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Epigenomics

ENCODE Data Encyciopedia Materials & Methods Heip

ENCODE: Encyclopedia of DNA Elements

The ENCODE (Encyclopedia of DNA Elements)

Consortium is an international collaboration of research
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DHS and TFBS: DNAse hypersensitive sites and TF Binding
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ATAC-Seq: Assay for Transposon Accessible Chromatin

ACR = Accessible Chromatin Regions, also called OCR = Open Chromatin Regions
Peak calling generally looks for an excess (enrichment) of reads against the background, often using macs2 code
DAR analysis (Differential Accessible Region) is conceptually similar to DE, so edgeR and DEseq2 commonly used

Although bulk data is assumed to be negative-binomially distributed, single cell ACis O, 1 or 2, and overall the
frequency distribution is greatly skewed to low CPM since there are may be 50,000 ACR per cell-type
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Quality Control:

Length distribution
GC content
Duplicates

TSS enrichment
Unique mapping

Analytical steps

Yan F, Powell D, Curtis D, Wong N (2020) Genome Biology 21: 22

Peak calling

DAR evaluation
Gene annotation
Motif detection

Expression prediction
Multi-omic integration
Regulatory network inference

O
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ATAC-Seq Workflow
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Hypothesis testing for ATAC-Seq

The high percentage of zero counts per peak makes t-tests and Wilcoxon Rank Sum tests inappropriate
Gontarz et al compared limma, edgeR, and DESeq2 in a simulation study of low, moderate and high counts
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ATAC-Seq method comparison on mouse kidney-liver dataset
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SCATAC-seq

Assessment of computational methods for the analysis of single-cell ATAC-seq data
Chen, et al Genome Biology (2019) 20: 241 recommends SnapATAC for single cell analysis.

Signac is the Seurat implementation.

We are finding that ArchR is easier to install and run, and meets most challenges.
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Massively parallel single-cell chromatin
landscapes of human immune cell development
and intratumoral T cell exhaustion

Ansuman T. Satpathy ©'2", Jeffrey M. Granja"**", Kathryn E. Yost"**,

Yanyan Qi'¢, Francesca Meschi’, Geoffrey P. McDermott’, Brett N. Olsen’, Maxwell R. Mumbach'?,
Sarah E. Pierce ®35, M. Ryan Corces'¢, Preyas Shah’, Jason C. Bell’, Darisha Jhutty’, Corey M. Nemec’,
Jean Wang’, Li Wang’, Yifeng Yin’, Paul G. Giresi’, Anne Lynn S. Chang©$, Grace X. Y. Zheng®7*,
William J. Greenleaf ©"*#* and Howard Y. Chang ©'35610%

Pre-processing

Data import / base file type creation
QC filter cells

Matrix creation

Doublet removal

Data imputation with MAGIC
Genome-wide gene score matrix
Dimensionality reduction and clustering
UMAP and tSNE piotting

Cluster peak calling

Cluster-based peak matrix creation
Motif enrichment

chromVAR motif deviations
Footprinting

Feature set annotation

Track plotting

Co-accessibility

Interactive genome browser

Cellular trajectory analysis

Project bulk data into scATAC embedding
Integration of RNA-seq and ATAC-seq
Genome-wide peak-to-gene links
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ArchR workflow

Advanced Data Analysis Data Visualization
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Three modes of epigenetic regulation
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Two modes of Methylation profiling

illumina

Key DNA Methylation Analysis Methods

W Most important to me

PCR Least important to me

Bisulfite
Conversion

#CpGs covered

Species

Software:

Methylation Sequencing with NGS

NGS enables comprehensive profiling of methylation
patterns at single-base resolution across the whole

genome, or in targeted epigenetic regions of interest.

Comprehensive methylome coverage
Throughput

~36 million CpGs (whole genome)

~3.3. million CpGs (targeted)

All (whole genome)

Human (targeted)

Methylation Microarrays

Arrays enable quantitative interrogation of selected
methylation sites across the genome, offering high-
throughput capabilities that minimize the cost per
sample.

