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GENETIC DATA
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Sources of Population Genetic Data

Phenotype Mendel’s peas
Blood groups

Protein Allozymes
Amino acid sequences

DNA Restriction sites, RFLPs
Length variants: VNTRs, STRs
Single nucleotide polymorphisms
Single nucleotide variants
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Mendel’s Data

Dominant Form Recessive Form

Seed characters
5474 Round 1850 Wrinkled
6022 Yellow 2001 Green

Plant characters
705 Grey-brown 224 White
882 Simply inflated 299 Constricted
428 Green 152 Yellow
651 Axial 207 Terminal
787 Long 277 Short
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Genetic Data

Human ABO blood groups discovered in 1900.

Elaborate mathematical theories constructed by Sewall Wright,

R.A. Fisher, J.B.S. Haldane and others. This theory was chal-

lenged by data from new data from electrophoretic methods in

the 1960’s:

“For many years population genetics was an immensely rich and

powerful theory with virtually no suitable facts on which to oper-

ate. . . . Quite suddenly the situation has changed. The mother-

lode has been tapped and facts in profusion have been pored

into the hoppers of this theory machine. . . . The entire relation-

ship between the theory and the facts needs to be reconsidered.“

Lewontin RC. 1974. The Genetic Basis of Evolutionary Change.

Columbia University Press.
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STR markers: CTT set

(http://www.cstl.nist.gov/biotech/strbase/seq info.htm)

Usual No.
Locus Structure Chromosome of repeats

CSF1PO [AGAT]n 5q 6–16
TPOX [AATG]n 2p 5–14
TH01∗ [AATG]n 11p 3–14

∗ “9.3” is [AATG]6ATG[AATG]3

Length variants detected by capillary electrophoresis.
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“CTT” Data - Forensic Frequency Database

CSF1P0 TPOX TH01
11 12 8 11 7 8
11 13 8 8 6 7
11 12 8 11 6 7
10 12 8 8 6 9
11 12 8 12 9 9.3
10 12 9 11 6 7
10 13 8 11 6 6
11 12 8 8 6 9.3
9 10 8 9 7 9.3
11 12 8 8 6 8
11 13 8 11 7 9
11 12 8 11 6 9.3
10 11 8 8 7 9.3
10 10 8 11 7 9.3
9 10 8 8 6 9.3
11 12 9 11 9 9.3
9 11 9 11 9 9.3
11 12 8 8 6 7
10 10 9 11 6 9.3
10 13 8 8 8 9.3
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Sequencing of STR Alleles

“STR typing in forensic genetics has been performed traditionally

using capillary electrophoresis (CE). Massively parallel sequenc-

ing (MPS) has been considered a viable technology in recent

years allowing high-throughput coverage at a relatively afford-

able price. Some of the CE-based limitations may be overcome

with the application of MPS ... generate reliable STR profiles

at a sensitivity level that competes with current widely used CE-

based method.”

Zeng XP, King JL, Stoljarova M, Warshauer DH, LaRue BL, Sa-

jantila A, Patel J, Storts DR, Budowle B. 2015. High sensitivity

multiplex short tandem repeat loci analyses with massively par-

allel sequencing. Forensic Science International: Genetics 16:38-

47.
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Single Nucleotide Polymorphisms (SNPs)

“Single nucleotide polymorphisms (SNPs) are the most frequently

occurring genetic variation in the human genome, with the total

number of SNPs reported in public SNP databases currently ex-

ceeding 9 million. SNPs are important markers in many studies

that link sequence variations to phenotypic changes; such studies

are expected to advance the understanding of human physiology

and elucidate the molecular bases of diseases. For this reason,

over the past several years a great deal of effort has been devoted

to developing accurate, rapid, and cost-effective technologies for

SNP analysis, yielding a large number of distinct approaches. ”

Kim S. Misra A. 2007. SNP genotyping: technologies and

biomedical applications. Annu Rev Biomed Eng. 2007;9:289-

320.
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AMD SNP Data

SNP Individual
rs6424140 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
rs1496555 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2
rs1338382 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
rs10492936 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
rs10489589 3 1 1 1 2 2 1 2 1 1 1 3 1 1 1
rs10489588 3 1 1 1 2 2 1 2 1 1 1 3 1 1 1
rs4472706 1 3 3 3 2 2 3 2 3 3 3 1 3 3 3
rs4587514 3 3 3 3 3 2 2 3 2 2 2 3 3 1 3
rs10492941 3 3 3 3 3 3 3 3 2 3 3 2 3 3 1
rs1112213 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
rs4648462 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
rs2455122 2 1 1 0 1 2 1 1 1 1 1 1 1 1 2
rs2455124 2 1 1 2 1 2 1 1 1 1 1 1 1 1 2
rs10492940 2 1 1 1 1 2 1 2 1 1 1 2 1 1 2
rs10492939 1 2 1 1 1 1 3 2 1 2 3 2 2 1 1
rs10492938 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
rs10492937 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3
rs7546189 1 2 3 3 1 3 2 2 3 3 2 2 2 2 2
rs1128474 3 2 3 2 3 3 2 3 3 3 3 3 2 1 3

Genotype key: 0 –; 1 AA; 2 AB; 3 BB.
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Phase 3 1000Genomes Data

• 84.4 million variants

• 2504 individuals

• 26 populations

www.1000Genomes.org
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Whole-genome Sequence Studies

One current study is the NHLBI Trans-Omics for Precision Medicine

(TOPMed) project. www.nhlbiwgs.org

In the first data freeze of Phase 1 of this study:

Abecasis et al. 2016. ASHG Poster. Currently 800 million SNVs

found from 120,000 whole-genome sequences.
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Sampling

Statistical sampling: The variation among repeated samples

from the same population is analogous to “fixed” sampling. In-

ferences can be made about that particular population.

Genetic sampling: The variation among replicate (conceptual)

populations is analogous to “random” sampling. Inferences are

made to all populations with the same history.
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Classical Model

Sample of
size n · · · Sample of

size n

�
�

�
�

�
��=

HHHHHHHHHHj

Time t
Population
of size N · · · Population

of size N

↓ ↓

... ...

↓ ↓

Time 2
Population
of size N · · · Population

of size N

↓ ↓

Time 1 Population
of size N · · · Population

of size N

↓ ↓

Reference population
(Usually assumed infinite and in equilibrium)
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Coalescent Theory

An alternative framework works with genealogical history of a

sample of alleles. There is a tree linking all alleles in a current

sample to the “most recent common ancestral allele.” Allelic

variation due to mutations since that ancestral allele.

The coalescent approach requires mutation and may be more

appropriate for long-term evolution and analyses involving more

than one species. The classical approach allows mutation but

does not require it: within one species variation among popula-

tions may be due primarily to drift.
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Probability

Probability provides the language of data analysis.

Equiprobable outcomes definition:

Probability of event E is number of outcomes favorable to E

divided by the total number of outcomes. e.g. Probability of a

head = 1/2.

Long-run frequency definition:

If event E occurs n times in N identical experiments, the prob-

ability of E is the limit of n/N as N goes to infinity.

Subjective probability:

Probability is a measure of belief.
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First Law of Probability

Law says that probability can take values only in the range zero

to one and that an event which is certain has probability one.










0 ≤ Pr(E) ≤ 1

Pr(E|E) = 1 for any E

i.e. If event E is true, then it has a probability of 1. For example:

Pr(Seed is Round|Seed is Round) = 1
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Second Law of Probability

If G and H are mutually exclusive events, then:

Pr(G or H) = Pr(G) + Pr(H)

For example,

Pr(Round or Wrinkled) = Pr(Round) + Pr(Wrinkled)

More generally, if Ei, i = 1, . . . r, are mutually exclusive then

Pr(E1 or . . . or Er) = Pr(E1) + . . .+ Pr(Er)

=
∑

i

Pr(Ei)
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Complementary Probability

If Pr(E) is the probability that E is true then Pr(Ē) denotes the

probability that E is false. Because these two events are mutually

exclusive

Pr(E or Ē) = Pr(E) + Pr(Ē)

and they are also exhaustive in that between them they cover all

possibilities – one or other of them must be true. So,

Pr(E) + Pr(Ē) = 1

Pr(Ē) = 1 − Pr(E)

The probability that E is false is one minus the probability it is

true.
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Third Law of Probability

For any two events, G and H, the third law can be written:

Pr(G and H) = Pr(G) Pr(H|G)

There is no reason why G should precede H and the law can also

be written:

Pr(G and H) = Pr(H) Pr(G|H)

For example

Pr(Seed is round & is type AA)

= Pr(Seed is round|Seed is type AA) × Pr(Seed is type AA)

= 1 × p2A

21



Independent Events

If the information that H is true does nothing to change uncer-

tainty about G, then

Pr(G|H) = Pr(G)

and

Pr(H and G) = Pr(H)Pr(G)

Events G,H are independent.
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Law of Total Probability

If G,H are two mutually exclusive and exhaustive events (so that

H = Ḡ = not −G), then for any other event E, the law of total

probability states that

Pr(E) = Pr(E|G)Pr(G) + Pr(E|H) Pr(H)

This generalizes to any set of mutually exclusive and exhaustive

events {Si}:

Pr(E) =
∑

i

Pr(E|Si)Pr(Si)

For example

Pr(Seed is round) = Pr(Round|Type AA)Pr(Type AA)

+ Pr(Round|Type Aa)Pr(Type Aa)

+ Pr(Round|Type aa)Pr(Type aa)

= 1 × p2A + 1 × 2pApa + 0 × p2a
= pA(1 + pa)
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Bayes’ Theorem

Bayes’ theorem relates Pr(G|H) to Pr(H|G):

Pr(G|H) =
Pr(GH)

Pr(H)
, from third law

=
Pr(H|G) Pr(G)

Pr(H)
, from third law

If {Gi} are exhaustive and mutually exclusive, Bayes’ theorem

can be written as

Pr(Gi|H) =
Pr(H|Gi)Pr(Gi)

∑

iPr(H|Gi)Pr(Gi)
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Bayes’ Theorem Example

Suppose G is event that a man has genotype A1A2 and H is the

event that he transmits allele A1 to his child. Then Pr(H|G) =

0.5.

