44

p = 0.5

Mathematics of natural selection:

$$\Delta p = p' - p = \frac{pw_A}{\bar{w}} - p$$

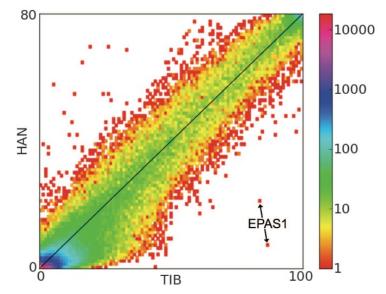
• General equation for single generation allele frequency change:


$$\Delta p = \frac{p(w_A - \bar{w})}{\bar{w}}$$

- The response to selection hinges on:
 - Allele frequencies (p)
 - The relative fitness of an allele (w_A)
 - Mean fitness of a population (\bar{w})

Industrial melanism and natural selection

(A)

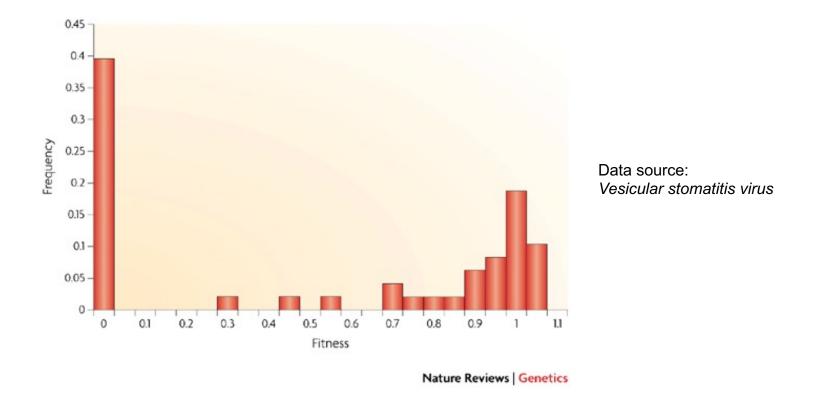

EVOLUTION 4e, Figure 5.1 © 2017 Sinauer Associates, Inc.

EPAS1 and adaptation to high-altitude

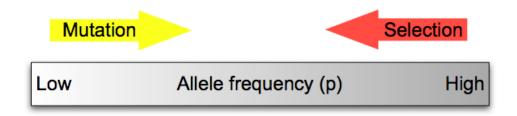
- Reduced [O₂] is a strong selective pressure
- Allele frequencies compared between Tibetans (TIB) and Han Chinese from Beijing (HAN)
- Outlier SNPs are located near EPAS1, a hypoxia-induced transcription factor
- The Tibetan EPAS1 haplotype comes from Denisovans (Huerta-Sanchez et al. 2014)!!!
- Positively selected *EPAS1* haplotype contains a deletion that occurred 12kya (Lou et al. 2015)

Image rights: EasyTourChina

Mutation


- Human mutation rates
 - $\mu = 2.5 \times 10^{-8} b p^{-1} gen^{-1}$ from comparative genomics (phylogenetic approach)
 - $\mu = 1.2 \times 10^{-8} b p^{-1} gen^{-1}$ from direct sequencing of families
- A "Goldilocks" scenario:
 - Too low a mutation rate and a population will lack genetic diversity
 - Too high of a mutation rate and a population will be unable to purge mutations via natural selection (mutational meltdown, Muller's rachet)
- Mutation does not lead to large allele frequency changes in of itself

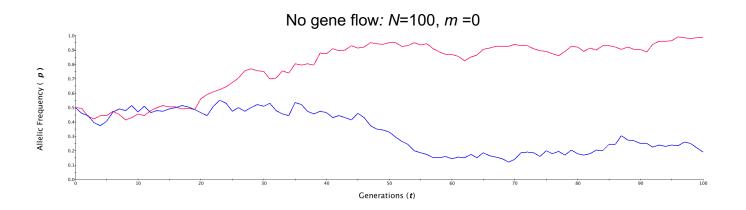
Mutation example: super-cows?!

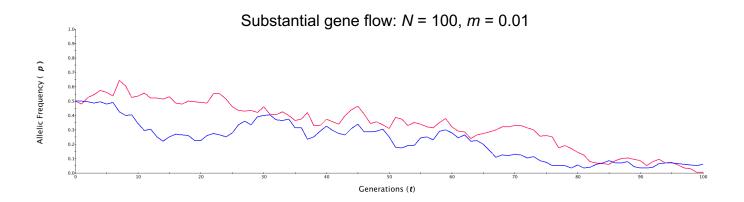

- Double-muscling caused by a mutation in the myostatin (GDF8) gene
- Recurrent mutation in Belgian Blue cattle

Distribution of fitness effects (DFE)

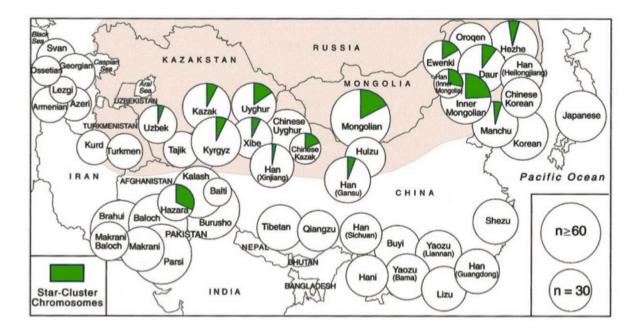
- Most mutations are deleterious or neutral (they do not increase fitness)
- Mutations of large phenotypic effect are more likely reduce fitness