High throughput (large sample numbers)
Coverage

~850,000 CpGs

Human

CpGassoc by Karen Conneely et al Bioinformatics (2012) 28(9):1280-1281



Causality and Methylation

-

cg03067296 cg12054453 £g00840791
LOC100996291 TMEM43 intergenic:
- 065 ’ 074 — T o -
084 T TN o == : L
‘ i 051 __ - 064 | A
M=) ¢ 3 T ' ol | F
2 SRER| o
Lok I T T :

—
'

S N
B -+ : = 0.4 o
uIS - H 0-3 8 E 8 I B
04 - g 024 B4 ‘ : 031

i G &8 N Methylation more likely a cause than a consequence
0.2 .1
of disease (in this context)
col6936953 cg 19748455
TMEMAG LOCTO0g96291
0.8 - .
074 ¢ . 054 | [ nen-IBD controls (n = 74) a b
. A S ] - I cases sl chagncels a=184) Methylation cause of CD Methylation consequence of CD
R : i : : 044 T — T
0.5 : g E _'_ : . [ cases at follow-up (Biologics; n = 76) .m C
0.4 - 8 ; ?!l 1 8 gl:g [ cases at follow-up (Immunomadulators; n = 26) SNP m— — )“f”“ Rgi’.'sigie Crohn’s
oad L I ) T4 0.24 l N + L | [ cases at follow-up (Biclogics plus Immunomedulators; n = 43)
0.2 . ! 0.1 _‘_ : - [] cases at follow-up (Others; n = 11)
H i O
B3 =p1 x B2 B3 =p1 x 2
Blood methylation is actually a signature of il i bk iioinal
. . . . . ) 0.2 —
inflammation at diagnosis, and reverts with time 2 - g "
. . . = 91 5 00
Irrespective of treatment regimen ;:f iRy £ 1
s 00 —; e 3 0.00
% 0.1 . § o
S 0sl S o0
.‘-0.2 -0.1 0.0 0.1 0.2 l‘-0.0Z -0.01 0.00 001 0.02
Predicted effect (81 x 82) Predicted effect (81 x 2)

Somineni HK, et al (2022) Gastroenterology 156: 2254-2265.e3



Some (concise) definitions

GWAS: Genome-wide association study — search for SNPs significantly associated with a trait (eSNPs)

TWAS: Transcriptome-wide association study — search for predicted transcripts significantly associated with a trait

EpiWAS: Epigenome-wide association study — search for epigenetic marks significantly associated with a trait
(EWAS also used, but earlier used to refer to Environment-wide association study)

eQTL: a SNP which influences the abundance of a transcript. Cis-eQTL act locally (~ within £ 500kb)

eGene: agene whose transcript abundance is regulated by a locally-acting SNP

meQTL: a genotype which is associated with the degree of methylation at a CpG site

Methyl B: typical measure of the degree of methylation, ranging from 0 to 1 (none to complete)

hQTL: a genotype that is associated with the intensity of a histone mark (may be acetylation or methylation)

ccQTL: agenotype that influences the level of chromatin conformation / cross-linking



Single Cell RNA-seq: Easyas 1,2,3, ...5

o Cells + barcoded beads isolated in oil droplet with 10X Genomics Chromium
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Types of Single Cell RNA-seq

1. SmartSeq2

* Essentially full-length RNA-seq applied to libraries generated from single cells
* Low throughput and relatively expensive, but comprehensive
* Commercial option is Becton-Dickinson Rhapsody™

2. Droplet Sequencing
e Each cell is encapsulated in a droplet with enzymes and reagents for sequencing
* High throughput, dollars per cell, but only detects tags for each transcript
 Commercial options are 10X Genomics Chromium™, BioRad, and OneCellBio

3. sci-Seq
* Single cell Combinatorial Indexing in microtiter plates
* High throughput, very inexpensive, amenable to dual profiling with other assays
* Implemented in academic labs



Chromium Droplet Barcodes

| |
P5 - Partial Read 1 (PN-220111) - Sample Index — Partial Read 2 (PN-220103)
5'-RATGATACGGCGACCACCGA-GATCTACACTCTTTCCCTACACGACGCTC-3 7 57— — NN -GTGACTGGAGTTCAGACGTGT-3
T I
L I
P& Read 1 0x UM Read 2
Barcode
5° _ARTGATACEECEACCACCEA-GATCTACACTCTTTCCCTACACGACECTCTTCCEATCT - —MNNERNHMNN - TTTTTTTTTT TTTTTT TTTT TT T TTT T T TTVH— —ACATCEEARCACCACACETCTEARCTCCACTCAC - NHERMHIH —
CECEEEEEEEEEE e e e e e e FECEVETEEEEEE e e e e e e