Now what is the probability that a man has genotype A1A2 given

that he transmits allele A1 to his child?

Pr(G|H) =
Pr(H|G) Pr(G)

Pr(H)

=
0.5 × 2p1p2

p1

= p2
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Mendel’s Data

Model: seed shape governed by gene A with alleles A, a:

Genotype Phenotype

AA Round
Aa Round
aa Wrinkled

Cross two inbred lines: AA and aa. All offspring (F1 generation)

are Aa, and so have round seeds.

26



F2 generation

Self an F1 plant: each allele it transmits is equally likely to be A

or a, and alleles are independent, so for F2 generation:

Pr(AA) = Pr(A)Pr(A) = 0.25

Pr(Aa) = Pr(A)Pr(a) + Pr(a)Pr(A) = 0.5

Pr(aa) = Pr(a)Pr(a) = 0.25

Probability that an F2 seed (observed on F1 parental plant) is

round:

Pr(Round) = Pr(Round|AA)Pr(AA)

+ Pr(Round|Aa)Pr(Aa)

+ Pr(Round|aa)Pr(aa)

= 1 × 0.25 + 1 × 0.5 + 0 × 0.25

= 0.75
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F2 generation

What are the proportions of AA and Aa among F2 plants with

round seeds? From Bayes’ Theorem the predicted probability of

AA genotype, if the seed is round, is

Pr(F2 = AA|F2 Round) =
Pr(F2 Round|AA)Pr(F2 AA)

Pr(F2 round)

=
1 × 1

4
3
4

=
1

3
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Seed Characters

As an experimental check on this last result, and therefore on

Mendel’s theory, Mendel selfed a round-seeded F2 plant and

noted the F3 seed shape (observed on the F2 parental plant).

If all the F3 seeds are round, the F2 must have been AA. If some

F3 seed are round and some are wrinkled, the F2 must have been

Aa. Possible to observe many F3 seeds for an F2 parental plant,

so no doubt that all seeds were round. Data supported theory:

one-third of F2 plants gave only round seeds and so must have

had genotype AA.
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Plant Characters

Model for stem length is

Genotype Phenotype

GG Long
Gg Long
gg Short

To check this model it is necessary to grow the F3 seed to observe

the F3 stem length.
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F2 Plant Character

Mendel grew only 10 F3 seeds per F2 parent. If all 10 seeds gave

long stems, he concluded they were all GG, and F2 parent was

GG. This could be wrong. The probability of a Gg F2 plant

giving 10 long-stemmed F3 offspring (GG or Gg), and therefore

wrongly declared to be homozygous GG is (3/4)10 = 0.0563.

31



Fisher’s 1936 Criticism

The probability that a long-stemmed F2 plant is declared to be

homozygous (event V ) is

Pr(V ) = Pr(V |U)Pr(U) + Pr(V |Ū)Pr(Ū)

= 1 × (1/3) + 0.0563 × (2/3)

= 0.3709

6= 1/3

where U is the event that a long-stemmed F2 is actually homozy-

gous and Ū is the event that it is actually heterozygous.

Fisher claimed Mendel’s data closer to the 0.3333 probability

appropriate for seed shape than to the correct 0.3709 value.

Mendel’s experiments were “a carefully planned demonstration

of his conclusions.”
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Weldon’s 1902 Doubts

In Biometrika, Weldon said:

“Here are seven determinations of a frequency which is said to
obey the law of Chance. Only one determination has a deviation
from the hypothetical frequency greater than the probable error
of the determination, and one has a deviation sensible equal to
the probable error; so that a discrepancy between the hypothesis
and the observations which is equal to or greater than the prob-
able error occurs twice out of seven times, and deviations much
greater than the probable error do not occur at all. These results
then accord so remarkably with Mendel’s summary of them that
if they were repeated a second time, under similar conditions
and on a similar scale, the chance that the agreement between
observation and hypothesis would be worse than that actually
obtained is about 16 to 1.”

“Run Mendel’s experiments again at the same scale, Weldon
reckoned, and the chance of getting worse results is 16 to 1.”
Radick, Science 350:159-160, 2015.
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Edwards’ 1986 Criticism

Mendel had 69 comparisons where the expected ratios were cor-

rect. Each set of data can be tested with a chi-square test:

Category 1 Category 2 Total

Observed (o) a n-a n
Expected (e) b n-b n

X2 =
(a− b)2

b
+

[(n− a)− (n− b)]2

(n− b)

=
n(a− b)2

b(n− b)
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Edwards’ Criticism

If the hypothesis giving the expected values is true, the X2 val-

ues follow a chi-square distribution, and the X values follow a

normal distribution. Edwards claimed Mendel’s values were too

small – not as many large values as would be expected by chance.

−3.0−2.0−1.0 0.0 1.0 2.0 3.0

0.0

5.0

10.0
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Recent Discussions

Franklin A, Edwards AWF, Fairbanks DJ, Hartl DL, Seidenfeld

T. 2008. “Ending the Mendel-Fisher Controversy.” University

of Pittsburgh Press, Pittsburgh.

Smith MU, Gericke NM. 2015. Mendel in the modern classroom.

Science and Education 24:151-172.

Radick G. 2015. Beyond the “Mendel-Fisher controversy.” Sci-

ence 350:159-160.

Weeden NF. 2016. Are Mendel’s Data Reliable? The Per-

spective of a Pea Geneticist. Journal of Heredity 107:635-646.

“Mendel’s article is probably best regarded as his attempt to

present his model in a simple and convincing format with a min-

imum of additional details that might obscure his message.”
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2018 paper

“According to Fisher (1959), if the null hypothesis is rejected,

‘The force with which such a conclusion is supported is that

of the simple disjunction: Either an exceptionally rare chance

has occurred, or the theory of random distribution is not true’

(p. 39). Fisher’s theory does not permit one to say which of

the two possibilities is the case, nor to give a probability for

it. Furthermore, if significance is not achieved, nothing can be

concluded. In order for the probability distribution that forms

the basis of a chi-square test to be valid, the hypothesis to be

tested must be declared before the data are examined.

(continued on next slide)
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2018 paper

Viewed in this light, there are several gaps between Fisher’s cal-

culations and his conclusion. Fisher is rejecting the multinomial

null hypothesis if the chi-square is too small, which would be

legitimate if the hypothesis test were declared before Weldon

pointed the way, or if Fisher routinely used a two-tailed chi-square

test. Neither is the case. And one still has Fisher’s disjunction

to contend with. Nonetheless, Fisher is a superb data-analyst,

and we should not be interpreted as challenging his conclusion.”

Kadane JB, Wang Z. 2018. Sums of possibly associated multi-

variate indicator functions; the Conway-Maxwell-Multinomial dis-

tribution. Brazilian Journal of Probability and Statistics 32:583-

596.
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ALLELE FREQUENCIES
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Properties of Estimators

Consistency Increasing accuracy
as sample size increases

Unbiasedness Expected value is the parameter

Efficiency Smallest variance

Sufficiency Contains all the information
in the data about parameter
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Binomial Distribution

Most population genetic data consists of numbers of observa-

tions in some categories. The values and frequencies of these

counts form a distribution.

Toss a coin n times, and note the number of heads. There

are (n+1) outcomes, and the number of times each outcome is

observed in many sets of n tosses gives the sampling distribution.

Or: sample n alleles from a population and observe x copies of

type A.
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Binomial distribution

If every toss has the same chance p of giving a head:

Probability of x heads in a row is

p× p× . . .× p = px

Probability of n− x tails in a row is

(1 − p) × (1 − p) × . . .× (1 − p) = (1 − p)n−x

The number of ways of ordering x heads and n − x tails among

n outcomes is n!/[x!(n − x)!].

The binomial probability of x successes in n trials is

Pr(x|p) =
n!

x!(n − x)!
px(1 − p)n−x
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Binomial Likelihood

The quantity Pr(x|p) is the probability of the data, x successes

in n trials, when each trial has probability p of success.

The same quantity, written as L(p|x), is the likelihood of the

parameter, p, when the value x has been observed. The terms

that do not involve p are not needed, so

L(p|x) ∝ px(1 − p)(n−x)

Each value of x gives a different likelihood curve, and each curve

points to a p value with maximum likelihood. This leads to

maximum likelihood estimation.
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Likelihood L(p|x, n = 4)
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Binomial Mean

If there are n trials, each of which has probability p of giving a

success, the mean or the expected number of successes is np.

The sample proportion of successes is

p̃ =
x

n

(This is also the maximum likelihood estimate of p.)

The expected, or mean, value of p̃ is p.

E(p̃) = p
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Binomial Variance

The expected value of the squared difference between the num-

ber of successes and its mean, (x − np)2, is np(1 − p). This is

the variance of the number of successes in n trials, and indicates

the spread of the distribution.