Mutation-selection balance


- Deleterious alleles are maintained due to a balance between mutation and selection
- Equilibrium allele frequencies: $\hat{p} \approx \sqrt{\frac{\mu}{s}}$ $\hat{p} \approx \frac{\mu}{sh}$ (recessive) (non-recessive)
- Implications:
 - Recessive disease alleles can segregate at moderate frequencies
 - Strongly selected disease alleles tend to be rare


Migration

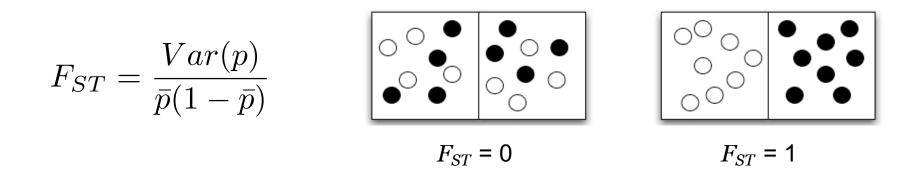
- When population geneticists refer to migration, they mean *gene flow*
- The parameter *m* equals the proportion of alleles in a population that are from immigrants
- Gene flow homogenizes populations
- Local differentiation occurs when there is < 1 migrant per generation (Nm < 1)

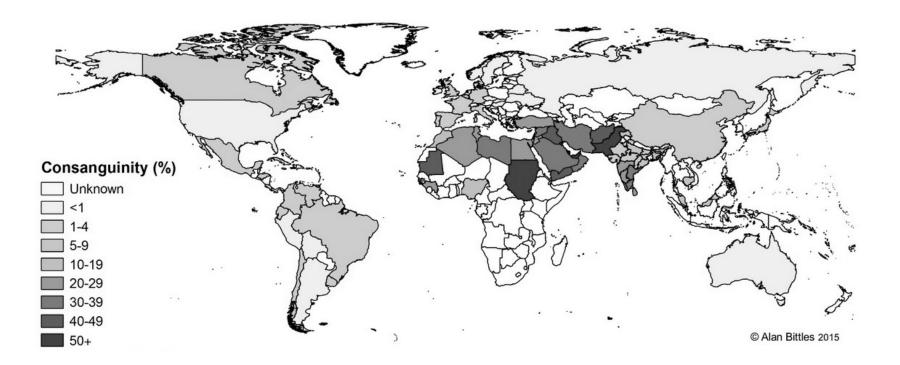

Simulations of migration (and genetic drift)

Migration example

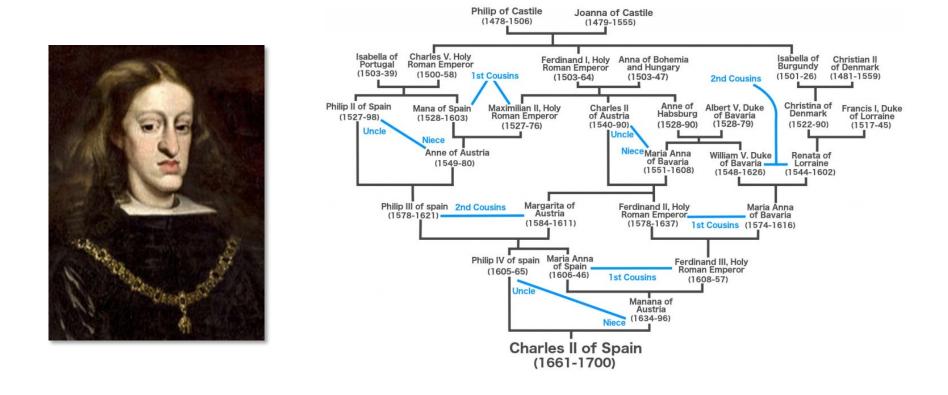
• Geographic proximity results in genetic similarity

• The Y-chromosome legacy of Ghengis Khan (Zerjal et al. 2003, American Journal of Human Genetics)


Assortative mating


- Positive assortative mating
 - Phenotypically similar individuals prefer to mate with each other
 - Can result in the maintenance of different phenotypes
- Negative assortative mating
 - Phenotypically different individuals prefer to mate with each other
 - Maintains genetic variation despite loss of phenotypic variation

Population structure: F_{ST}


- F_{ST} measures how much genetic variation can be explained by sub-populations within the total population
- F_{ST} between divergent populations increases over time $F_{ST} = 1 \left(1 \frac{1}{2N}\right)^t$

Inbreeding is widespread

- Inbreeding: preferential mating between relatives
- Inbreeding coefficients quantify excess amounts of homozygosity

Effects of inbreeding

 Inbreeding can have negative consequences if disease alleles are recessive

Effects of each major process

	Genetic Drift	Natural Selection	Mutation	Migration	Mating Structure
Time-scale	Medium	Fast	Slow	Medium	Fast
Effect on variation	Reduced	"It depends"	Increased	Homogenized	"It depends"