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Expression QTL analysis

The architecture of transcription maps genotype onto phenotype

Expression QTL (eQTL) are QTL that modulate transcript abundance in pedigrees or crosses
Expression SNP (eSNP) are SNPs that associate with transcript abundance in cohort studies
GWAS variants and eSNP “often” colocalize, but it is not that simple

At least 10% of transcripts differ in abundance between any two strains of most organisms; more
than 50% across a species

Estimates of heritability of transcription also suggest that transcription generally shows a similar
genetic component as visible traits

One prominent eSNP may have the largest effect, but typically multiple variants at a locus will
independently regulate the transcript, and overall trans-effects explain more of the variance



Polarized transcriptional risk
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cis and trans eQTL

» Strong tendency for eQTL to be in cis to the actual gene
e Occasionally trans-eQTL clustered in hotspots

* Ever-larger eQTL studies refine resolution and increase number of discoveries
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Yeast: Ronald and Akey (2007) PLoS ONE 2: e678

Mice: Schadt, Friend et al (2003) Nature 422: 297-302



Meta-analysis

http://genenetwork.nl/bloodeqtlbrowser/

NATURE GENETICS | LETTER o BE =
Blood eQTL browser
BAGEES

Systematic identification of frans eQTLs as
putative drivers of known disease associations

Download eQTL Results

How to cite Harm-Jan Westra, Marjolein J Peters, Tonu Esko, Hanieh Yaghootkar, Claudia Schurmann,
dionpance ot Johannes Kettunen, Mark W Christiansen, Benjamin P Fairfax, Katharina Schramm,
Query eQTL Results Joseph E Powell, Alexandra Zhernakova, Daria V Zhernakova, Jan H Veldink, Leonard H
Van den Berg, Juha Karjalainen, Sebo Withoff, André G Uitterlinden, Albert Hofman,
Fernando Rivadeneira, Peter A C 't Hoen, Eva Reinmaa, Krista Fischer, Mari Nelis, Lili

Gene or SNP name. Search

Milani, David Melzer =+ etal

eQTL meta-analysis on 5,311 individuals replicated in 2,775 more
Found trans-eQTL for 233 SNPs at 103 loci many of which are also disease QTL

Also generates local cis-eSNPs for almost half the genome

Westra et al. (2013) Nature Genetics 45: 1238-1243



eQTL-Gen Consortium

eQTL meta-analysis on 31,684 individuals from 37 cohorts
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Direct TF regulation
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Single cell eQTL: The OneK1K Study

1.27M peripheral blood immune cells of 14 types, from 982 adult donors -> 26,597 cis-eQTL and 990 trans-eQTL
19% of the eQTL co-localize with an immune disorder GWAS association; MR confirms causal effects for 305 loci
333 of 1988 eQTL in B cells change during maturation from naive to memory, 66% of which found by interaction

Majority of effects cell-type specific, but

982 individuals 1.27 million cells ?g’g)“ta“_‘i‘ieQTS'-NsP Sor o
14 lati rajectory eSNP-eGene pairs
common effects tend to be concordant A L Upopllatine e thet el ardecae
v/\v&—m + DW){ o By Bytem
: oAb : ~AA Qc * - t e
High level of replication in Asian dataset J classify * BLK ORMDL3
scRNAseq  SNParray ' 4 P o & :‘: eg., rs2736336 rs7359623
OneKl1K.org . * 0.0 HH-H H‘HH H%0.0 %% MH
[Q rsID, Chr:pos, Gene, ... ] S = oT oo =T Tf
eQTLs causative SR 2y Canonical markers

of autoimmune disease Cell surface and intracellular

w
305 loci with cell type-specific causative = 26,597 cis-eQTLs . cD37
effects across seven diseases e Cell type—sp_ecmc 0 IRF7
t regulation of (i@
Rheumatoid Crohn’s T immune pathways GATA3
arthritis disease g
CTLA4CD4 SYNGRLCDS L [ ————————————
. L oo ©E Trans-eQTLs 990 cis-eQTLs
5 0l M? : E = outside MHC locus
g , t 0 Replication *qm-: 300 with trans effects
:'-,-’ #‘# SNPs with concordant cell g 200
; —0.11 ##l -0.092 £ type-specific allelic effects z 100 °
G -0 0 001 -001 0 0.01 European 7601098.1% S | 8.0 ®®
eQTL effect Asian 72.2to 95.4% 0 20 40 60

Yazar et al (2022) Science 376: abf3041 atopciseQll scis-eQTL eseGenss(n)



GTEx (Genotype-Tissue-Expression Project)

The Genotype-Tissue Expression (GTEX) pilot analysis: Multitissue gene
regulation in humans

The GTEx Consortium-=

+ Author Affiliations

=TCorresponding author: Kristin G. Ardlle (kardlie@broadinstitute org) or Emmanouil T. Dermitzakis
(emmanouil q_gnmt;;'us@umqp ch)

ABSTRACT EDITOR'S SUMMARY

Understanding the fu I q es of g variation, and how it affects complex human disease
and quantitative traits, remains a critical challenge for biomedicine. We present an analysis of RNA
sequencing data from 1641 across 43 ti from 175 individuals, generated as part of the pilot
phase of the Genotype-Tissue Expression (GTEx) project. We describe the landscape of gene expression
across tissues, catalog thousands of tissue-specific and shared regulatory expression quantitative trait loci
(eQTL) variants, describe network rel and identify signals from genome-wide association
studies explained by eQTLs. These findings provide a systematic understanding of the cellular and biological
consequences of human genetic variation and of the h 0 y of such eff; g a diverse setol
human tissues.