The variance of the sample proportion p̃ is

Var(p̃) =
p(1 − p)

n
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Normal Approximation

Provided np is not too small (e.g. not less than 5), the binomial

distribution can be approximated by the normal distribution with

the same mean and variance. In particular:

p̃ ∼ N

(

p,
p(1 − p)

n

)

To use the normal distribution in practice, change to the standard

normal variable z with a mean of 0, and a variance of 1:

z =
p̃− p

√

p(1 − p)/n

For a standard normal, 95% of the values lie between ±1.96.

The normal approximation to the binomial therefore implies that

95% of the values of p̃ lie in the range

p ± 1.96
√

p(1 − p)/n
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Confidence Intervals

A 95% confidence interval is a variable quantity. It has end-

points which vary with the sample. Expect that 95% of samples

will lead to an interval that includes the unknown true value p.

The standard normal variable z has 95% of its values between

−1.96 and +1.96. This suggests that a 95% confidence interval

for the binomial parameter p is

p̃ ± 1.96

√

p̃(1 − p̃)

n
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Confidence Intervals

For samples of size 10, the 11 possible confidence intervals are:

p̃ Confidence Interval

0.0 0.0 ± 0.00 0.00,0.00

0.1 0.1 ± 2
√

0.009 0.00,0.29

0.2 0.2 ± 2
√

0.016 0.00,0.45

0.3 0.3 ± 2
√

0.021 0.02,0.58

0.4 0.4 ± 2
√

0.024 0.10,0.70

0.5 0.5 ± 2
√

0.025 0.19,0.81

0.6 0.6 ± 2
√

0.024 0.30,0.90

0.7 0.7 ± 2
√

0.021 0.42,0.98

0.8 0.8 ± 2
√

0.016 0.55,1.00

0.9 0.9 ± 2
√

0.009 0.71,1.00
1.0 1.0 ± 0.00 1.00,1.00

Can modify interval a little by extending it by the “continuity

correction” ±1/2n in each direction.
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Confidence Intervals

To be 95% sure that the estimate is no more than 0.01 from

the true value, 1.96
√

p(1 − p)/n should be less than 0.01. The

widest confidence interval is when p = 0.5, and then need

0.01 ≥ 1.96
√

0.5 × 0.5/n

which means that n ≥ 10,000. For a width of 0.03 instead of

0.01, n ≈ 1,000.

If the true value of p was about 0.05, however,

0.01 ≥ 2
√

0.05 × 0.95/n

n ≥ 1,900 ≈ 2,000
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Exact Confidence Intervals: One-sided

The normal-based confidence intervals are constructed to be

symmetric about the sample value, unless the interval goes out-

side the interval from 0 to 1. They are therefore less satisfactory

the closer the true value is to 0 or 1.

More accurate confidence limits follow from the binomial distri-

bution exactly. For events with low probabilities p, how large

could p be for there to be at least a 5% chance of seeing no

more than x (i.e. 0,1,2, . . . x) occurrences of that event among

n events. If this upper bound is pU ,

x
∑

k=0

Pr(k) ≥ 0.05

x
∑

k=0

(

n

k

)

pkU(1 − pU)n−k ≥ 0.05

If x = 0, then (1 − pU)n ≥ 0.05 or pU ≤ 1 − 0.051/n and this is

0.0295 if n = 100. More generally pU ≈ 3/n when x = 0.
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Exact Confidence Intervals: Two-sided

Now want to know how large p could be for there to be at

least a 2.5% chance of seeing no more than x (i.e. 0,1,2 . . . x)

occurrences, and in knowing how small p could be for there to be

at least a 2.5% chance of seeing at least x (i.e. x, x+1, x+2, . . . n)

occurrences then we need

x
∑

k=0

(

n

k

)

pkU(1 − pU)n−k ≥ 0.025

n
∑

k=x

(

n

k

)

pkL(1 − pL)
n−k ≥ 0.025

If x = 0, then (1−pU) ≥ 0.0251/n and this gives pU ≤ 0.036 when

n = 100.

If x = n, then pL ≥ 0.9751/n and this gives pL ≥ 0.964 when

n = 100.
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Bootstrapping

An alternative method for constructing confidence intervals uses

numerical resampling. A set of samples is drawn, with replace-

ment, from the original sample to mimic the variation among

samples from the original population. Each new sample is the

same size as the original sample, and is called a bootstrap sam-

ple.

The middle 95% of the sample values p̃ from a large number of

bootstrap samples provides a 95% confidence interval.
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Multinomial Distribution

Toss two coins n times. For each double toss, the probabilities

of the three outcomes are:

2 heads pHH = 1/4
1 head, 1 tail pHT = 1/2
2 tails pTT = 1/4

The probability of x lots of 2 heads is (pHH)x, etc.

The numbers of ways of ordering x, y, z occurrences of the three

outcomes is n!/[x!y!z!] where n = x+ y+ z.

The multinomial probability for x of HH, and y of HT or TH

and z of TT in n trials is:

Pr(x, y, z) =
n!

x!y!z!
(pHH)x(pHT )y(pTT )z
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Multinomial Variances and Covariances

If {pi} are the probabilities for a series of categories, the sam-

ple proportions p̃i from a sample of n observations have these

properties:

E(p̃i) = pi

Var(p̃i) =
1

n
pi(1 − pi)

Cov(p̃i, p̃j) = −1

n
pipj, i 6= j

The covariance is defined as E[(p̃i − pi)(p̃j − pj)].

For the sample counts:

E(ni) = npi

Var(ni) = npi(1 − pi)

Cov(ni, nj) = −npipj, i 6= j
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Allele Frequency Sampling Distribution

If a locus has alleles A and a, in a sample of size n the allele

counts are sums of genotype counts:

n = nAA + nAa + naa

nA = 2nAA + nAa

na = 2naa + nAa

2n = nA + na

Genotype counts in a random sample are multinomially distributed.

What about allele counts? Approach this question by calculating

variance of nA.

56



Within-population Variance

Var(nA) = Var(2nAA + nAa)

= Var(2nAA) + 2Cov(2nAA, nAa) + Var(nAa)

= 2npA(1 − pA) + 2n(PAA− p2A)

This is not the same as the binomial variance 2npA(1−pA) unless

PAA = p2A. In general, the allele frequency distribution is not

binomial.

The variance of the sample allele frequency p̃A = nA/(2n) can

be written as

Var(p̃A) =
pA(1 − pA)

2n
+
PAA− p2A

2n
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Within-population Variance

It is convenient to reparameterize genotype frequencies with the

(within-population) inbreeding coefficient f :

PAA = p2A + fpA(1 − pA)

PAa = 2pApa − 2fpApa

Paa = p2a + fpa(1 − pa)

Then the variance can be written as

Var(p̃A) =
pA(1 − pA)(1 + f)

2n

This variance is different from the binomial variance of pA(1 −
pA)/2n.
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Bounds on f

Since

pA ≥ PAA = p2A + fpA(1 − pA) ≥ 0

pa ≥ Paa = p2a + fpa(1 − pa) ≥ 0

there are bounds on f :

−pA/(1 − pA) ≤ f ≤ 1

−pa/(1 − pa) ≤ f ≤ 1

or

max

(

−pA
pa
,−pa
pA

)

≤ f ≤ 1

This range of values is [-1,1] when pA = pa.
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Indicator Variables

A very convenient way to derive many statistical genetic results

is to define an indicator variable xij for allele j in individual i:

xij =

{

1 if allele is A
0 if allele is not A

Then

E(xij) = pA

E(x2ij) = pA

E(xijxij′) = PAA

If there is random sampling, individuals are independent, and

E(xijxi′j′) = E(xij)E(xi′j′) = p2A

These expectations are the averages of values from many sam-

ples from the same population.
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Intraclass Correlation

The inbreeding coefficient is the correlation of the indicator vari-

ables for the two alleles j, j′ at a locus carried by an individual i.

This is because:

Var(xij) = E(x2ij) − [E(xij)]2

= pA(1 − pA)

= Var(xij′), j 6= j′

and

Cov(xij , xij′) = E(xijxij′)− [E(xij)][E(xij′)], j 6= j′

= PAA− p2A
= fpA(1 − pA)

so

Corr(xij, xij′) =
Cov(xij , xij′)

√

Var(xij)Var(xij′)
= f
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Maximum Likelihood Estimation: Binomial

For binomial sample of size n, the likelihood of pA for nA alleles

of type A is

L(pA|nA) = C(pA)nA(1 − pA)n−nA

and is maximized when

∂L(pA|nA)

∂pA
= 0 or when

∂ lnL(pA|na)
∂pA

= 0

Now

lnL(pA|nA) = lnC + nA ln(pA) + (n− nA) ln(1 − pA)

so

∂ lnL(pA|nA)

∂pA
=

nA
pA

− n− nA
1 − pA

and this is zero when pA = p̂A = nA/n.
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Maximum Likelihood Estimation: Multinomial

If {ni} are multinomial with parameters n and {Qi}, then the

MLE’s of Qi are ni/n. This will always hold for genotype pro-

portions, but not always for allele proportions.

For two alleles, the MLE’s for genotype proportions are:

P̂AA = nAA/n

P̂Aa = nAa/n

P̂aa = naa/n

Does this lead to estimates of allele proportions and the within-

population inbreeding coefficient?