3" —TTACTATGCCECTEETGEC T-CTAGATGTGAGRALGECATETECTECCAGARGECTAGA —MNNHNHHNNN-AARLAAAARARARALARAARARARRARARRAVH- —TCTAGCCTTCTCGTETECAGAC TTGAGET CAGTE - NHHNN NN —

Sample Index is a barcode specific for the sample (individual, tissue, treatment, etc)
10X Barcode is for the cell, it tags all molecules derived from the same cell
UMl is a Unique Molecular Identifier for each actual mRNA molecule, basically controls amplification biases

Since library costs start at $1300, multiple samples can be combined in one reaction by adding a 4t type of
barcode such as a BioLegend cell surface antibody, or using the person’s genotypes

In a typical cell: 50,000 reads may correspond to 10,000 UMI and 3,000 expressed genes
most transcripts may have from 1 to 5 UMI each represented by multiple reads



Read Depth, Cell number, and Expense

Sequencing is done on either a NextSeq or NovaSeq lllumina sequencer. Typical current options might be:
NextSeq lane = 400 Million 28x96 bp = 50,000 reads per cell for 8,000 cells, at a cost of ~$2,500 {30 c/cell}

S1 flow cell = 3 Billion 28x96 bp reads = 100,000 reads per cell for 30,000 cells, at a cost of ~¥$6,000 {20 c/cell}
S4 flow cell = 18 Billion PE reads = 50,000 reads per cell for 360,000 cells, at a cost of ~ $25,000 { 7 c/cell}

What read depth is required?
It depends on the cell-type: 50K is sufficient for many, but some require >100K
It depends on the application: if low abundance transcripts are key, you need more

if differential expression is key, you may need more
if defining novel cell types and states is key, you may need more



Five concerns about rigor and reproducibility in sc genomics

Repeatability: Few results are independently validated in new datasets

Clustering: Clusters of cell types and states are not routinely presented with support intervals

Significance testing: Individual cells are too often treated as biological not technical replicates: pseudobulk solution?
Covariate adjustment: Samples are random effects, which are rarely adjusted for

Normalization: Supervised normalization approaches are yet to be introduced
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Gibson, G. (2022) PLoS Genetics 18: 1010210



The normalization problem

Total CPM
)
F 4 4
2 2 2 z
1 1

H.;.nnp{m,, - | NonspcPm
il T By Celltype

Suppose we represent scRNA abundances for two
cells of each of two cell types by these bars, with
ribosomal proteins in orange and common transcripts
in blue. Now focus on two genes represented by the
horizontal bars, with counts shown next to them.

Normalizing by total cpm leads to the conclusion that
there is little difference between the left and right cell
types, except for the drop-out transcript, but there is
high within-sample variability.

Normalizing by non-ribosomal CPM alone leads to the
conclusion that all four cells are very similar.

Normalizing by cell-type and non-ribosomal CPM
recovers the cell-type difference in absolute
abundance.
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Cluster Visualization
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https://satijalab.org/seurat/v3.0/pbmc3k tutorial.html

Deciding how many PC to include in CCA
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Hierarchical Clustering of Marker Genes
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2.

3.

4.

Some extensions of Single Cell Genomics

Crop-Seq / Perturb-Seq
* Microdeletion of SNPs in single cells followed by RNA-Seq
* Requires co-transfection with Cas9 and lentivirus or plasmid expressing guide RNAs
* Generally useful to monitor alterations of gene networks

CITE-Seq

» Addition of oligonucleotide-conjugated Antibodies that bind cell surface receptors
* Receive the same cell barcodes as the cell contents, but sequenced separately
* Supports gating to homologize flow cytometry with scRNAseq

ATAC-Seq
* Assay for Transposon-Accessible Chromatin (basically, identifying enhancers)
* 10X Genomics now provides kits; reports of joint scRNA and scATAC appearing
* https://www.10xgenomics.com/solutions/single-cell-atac/

Repertoire-Seq
* Sequencing of the TCR (T-cell receptors) or BCR (immunoglobulins) from single cells
* Options available from 10X and OneCellBio
» Data analysis requires specific expertise


https://www.10xgenomics.com/solutions/single-cell-atac/
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