Science (2015) 9(5): e1003486
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Some software

PLINK: The basic tool for GWAS
http://pngu.mgh.harvard.edu/~purcell/plink/tutorial.shtml

Matrix eQTL: Ultra-fast eQTL analysis

http://www.bios.unc.edu/research/genomic software/Matrix eQTL/

GEMMA: Genome-wide Efficient Mixed Model Association (GEMMA)

http://stephenslab.uchicago.edu/software.html#tgemma

FMeQTL: Bayesian Joint mapping

https://github.com/xgwen/fmeqtl

DAP: Deterministic Approcimation of Posteriors (Fast Bayesian)
https://github.com/xgwen/dap

CAVIAR: Bayesian Fine Mapping

http://genetics.cs.ucla.edu/caviar/

Ventham et al (2016) Nature Communications 7: 13507
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Why Colocalized Signals do not alone imply Causation

Sampling variance means that we can only map “credible intervals”
Many genes harbor multiple eSNPs, and possibly multiple trait associated SNPs
LD means that multiple sites can interfere with one another in estimation of peak locations

The nearest gene is only sometimes the one affected by a SNP!
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Coloc: A Bayesian test for colocalization of pairs of association signals

H1 is the hypothesis that there is only an
eQTL signal at a locus

H2 is the hypothesis that there is only a
GWAS signal at a locus.

H3 is the hypothesis that there are two
independent eQTL and GWAS signals in
linkage.

H4 is the strong hypothesis that the same
SNP (not just the locus) is responsible for
both the GWAS and eQTL.

Giambartolomei et al (2014) PLoS Genetics 10(5): e1004383
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Examples of H3 and H4
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Limitations of colocalization analyses

A
Heavily dependent on statistical power of the contributing analyses, | ;
which is generally relatively low : ]
Depends on high quality imputation if the SNPs are not directly typed S’ .
B
Assumes that the GWAS and eQTL are evaluated on the same P N '
population (there is no stratification) | ("Q .
. "’“e ’
A negative result.may arise if the incorrect tissue is being studied for : IZ::\
the gene expression
C
red r:.."h,';.H-tm -
Assumes there is a single causal variant at each locus for each effect . : E

(which is very unlikely) although this example shows that conditional

analysis has the potential to resolve joint effects : i

Giambartolomei et al (2014) PLoS Genetics 10(5): e1004383



Joint Mapping

A variety of open source methods are appearing that utilize Bayesian methods to perform joint mapping of eQTL

A statistical framework for joint eQTL analysis in multiple tissues.
Flutre T, Wen X, Pritchard J, Stephens M. PLoS Genet. 2013 9(5): e1003486.

This paper shows that combining signals across tissues increases power while also allowing assessment of
whether the effect sizes are different in different cell types. Implemented in eQTLBMA software.

Cross-population joint analysis of eQTLs: Fine mapping and functional annotation.
Wen X, Luca F, Pique-Regi R. PLoS Genet. 11(4): e1005176.

This paper shows that combining signals across populations increases power while also allowing assessment of
how incorporating ENCODE data improves resolution. Implemented in FM QTL software.

Efficient integrative multi-SNP association analysis via Deterministic Approximation of Posteriors
Wen X, Lee Y, Luca F, Piqgue-Regi R. AM J Hum. Genet. 98(6): 1114-1129.

This paper extends the framework for incorporating ENCODE data while allowing for multiple causal variants at
each locus. Implemented in DAP software: http://github.com/xqwen/dap/



Mean rate (reads per million)

Pickrell et al. (2010) Nature 464: 768-772
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WASP
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Formulates a CHT: Combined Haplotype Test
“The CHT jointly models two components: the allelic imbalance at phased heterozygous SNPs and the total read

depth in the target region”

Van de Geijn, et al (2015) Nature Methods 12: 1061-1063 https://github.com/bmvdgeijn/WASP



sQTL (Splicing QTL)

a Splicing QTL (OAS7)
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MISO: Mixture of Isoforms
http://genes.mit.edu/burgelab/miso/

Estimates the Percent Spliced In (PSI, ) for various features:
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» Mutually exclusive Exon
» Excluded Exon

» Alternate Splice Donor
» Alternate Splice Acceptor

Katz et al. (2010) Nature Methods 7: 109-115



Transcriptional Risk Scores - theory
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Transcriptional Risk Scores for Crohn’s Disease

Healthy-Disease Disease Progression

Genetic Risk Score Transcript Risk Score Genetic Risk Score Transcript Risk Score
ASD =0.26 ASD =148 ASD =0.17 ASD =0.44
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Marigorta et al (2017) Nature Genetics 49: 1517-1521