PAA = p2A + fpA(1 − pA)

PAa = 2pA(1 − pA)− 2fpA(1 − pA)

Paa = (1 − pA)2 + fpA(1 − pA)

63



Maximum Likelihood Estimation

The likelihood function for pA, f is

L(pA, f) =
n!

nAA!nAa!naa!
[p2A + pA(1 − pA)f ]nAA

×[2pA(1 − pA)f ]nAa[(1 − pA)2 + pA(1 − pA)f ]naa

and it is difficult to find, analytically, the values of pA and f that

maximize this function or its logarithm.

There is an alternative way of finding maximum likelihood esti-

mates in this case: equating the observed and expected values

of the genotype frequencies.
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Bailey’s Method

Because the number of parameters (2) equals the number of

degrees of freedom in this case, we can just equate observed and

expected (using the estimates of pA and f) genotype proportions

nAA/n = p̂2A + f̂ p̂A(1 − p̂A)

nAa/n = 2p̂A(1 − p̂A) − 2f̂ p̂A(1 − p̂A)

naa/n = (1 − p̂A)2 + f̂ p̂A(1 − p̂A)

Solving these equations (e.g. by adding the first equation to half

the second equation to give solution for p̂A and then substituting

that into one equation):

p̂A =
2nAA + nAa

2n
= p̃A

f̂ = 1 − nAa
2np̃A(1 − p̃A)

= 1 − P̃Aa
2p̃Ap̃a
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Three-allele Case

With three alleles, there are six genotypes and 5 df. To use

Bailey’s method, would need five parameters: 2 allele frequencies

and 3 inbreeding coefficients:

P11 = p21 + f12p1p2 + f13p1p3

P12 = 2p1p2 − 2f12p1p2

P22 = p22 + f12p1p2 + f23p2p3

P13 = 2p1p3 − 2f13p1p3

P23 = 2p2p3 − 2f23p2p3

P33 = p23 + f13p1p3 + f23p2p3

We would generally prefer to have only one inbreeding coefficient

f . It is a difficult numerical problem to find the MLE for f .
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Method of Moments

An alternative to maximum likelihood estimation is the method

of moments (MoM) where observed values of statistics are set

equal to their expected values. In general, this does not lead to

unique estimates or to estimates with variances as small as those

for maximum likelihood. (Bailey’s method is for the special case

where the MLEs are also MoM estimates.)
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Method of Moments

For the inbreeding coefficient at loci with m alleles, two different

MoM estimates are (for large sample sizes)

f̂W =

∑m
u=1(P̃uu − p̃2u)

∑m
u=1 p̃u(1 − p̃u)

f̂H =
1

m− 1

m
∑

u=1

(

P̃uu − p̃2u
p̃u

)

These both have low bias. Their variances depend on the value

of f .

For loci with two alleles, m = 2, the two moment estimates are

equal to each other and to the maximum likelihood estimate:

f̂W = f̂H = 1 − P̃Aa
2p̃Ap̃a
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MLE for Recessive Alleles

Suppose allele a is recessive to allele A. If there is Hardy-

Weinberg equilibrium, the likelihood for the two phenotypes is

L(pa) = (1 − p2a)
n−naa(p2a)

naa

ln[L(pa)] = (n− naa) ln(1 − p2a) + 2naa ln(pa)

where there are naa individuals of type aa and n − naa of type

AA+Aa. Differentiating wrt pa:

∂ lnL(pa)

∂pa
= −2pa(n− naa)

1 − p2a
+

2naa

pa

Setting this to zero leads to an equation that can be solved

explicitly: p2a = naa/n. No need for iteration.
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EM Algorithm for Recessive Alleles

An alternative way of finding maximum likelihood estimates when

there are “missing data” involves Estimation of the missing data

and then Maximization of the likelihood. For a locus with allele A

dominant to a the missing information is the frequencies (1−pa)2
of AA, and 2pa(1−pa) of Aa genotypes. Only the joint frequency

(1 − p2a) of AA+Aa can be observed.

Estimate the missing genotype counts (assuming independence

of alleles) as proportions of the total count of dominant pheno-

types:

nAA =
(1 − pa)2

1 − p2a
(n− naa) =

(1 − pa)(n − naa)

(1 + pa)

nAa =
2pa(1 − pa)

1 − p2a
(n− naa) =

2pa(n− naa)

(1 + pa)
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EM Algorithm for Recessive Alleles

Maximize the likelihood (using Bailey’s method):

p̂a =
nAa + 2naa

2n

=
1

2n

(

2pa(n− naa)

(1 + pa)
+ 2naa

)

=
2(npa + naa)

2n(1 + pa)

An initial estimate pa is put into the right hand side to give an

updated estimated p̂a on the left hand side. This is then put

back into the right hand side to give an iterative equation for pa.

This procedure also has explicit solution p̂a =
√

(naa/n).
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EM Algorithm for Two Loci

For two loci with two alleles each, the ten two-locus frequencies are:

Genotype Actual Expected Genotype Actual Expected

AB/AB PAB
AB p2AB AB/Ab PAB

Ab 2pABpAb

AB/aB PAB
aB 2pABpaB AB/ab PAB

ab 2pABpab

Ab/Ab PAb
Ab p2Ab Ab/aB PAb

aB 2pAbpaB

Ab/ab PAb
ab 2pAbpab aB/aB P aB

aB p2aB

aB/ab P aB
ab 2paBpab ab/ab P ab

ab p2ab
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EM Algorithm for Two Loci

Gamete frequencies are marginal sums:

pAB = PABAB +
1

2
(PABAb + PABaB + PABab )

pAb = PAbAb +
1

2
(PAbAB + PAbab + PAbaB)

paB = P aBaB +
1

2
(P aBAB + P aBab + P aBAb )

pab = P abab +
1

2
(P abAb + P abaB + P abAB)

Can arrange gamete frequencies as two-way table to show that

only one of them is unknown when the allele frequencies are

known:

pAB pAb pA
paB pab pa
pB pb 1
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EM Algorithm for Two Loci

The two double heterozygote frequencies PABab , PAbaB are “missing

data.”

Assume initial value of pAB and Estimate the missing counts as

proportions of the total count of double heterozygotes:

nABab =
2pABpab

2pABpab + 2pAbpaB
nAaBb

nAbaB =
2pAbpaB

2pABpab + 2pAbpaB
nAaBb

and then Maximize the likelihood by setting

pAB =
1

2n

(

2nABAB + nABAb + nABaB + nABab

)

or

nAB = 2nABAB + nABAb + nABaB + nABab
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Example

As an example, consider the data

BB Bb bb Total

AA nAABB = 5 nAABb = 3 nAAbb = 2 nAA = 10
Aa nAaBB = 3 nAaBb = 2 nAabb = 0 nAa = 5
aa naaBB = 0 naaBb = 0 naabb = 0 naa = 0

Total nBB = 8 nBb = 5 nbb = 2 n = 15

There is one unknown gamete count x = nAB for AB:

B b Total

A nAB = x nAb = 25 − x nA = 25
a naB = 21 − x nab = x− 16 na = 5

Total nB = 21 nb = 9 2n = 30

21 ≥ x ≥ 16

75



Example

EM iterative equation:

x′ = 2nAABB + nAABb + nAaBB + nAB/ab

= 2nAABB + nAABb + nAaBB +
2pABpab

2pABpab + 2pAbpaB
nAaBb

= 10 + 3 + 3 + 2 × 2x(x − 16)

2x(x− 16) + 2(25 − x)(21 − x)

= 16 +
x(x− 16)

x(x− 16) + (25 − x)(21 − x)

In this case note that if x = 16 then x′ = 16 so this is the MLE.
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Example

If we did not recognize the solution, a good starting value would

assume independence of A and B alleles: x = 2n ∗ pA ∗ pB =

(25 × 21/30) = 17.5.

Successive iterates are:

Iterate x value

0 17.5000
1 17.0000
2 16.6939
3 16.4893
4 16.3473
5 16.2472
... ...

The solution is actually x = 16. This particular example does

not have convergence to the MLE for some starting values for

x.
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ALLELIC ASSOCIATION
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Hardy-Weinberg Law

For a random mating population, expect that genotype frequen-

cies are products of allele frequencies.

For a locus with two alleles, A, a:

PAA = (pA)2

PAa = 2pApa

Paa = (pa)
2

These are also the results of setting the inbreeding coefficient f

to zero.

For a locus with several alleles Ai:

PAiAi = (pAi)
2

PAiAj = 2pAipAj
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Inference about HWE

Departures from HWE can be described by the within-population

inbreeding coefficient f . This has an MLE that can be written

as

f̂ = 1 − P̃Aa
2p̃Ap̃a

=
4nAAnaa − n2

Aa

(2nAA + nAa)(2naa + nAa)

and we can use “Delta method” to find

E(f̂) = f

Var(f̂) ≈ 1

2npApa
(1 − f)[2pApa(1 − f)(1 − 2f) + f(2 − f)]

If f̂ is assumed to be normally distributed then, (f̂−f)/
√

Var(f̂) ∼
N(0,1). When H0 is true, the square of this quantity has a chi-

square distribution.
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Inference about HWE

Since Var(f̂) = 1/n when f = 0:

X2 =







f̂ − f
√

Var(f̂)







2

=
f̂2

1/n

= nf̂2

is appropriate for testing H0 : f = 0. When H0 is true, X2 ∼ χ2
(1)

.

Reject HWE if X2 > 3.84.
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Significance level of HWE test
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Probability=0.05

X^2=3.84

The area under the chi-square curve to the right of X2 = 3.84

is the probability of rejecting HWE when HWE is true. This is

the significance level of the test.

82



Goodness-of-fit Test

An alternative, but equivalent, test is the goodness-of-fit test.

Genotype Observed Expected (Obs.−Exp.)2

Exp.

AA nAA np̃2A np̃2af̂
2

Aa nAa 2np̃Ap̃a 2np̃Ap̃af̂
2

aa naa np̃2a np̃2Af̂
2

The test statistic is

X2 =
∑ (Obs.− Exp)2

Exp.
= nf̂2
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Goodness-of-fit Test

Does a sample of 6 AA, 3 Aa, 1 aa support Hardy-Weinberg?

First need to estimate allele frequencies:

p̃A = P̃AA +
1

2
P̃Aa = 0.75

p̃a = P̃aa +
1

2
P̃Aa = 0.25

Then form “expected” counts:

nAA = n(p̃A)2 = 5.625

nAa = 2np̃Ap̃a = 3.750

naa = n(p̃a)
2 = 0.625
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Goodness-of-fit Test

Perform the chi-square test:

Genotype Observed Expected (Obs.− Exp.)2/Exp.

AA 6 5.625 0.025

Aa 3 3.750 0.150

aa 1 0.625 0.225

Total 10 10 0.400

Note that f̂ = 1 − 0.3/(2 × 0.75 × 0.25) = 0.2 and X2 = nf̂2.
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Sample size determination

Although Fisher’s exact test (below) is generally preferred for

small samples, the normal or chi-square test has the advantage

of simplifying power calculations.

When the Hardy-Weinberg hypothesis is not true, the test statis-

tic nf̂2 has a non-central chi-square distribution with one degree

of freedom (df) and non-centrality parameter λ = nf2. To reach

90% power with a 5% significance level, for example, it is nec-

essary that λ ≥ 10.51.

> pchisq(3.84,1,0)
[1] 0.9499565
> pchisq(3.84,1,10.51)
[1] 0.09986489
> qchisq(0.95,1,0)
[1] 3.841459
> qchisq(0.10,1,10.51)
[1] 3.843019
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Power of HWE test
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The area under the non-central chi-square curve to the right

of X2 = 3.84 is the probability of rejecting HWE when HWE

is false. This is the power of the test. In this plot, the non-

centrality parameter is λ = 10.5.
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Sample size determination

To achieve 90% power to reject HWE at the 5% significance

level when the true inbreeding coefficient is f , need sample size

n to make nf2 ≥ 10.51.

For f = 0.01, need n ≥ 10.51/(0.01)2 = 105,100.

For f = 0.05, need n ≥ 10.51/(0.05)2 = 4,204.

For f = 0.10, need n ≥ 10.51/(0.10)2 = 1,051.
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Population Structure: Departures from HWE

If a population consists of a number of subpopulations, each in

HWE but with different allele frequencies, there will be a depar-

ture from HWE at the population level. This is the Wahlund

effect.

Suppose there are two equal-sized subpopulations, each in HWE

but with different allele frequencies, then

Subpopn 1 Subpopn 2 Total Popn

pA 0.6 0.4 0.5
pa 0.4 0.6 0.5

PAA 0.36 0.16 0.26 > (0.5)2

PAa 0.48 0.48 0.48 < 2(0.5)(0.5)

Paa 0.16 0.36 0.26 > (0.5)2
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Population Admixture: Departures from HWE

A population might represent the recent admixture of two parental
populations. With the same two populations as before but now

with 1/4 of marriages within population 1, 1/2 of marriages

between populations 1 and 2, and 1/4 of marriages within pop-

ulation 2. If children with one or two parents in population 1 are

considered as belonging to population 1, there is an excess of

heterozygosity in the offspring population.

If the proportions of marriages within populations 1 and 2 are

both 25% and the proportion between populations 1 and 2 is

50%, the next generation has

Population 1 Population 2

PAA 0.09 + 0.12 = 0.21 0.04
PAa 0.12 + 0.26 = 0.38 0.12
Paa 0.04 + 0.12 = 0.16 0.09

0.75 0.25

Population 2 is in HWE, but Population 2 has 51% heterozygotes

instead of the expected 49.8%.
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Significance Levels and p-values

The significance level α of a test is the probability of a false

rejection. It is specified by the user, and along with the null

hypothesis, it determines the rejection region. The specified, or

“nominal” value may not be achieved for an actual test.

Once the test has been conducted on a data set, the probability

of the observed test statistic, or a more extreme value, if the

null hypothesis is true is the p-value. The chi-square and normal

tests shown above give approximate p-values because they use a

continuous distribution for discrete data.

An alternative class of tests, “exact tests,” use a discrete distri-

bution for discrete data and provide accurate p-values. It may

be difficult to construct an exact test with a particular nominal

significance level.
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Exact HWE Test

The preferred test for HWE is an exact one. The test rests

on the assumption that individuals are sampled randomly from

a population so that genotype counts have a multinomial distri-

bution:

Pr(nAA, nAa, naa) =
n!

nAA!nAa!naa!
(PAA)nAA(PAa)

nAa(Paa)
naa

This equation is always true, and when there is HWE (PAA = p2A
etc.) there is the additional result that the allele counts have a

binomial distribution:

Pr(nA, na) =
(2n)!

nA!na!
(pA)nA(pa)

na
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Exact HWE Test

Putting these together gives the conditional probability

Pr(nAA, nAa, naa|nA, na) =
Pr(nAA, nAa, naa and nA, na)

Pr(nA, na)

=

n!
nAA!nAa!naa!

(p2A)nAA(2pApa)
nAa(p2a)

naa

(2n)!
nA!na!

(pA)nA(pa)na

=
n!

nAA!nAa!naa!

2nAanA!na!

(2n)!

Reject the Hardy-Weinberg hypothesis if this quantity, the prob-

ability of the genotypic array conditional on the allelic array, is

among the smallest of its possible values.
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Exact HWE Test Example

For convenience, write the probability of the genotypic array,

conditional on the allelic array and HWE, as Pr(nAa|n, nA). Re-

ject the HWE hypothesis for a data set if this value is among

the smallest probabilities.

As an example, consider (nAA = 1, nAa = 0, naa = 49). The allele

counts are (nA = 2, na = 98) and there are only two possible

genotype arrays:

AA Aa aa Pr(nAa|n, nA)

1 0 49 50!
1!0!49!

202!98!
100! = 1

99

0 2 48 50!
0!2!48!

222!98!
100! = 98

99

The p-value is 0.01 and HWE is rejected at the 5% level.
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Exact HWE Test Example

In this example, f̂ = 0 and the chi-square test statistic is X2 =

50. The resulting p-value is 1.54× 10−12, substantially different

from the exact value of 0.01.

> 1-pchisq(50,1,0)

[1] 1.537437e-12
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Exact HWE Test Example

As another example, the sample with nAA = 6, nAa = 3, naa = 1

has allele counts na = 15, na = 5. There are two other sets of

genotype counts possible and the probabilities of each set for a

HWE population are:

nAA nAa naa nA na Pr(nAA, nAa, naa|nA, na)

5 5 0 15 5 10!
5!5!0!

2515!5!
20! = 168

323 = 0.520

6 3 1 15 5 10!
6!3!1!

2315!5!
20! = 140

323 = 0.433

7 1 2 15 5 10!
7!1!2!

2115!5!
20! = 15

323 = 0.047

The p-value is 0.433+0.047 = 0.480. Compare this to the chi-square p-value
for X2 = 0.40:

> pchisq(0.4,1)
[1] 0.4729107
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Exact HWE Test Example

For a sample of size n = 100 with minor allele frequency of 0.07,

there are 8 sets of possible genotype counts:

Exact Chi-square

nAA nAa naa Prob. p-value X2 p-value

93 0 7 0.0000 0.0000∗ 100.00 0.0000∗
92 2 6 0.0000 0.0000∗ 71.64 0.0000∗
91 4 5 0.0000 0.0000∗ 47.99 0.0000∗
90 6 4 0.0002 0.0002∗ 29.07 0.0000∗
89 8 3 0.0051 0.0053∗ 14.87 0.0001∗
88 10 2 0.0602 0.0655 5.38 0.0204∗
87 12 1 0.3209 0.3864 0.61 0.4348
86 14 0 0.6136 1.0000 0.57 0.4503

So, for a nominal 5% significance level, the actual significance

level is 0.0053 for an exact test that rejects when nAa ≤ 8 and

is 0.0204 for an exact test that rejects when nAa ≤ 10.
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Modified Exact HWE Test

Traditionally, the p-value is the probability of the data plus the

probabilities of all the less-probable datasets. The probabilities

are all calculated assuming HWE is true and are conditional on

the observed allele frequencies. More recently (Graffelman and

Moreno, Statistical Applications in Genetics and Molecular Bi-

ology 12:433-448, 2013) it has been shown that the test has

a significance value closer to the nominal value if the p-value

is half the probability of the data plus the probabilities of all

datasets that are less probably under the null hypothesis. For

the (nAA = 1, nAa = 0, naa = 49) example then, the p-value is

1/198.
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Graffelman and Moreno, 2013
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Usual vs Mid p values

pvalue
AA Aa aa Pr(nAa|n, nA) Usual Mid

1 0 49 50!
1!0!49!

202!98!
100! = 1

99
1
99

1
198

0 2 48 50!
0!2!48!

222!98!
100! = 98

99 1 50
99

Average 0.99 0.50
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Usual vs Mid p values

pvalue
AA Aa aa Pr(nAa|n, nA) Usual Mid

5 5 0 0.520 1.000 0.740

6 3 1 0.433 0.480 0.287

7 1 2 0.047 0.047 0.023

Average 0.730 0.510
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Modified Exact HWE Test Example

For a sample of size n = 100 with minor allele frequency of 0.07,

there are 8 sets of possible genotype counts:

Exact Chi-square

nAA nAa naa Prob. Mid p-value X2 pvalue

93 0 7 0.0000 0.0000∗ 100.00 0.0000∗
92 2 6 0.0000 0.0000∗ 71.64 0.0000∗
91 4 5 0.0000 0.0000∗ 47.99 0.0000∗
90 6 4 0.0002 0.0002∗ 29.07 0.0000∗
89 8 3 0.0051 0.0028∗ 14.87 0.0001∗
88 10 2 0.0602 0.0353∗ 5.38 0.0204∗
87 12 1 0.3209 0.2262 0.61 0.4348
86 14 0 0.6136 0.6832 0.57 0.4503

So, for a nominal 5% significance level, the actual significance

level is 0.0353 for an exact test that rejects when nAa ≤ 10 and

is 0.0204 for a chi-square test that also rejects when nAa ≤ 10.

102



Effect of Minor Allele Frequency

The minor allele frequency (MAF) in the previous example was

14/200 = 0.07. How does the exact test behave with other MAF

values?

In particular, what is the size of the rejection region for a nominal

value of α = 0.05? In other words, we decide to reject HWE

for any sample with a mid p-value of 0.05 or less. We find

the rejection region and calculate the mid p-value and we would

hope that this empirical significance level would be close to the

nominal value, but we find that it may not be.
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na = 16 minor alleles

When the minor allele frequency is 0.08, for a nominal 5% signif-

icance level, the actual significance level is 0.0070 for an exact

test that rejects when nAa ≤ 10.

nAA nAa naa Pr(nAa|na) mid p value

92 0 8 .0000 .0000
91 2 7 .0000 .0000
90 4 6 .0000 .0000
89 6 5 .0000 .0000
88 8 4 .0008 .0004
87 10 3 .0123 .0070
86 12 2 .0974 .0618
85 14 1 .3681 .2946
84 16 0 .5215 .7382
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na = 15 minor alleles

When the minor allele frequency is 0.075, for a nominal 5%

significance level, the actual significance level is 0.0473 for an

exact test that rejects when nAa ≤ 11.

nAA nAa naa Pr(nAa|na) mid p value

92 1 7 .0000 .0000
91 3 6 .0000 .0000
90 5 5 .0000 .0000
89 7 4 .0004 .0002
88 9 3 .0081 .0045
87 11 2 .0776 .0473
86 13 1 .3464 .2594
85 15 0 .5675 .7163
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na = 13 minor alleles

When the minor allele frequency is 0.065, for a nominal 5%

significance level, the actual significance level is 0.0257 for an

exact test that rejects when nAa ≤ 9.

nAA nAa naa Pr(nAa|na) mid p value

93 1 6 .0000 .0000
92 3 5 .0000 .0000
91 5 4 .0001 .0001
90 7 3 .0030 .0016
89 9 2 .0452 .0257
88 11 1 .2923 .1945
87 13 0 .6595 .6704
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na = 12 minor alleles

When the minor allele frequency is 0.06, for a nominal 5% signif-

icance level, the actual significance level is 0.0181 for an exact

test that rejects when nAa ≤ 8.

nAA nAa naa Pr(nAa|na) mid p value

94 0 6 .0000 .0000
93 2 5 .0000 .0000
92 4 4 .0000 .0000
91 6 3 .0017 .0017
90 8 2 .0327 .0181
89 10 1 .2612 .1650
88 12 0 .7045 .2955
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Power of Exact Test

If there is not HWE:

Pr(nAa|nA, na) =
n!

nAA!nAa!naa!
(PAA)nAA(PAa)

nAa(Paa)
naa

=
n!

nAA!nAa!naa!
(PAA)

nA−nAa
2 (PAa)

nAa(Paa)
na−nAa

2

=
n!

nAA!nAa!naa!
(
√

PAA)nA(
√
Paa)

na

(

PAa√
PAAPaa

)nAa

=
CψnAa

nAA!nAa!naa!

where ψ = PAa/(
√
PAAPaa) measures the departure from HWE.

The constant C makes the probabilities sum to one over all

possible nAa values: C = 1/[
∑

nAa
ψnAa/(nAA!nAa!naa!)].
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Power of Exact Test

Once the rejection region has been determined, the power of

the test (the probability of rejecting) can be found by adding

these probabilities for all sets of genotype counts in the re-

gion. HWE corresponds to ψ = 2. What is the power to

detect HWE when ψ = 1, the sample size is n = 10 and the

sample allele frequencies are p̃A = 0.75, p̃a = 0.25? Note that

C = 1/[1/(5!5!0!) + 1/(6!3!1!) + 1/(7!1!2!)].

Pr(nAa|nA, n)
nAA nAa naa ψ = 2 ψ = 1

5 5 0 0.520 0.262
6 3 1 0.433 0.364
7 1 2 0.047 0.374

The ψ = 2 column shows that the rejection region is nAa = 1.

The ψ = 1 column shows that the power (the probability nAa = 1

when ψ = 1) is 37.4%.
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Power Examples

For given values of n, na, the rejection region is determined from

null hypothesis and the power is determined from the multinomial

distribution.

Pr(nAa|na = 16, n = 100)
ψ .250 .500 1.000 2.000 4.000 8.000 16.000

nAa f .631 .398 .157 .000 −.062 −.081 −.085

0 .0042 .0000 .0000 .0000 .0000 .0000 .0000
2 .0956 .0026 .0000 .0000 .0000 .0000 .0000
4 .3172 .0349 .0003 .0000 .0000 .0000 .0000
6 .3568 .1569 .0056 .0000 .0000 .0000 .0000
8 .1772 .3116 .0441 .0008 .0000 .0000 .0000

10 .0433 .3047 .1725 .0123 .0003 .0000 .0000
12 .0054 .1506 .3411 .0974 .0098 .0007 .0000
14 .0003 .0356 .3223 .3681 .1485 .0422 .0109
16 .0000 .0032 .1142 .5214 .8414 .9571 .9890

Power .9943 .8107 .2225 .0131 .0003 .0000 .0000
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na = 15 Probabilities

Pr(nAa|na = 15)
ψ .250 .500 1.000 2.000 4.000 8.000 16.000

nAa f .622 .389 .150 .000 −.058 −.075 −.080

1 .0338 .0006 .0000 .0000 .0000 .0000 .0000
3 .2269 .0150 .0001 .0000 .0000 .0000 .0000
5 .3871 .1027 .0026 .0000 .0000 .0000 .0000
7 .2592 .2750 .0273 .0004 .0000 .0000 .0000
9 .0801 .3400 .1352 .0081 .0002 .0000 .0000

11 .0120 .2040 .3245 .0776 .0074 .0005 .0000
13 .0008 .0569 .3620 .3464 .1314 .0367 .0094
15 .0000 .0058 .1482 .5674 .8610 .9627 .9905

Power .9871 .7333 .1652 .0085 .0002 .0000 .0000
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na = 14 Probabilities

Pr(nAa|na = 14)
ψ .250 .500 1.000 2.000 4.000 8.000 16.000

nAa f .613 .378 .143 .000 −.054 −.070 −.074

0 .0062 .0001 .0000 .0000 .0000 .0000 .0000
2 .1256 .0051 .0000 .0000 .0000 .0000 .0000
4 .3610 .0582 .0010 .0000 .0000 .0000 .0000
6 .3422 .2207 .0156 .0002 .0000 .0000 .0000
8 .1375 .3547 .1002 .0051 .0001 .0000 .0000

10 .0255 .2631 .2973 .0602 .0054 .0004 .0000
12 .0021 .0877 .3964 .3209 .1150 .0316 .0081
14 .0001 .0105 .1895 .6136 .8795 .9680 .9919

Power .9723 .6387 .1168 .0053 .0001 .0000 .0000
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na = 13 Probabilities

Pr(nAa|na = 13)
ψ .250 .500 1.000 2.000 4.000 8.000 16.000

nAa f .603 .366 .136 .000 −.050 −.065 −.068

1 .0479 .0012 .0000 .0000 .0000 .0000 .0000
3 .2786 .0275 .0003 .0000 .0000 .0000 .0000
5 .4004 .1583 .0080 .0001 .0000 .0000 .0000
7 .2169 .3430 .0696 .0030 .0001 .0000 .0000
9 .0508 .3216 .2611 .0452 .0038 .0003 .0000

11 .0051 .1301 .4225 .2923 .0994 .0269 .0069
13 .0002 .0183 .2383 .6595 .8967 .9728 .9931

Power .9947 .8516 .3391 .0483 .0039 .0003 .0000
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na = 12 Probabilities

Pr(nAa|na = 12)
ψ .250 .500 1.000 2.000 4.000 8.000 16.000

nAa f .592 .353 .128 .000 −.046 −.059 −.063

0 .0095 .0001 .0000 .0000 .0000 .0000 .0000
2 .1674 .0102 .0001 .0000 .0000 .0000 .0000
4 .4053 .0991 .0037 .0000 .0000 .0000 .0000
6 .3108 .3039 .0449 .0017 .0000 .0000 .0000
8 .0947 .3703 .2188 .0326 .0026 .0002 .0000

10 .0118 .1852 .4376 .2612 .0846 .0226 .0058
12 .0005 .0312 .2950 .7044 .9127 .9772 .9942

Power .9877 .7836 .2674 .0344 .0027 .0002 .0000
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Permutation Test

For large sample sizes and many alleles per locus, there are too

many genotypic arrays for a complete enumeration and a deter-

mination of which are the least probable 5% arrays.

A large number of the possible arrays is generated by permuting

the alleles among genotypes, and calculating the proportion of

these permuted genotypic arrays that have a smaller conditional

probability than the original data. If this proportion is small, the

Hardy-Weinberg hypothesis is rejected.

This procedure is not needed for SNPs with only 2 alleles. The

number of possible arrays is always less than bout half the sample

size.
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Multiple Testing

When multiple tests are performed, each at significance level α,

a proportion α of the tests are expected to cause rejection even

if all the hypotheses are true.

Bonferroni correction makes the overall (experimentwise) signif-

icance level equal to α by adjusting the level for each individual

test to α′. If α is the probability that at least one of the L tests

causes rejection, it is also 1 minus the probability that none of

the tests causes rejection:

α = 1 − (1 − α′)L

≈ Lα′

provided the L tests are independent.

If L = 106, the “genome-wide significance level” is 5 × 10−8 in

order for α = 0.05.
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QQ-Plots

An alternative approach to considering multiple-testing issues is
to use QQ-plots. If all the hypotheses being tested are true then
the resulting p-values are uniformly distributed between 0 and 1.

For a set of n tests, we would expect to see n evenly spread p
values between 0 an 1 e.g. 1/2n,3/n, . . . , (2n − 1)/2n. We plot
the observed p-values against these expected values: the smallest
against 1/n and the largest against 1. It is more convenient
to transform to − log10(p) to accentuate the extremely small p
values. The point at which the observed values start departing
from the expected values is an indication of “significant” values
in a way that takes into account the number of tests.

A useful diagnostic for QQ-plots is the “genomic control” quan-
tity λ. This is the ratio of the median of the observed distribution
of the test statistic to the expected median. We have calculated
this from the p-values of the exact test statistics, and assumed
these have a uniform distribution on [0,1], and a median of 0.5,
under the null hypothesis of HWE. The ratio should be 1.
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QQ-Plots
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The results for 9208 SNPs on human chromosome 1 for the 50

AMD controls (λ = 0.86). Bonferroni would suggest rejecting

HWE when p ≤ 0.05/9205 = 5.4 × 10−6 or − log10(p) ≥ 5.3.
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QQ-Plots
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The same set of results as on the previous slide except now that any SNP

with any missing data was excluded (λ = 1.035, closer to 1 than for all the

SNPs). Now 7446 SNPs and Bonferroni would reject if − log10(p) ≥ 5.2. All

five outliers had zero counts for the minor allele homozygote and at least 32

heterozygotes in a sample of size 50.
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Imputing Missing Data

Instead of discarding an individual for any SNP when there is no

genotype call, it may be preferable to use neighboring SNPs to

impute the missing values. This procedure has been applied to

a study on pre-term birth (Graffelman et al., 2015, G3 (Genes,

Genomes, Genetics) 5:2365-2373).

DeFinetti diagram: distance of point to side of triangle is fre-

quency of genotype shown on opposite vertex.
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Imputing Missing Data
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HWE Test for X-linked Markers

Under HWE, allele frequencies in males and females should be

the same. Best to examine the difference when testing for HWE.

If a sample has nm males and nf females, and if the males have

mA,mB alleles of types A,B, and if females have fAA, fAB, fBB
genotypes AA,AB,BB, then the probability of the data, under

HWE, is

nA!nB!nm!nf !

mA!mB!fAA!fAB!fBB!nt!
2fAB

where nt = nm + 2nf .

(Graffelman and Weir, 2016, Heredity 116:558-568).
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Example: 10 males, 10 females, 6 A alleles
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X-linked Markers: Possible Scenarios
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X-linked Markers: Simulated Data
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X-linked Markers: Real Data

129



X-linked Markers: Real Data
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Separate Male and Female Autosomal Counts

The X-linked test can be extended to autosomal markers when

genotype counts are recorded separately for males and females.

Graffeleman J, Weir BS. 2018. Genetic Epidemiology 42:24-48.
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Separate M&F Counts: Scenarios
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Separate M&F Counts: Joint Exact Test

To test for both Equal Allele Frequencies (EAF) and Hardy-

Weinberg Proportions (HWP):

Pr(mAB, fAB|n, nA, nm) =
nA!nB!nm!nf !2

mAB+fAB

mAA!mAB!mBB!fAA!fAB!fBB!(2n)!

mAA,mAB,mBB genotype counts in males
fAA, fAB, fBB genotype counts in females
nm = mAA +mAB +mBB number of males
nf = fAA + fAB + fBB number of females
n = nm + nf total sample size
mA = 2mAA +mAB,mB = 2mBB +mAB numbers of A,B alleles in males
fA = 2fAA + fAB, fB = 2fBB + fAB numbers of A,B alleles in females
nA = mA + fA, nB = mB + fB total numbers of A,B alleles
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Separate M&F Counts: HWP Exact Test

To test for HWP:

Pr(nAB|n, nA) =
nA!nB!n!2nAB

nAA!nAB!nBB!

nAA, nAB, nBB total genotype counts in males and females
n = nAA + nAB + nBB total sample size
nA = 2nAA + nAB, nB = 2nBB + nAB total numbers of A,B alleles
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Separate M&F Counts: EAF Exact Test

To test for EAF:

Pr(nA|n,mA) =
nA!nB!nm!nf !

mA!mB!fA!fB!

mA,mB numbers of A,B alleles in males
fA, fB numbers of A,B alleles in females
nm = mA +mB total number of male alleles
nf = fA + fB total number of female alleles
nA = mA + fA, nB = mB + fB total numbers of A,B alleles
n = nm + nf = nA + nB total number of alleles in males and females
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Separate M&F Counts: 1000 Genomes Result

136



SNV Data

Sequence-based variants have many low-frequency alleles that

are susceptible to effects of copy-number variation.

Recent survey of 1000Genomes data revealed more departures

from HWE than expected by chance, and many of these reflect

an apparent heterozygote excess. SNP-array data often show

HWE departures from heterozygote deficiency.

(Graffelman et al., 2017. Human Genetics 136:77-741.)
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Whole Genome HWE Tests
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MHC Region HWE Tests

Green: heterozygote deficiency. Red: heterozygote excess.
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Copy Number Variants

JPT sample has 3.8% of variants in segmental duplications and

3% in simple tandem repeats. HWD rates 11 times higher in

these regions: reflecting sequencing problems due to multiple

copies of a variant, leading to heterozygote excess.

“Segmental duplications (SDs) are segments of DNA with near-

identical sequence.

A microsatellite is a tract of repetitive DNA in which certain

DNA motifs (ranging in length from 25 base pairs) are repeated,

typically 5-50 times.”

[Wikipedia]
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Copy Number Variants
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SNV-HWE Conclusions

Significant HWE results may indicate copy number variation -

excluding them may also exclude disease-associated variants.

WGS data have heterozygote excess, reflecting copy number

variation.

SNP array data have heterozygote deficiency, reflecting null al-

leles.
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Linkage Disequilibrium

This term reserved for association between pairs of alleles – one

at each of two loci.

When gametic data are available, could refer to gametic disequi-

librium.

When genotypic data are available, but gametes can be inferred,

can make inferences about gametic and non-gametic pairs of

alleles.

When genotypic data are available, but gametes cannot be in-

ferred, can work with composite measures of disequilibrium.
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Linkage Disequilibrium

For alleles A and B are two loci, the usual measure of linkage

disequilibrium is

DAB = PAB − pApB

Whether or not this is zero does not provide a direct state-

ment about linkage between the two loci. For example, consider

marker YFM and disease DTD:

A N Total

+ 1 24 25
YFM

− 0 75 75

Total 1 99 100

DA+ =
1

100
− 1

100

25

100
= 0.0075, (maximum possible value)
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Gametic Linkage Disequilibrium

For loci A, B define indicator variables x, y that take the value

1 for allele A,B and 0 for any other alleles. If gametes within

individuals are indexed by j, j = 1,2 then for expectations over

samples from the same population

E(xj) = pA, j = 1,2 , E(yj) = pB j = 1,2

E(x2j ) = pA, j = 1,2 , E(y2j ) = pB j = 1,2

E(x1x2) = PAA , E(y1y2) = PBB

E(x1y1) = PAB , E(x2y2) = PAB

The variances of xj, yj are pA(1− pA), pB(1− pB) for j = 1,2 and

the covariance and correlation coefficients for x and y are

Cov(x1, y1) = Cov(x2, y2) = PAB − pApB = DAB

Corr(x1, y1) = Corr(x2, y2) = DAB/
√

[pA(1 − pA)pB(1 − pB)] = ρAB
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Estimation of LD

With random sampling of gametes, gamete counts have a multi-

nomial distribution:

Pr(nAB, nAb, naB, nab) =
n!(PAB)nAB(PAb)

nAb(PaB)naB(Pab)
nab

nAB!nAb!naB!nab!

The data are the counts of four gamete types, so there are three

degrees of freedom. There are three parameters: pA, pB, DAB so

Bailey’s method leads directly to MLE’s:

D̂AB = P̃AB − p̃Ap̃B

ρ̂AB = rAB =
D̂AB

√

p̃Ap̃ap̃Bp̃b
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Testing LD

Writing the MLE of DAB as

D̂AB =
1

n2
(nABnab − nAbnaB)

where n is the number of gametes in the sample, allows the use

of the “Delta method” to find

Var(D̂AB) ≈ 1

n
[pA(1 − pA)pB(1 − pB)

+ (1 − 2pA)(1 − 2pB)DAB −D2
AB]

When DAB = 0, Var(D̂AB) = pA(1 − pA)pB(1 − pB)/n.

If D̂AB is assumed to be normally distributed then

X2
AB =

D̂2
AB

Var(D̂AB)
= nρ̂2AB = nr2AB

is appropriate for testing H0 : DAB = 0. When H0 is true,

X2
AB ∼ χ2

(1)
. Note the analogy to the test statistic for Hardy-

Weinberg equilibrium: X2 = nf̂2.
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Goodness-of-fit Test

The test statistic for the 2 × 2 table

nAB nAb nA
naB nab na
nB nb n

has the value

X2 =
n(nABnab − nAbnaB)2

nAnanBnb

=
nD̂2

AB

p̃Ap̃ap̃Bp̃b

For DTD/YFM example, X2 = 3.03. This is not statistically

significant, even though disequilibrium was maximal.
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Composite Disequilibrium

When genotypes are scored, it is often not possible to distinguish

between the two double heterozygotes AB/ab and Ab/aB, so that

gametic frequencies cannot be inferred.

Under the assumption of random mating, in which genotypic fre-

quencies are assumed to be the products of gametic frequencies,

it is possible to estimate gametic frequencies with the EM algo-

rithm. To avoid making the random-mating assumption, how-

ever, it is possible to work with a set of composite disequilibrium

coefficients.
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Composite Disequilibrium

Although the separate digenic frequencies pAB (one gamete) and

pA,B (two gametes) cannot be observed, their sum can be since

pAB = PABAB +
1

2
PABAb +

1

2
PABaB +

1

2
PABab

pA,B = PABAB +
1

2
PABAb +

1

2
PABaB +

1

2
PAbaB

pAB + pA,B = 2PABAB + PABAb + PABaB +
PABab + PAbaB

2

Digenic disequilibrium is measured with a composite measure

∆AB defined as

∆AB = pAB + pA,B − 2pApB

= DAB +DA,B

which is the sum of the gametic (DAB = pAB−pApB) and nonga-

metic (DA,B = pA,B − pApB) coefficients.
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Composite Disequilibrium

If the counts of the nine genotypic classes are

BB Bb bb
AA n1 n2 n3
Aa n4 n5 n6
aa n7 n8 n9

the count for pairs of alleles in an individual being A and B,

whether received from the same or different parents, is

nAB = 2n1 + n2 + n4 +
1

2
n5

and the MLE for ∆ is

∆̂AB =
1

n
nAB − 2p̃Ap̃B
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Composite Linkage Disequilibrium

For loci A, B define indicator variables x, y that take the value

1 for allele A,B and 0 for any other alleles. If gametes within

individuals are indexed by j, j = 1,2 then for expectations over

samples from the same population

E(xj) = pA, j = 1,2 , E(yj) = pB j = 1,2

E(x2j ) = pA, j = 1,2 , E(yj) = pB j = 1,2

E(x1x2) = PAA , E(y1y2) = PBB

E(x1y1) = PAB , E(x2y2) = PAB

E(x1y2) = PA,B , E(x2y1) = PA,B

Write

DA = PAA − p2A , DB = PBB − p2B

DAB = PAB − pApB , DA,B = PA,B − pApB

∆AB = DAB +DA,B
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Composite Linkage Disequilibrium

Now set X = x1 + x2, Y = y1 + y2, the allelic dosages at each

locus, to get

E(X) = 2pA , E(Y ) = 2pB

E(X2) = 2(pA + PAA) , E(Y 2) = 2(pB + PBB)

Var(X) = 2pA(1 − pA)(1 + fA) , Var(Y ) = 2pB(1 − pB)(1 + fB)

and

E(XY ) = 2(PAB + PA,B)

Cov(X,Y ) = 2(PAB − pApB) + 2(PA,B − pApB)

= 2(DAB +DA,B) = 2∆AB

Corr(X,Y ) =
∆AB

√

pA(1 − pA)(1 + fA)pB(1 − pB)(1 + fB)
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Composite Linkage Disequilibrium Test

∆̂AB = nAB/n− 2p̃Ap̃B

where

nAB = 2nAABB + nAABb + nAaBB +
1

2
nAaBb

This does not require phased data.

By analogy to the gametic linkage disequilibrium result, a test

statistic for ∆AB = 0 is

X2
AB =

n∆̂2
AB

p̃A(1 − p̃A)(1 + f̂A)p̃B(1 − p̃B)(1 + f̂B)

This is assumed to be approximately χ2
(1)

under the null hypoth-

esis.
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Example

For the data

BB Bb bb Total

AA nAABB = 5 nAABb = 3 nAAbb = 2 nAA = 10
Aa nAaBB = 3 nAaBb = 2 nAabb = 0 nAa = 5
aa naaBB = 0 naaBb = 0 naabb = 0 naa = 0

Total nBB = 8 nBb = 5 nbb = 2 n = 15

nAB = 2 × 5 + 3 + 3 +
1

2
(2) = 17

nA = 25, p̃A =
5

6
; p̃A(1 − p̃A) =

5

36

nB = 21, p̃B =
7

10
; p̃B(1 − p̃B) =

21

100

f̂A = 1 − 5/15

5/18
= −1

5

f̂B = 1 − 5/15

21/50
=

13

63
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Example

The estimated composite disequilibrium coefficient is

∆̂AB =
17

15
− 2

25

30

21

30
= − 1

30
= −0.033

The test statistic is

X2 =
30 × (0.033)2

5
36

4
5

21
100

76
63

= 1.16

Previous work on EM algorithm, assuming HWE, estimated pAB
as 16/30 so

D̂AB =
16

30
− 25

30

21

30
= − 1

20
= −0.050

X2 =
30 × (−0.05)2

5
36

21
100

= 2.57
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1000 Genomes Example

For 100,000 random pairs of SNPs chosen from the 379,774

polymorphic SNPs in chromosome 22 of the 1000Genomes ACB

population:
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Multi-locus Disequilibria: Entropy

It is difficult to describe associations among alleles at several

loci. One approach is based on information theory.

For a locus with sample frequencies p̃u for alleles Au the entropy

is

HA = −
∑

u
p̃u ln(p̃u)

For two loci with alleles Au, Bv, the entropy is

HAB = −
∑

u

∑

v
P̃uv ln(P̃uv)

In the absence of linkage disequilibrium P̃uv = p̃up̃v so

HAB = −
∑

u

∑

v
p̃up̃v[ln(p̃u) + ln(p̃v)]

= HA +HB

so if HAB 6= HA + HB there is evidence of dependence. This

extends to multiple loci.
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Conditional Entropy

If the entropy for a multi-locus profile A is HA then the condi-

tional probability of another locus B, given A, is HB|A = HAB −
HA.

In performing meaningful calculations for Y-STR profiles, this

suggests choosing a set of loci by an iterative procedure. First

choose locus L1 with the highest entropy. Then choose locus L2

with the largest conditional entropy H(L2|L1). Then choose L3

with the highest conditional entropy with the haplotype L1L2,

and so on.
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Conditional Entropy: YHRD Data

Added Entropy
Marker Single Multi Cond.
DYS385ab 4.750 4.750 4.750
DYS481 2.962 6.972 2.222
DYS570 2.554 8.447 1.474
DYS576 2.493 9.318 0.871
DYS458 2.220 9.741 0.423
DYS389II 2.329 9.906 0.165
DYS549 1.719 9.999 0.093
DYS635 2.136 10.05 0.053
DYS19 2.112 10.08 0.028
DYS439 1.637 10.10 0.024
DYS533 1.433 10.11 0.010
DYS456 1.691 10.12 0.006
GATAH4 1.512 10.12 0.005
DYS393 1.654 10.13 0.003
DYS448 1.858 10.13 0.002
DYS643 2.456 10.13 0.002
DYS390 1.844 10.13 0.002
DYS391 1.058 10.13 0.002

Most-discriminating loci may not contribute to the most-discriminating

haplotypes. No additional discriminating power beyond 10 loci.
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Population Structure and Relatedness
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Population STR Data

Individuals from several populations are scored at a series of

marker loci. At each locus, an individual has two alleles, one

from each parent, and these can be identified. For example, at

locus D3S1358:

Allele AFC NSC QLC SAC TAC VIA WAB
11 .000 .001 .002 .001 .000 .000 .000
12 .004 .003 .001 .001 .000 .000 .010
13 .008 .003 .002 .002 .000 .000 .001
14 .123 .098 .159 .125 .152 .008 .075
15 .261 .264 .365 .252 .244 .385 .353
16 .250 .270 .250 .265 .241 .277 .242
17 .187 .198 .123 .202 .197 .246 .190
18 .154 .152 .091 .144 .157 .077 .122
19 .012 .011 .006 .007 .010 .008 .007
20 .002 .000 .000 .000 .000 .000 .000

What questions can we answer with these data, and how?
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HapMap III SNP Data

Sample
Code Population Description size
ASW African ancestry in Southwest USA 142
CEU Utah residents with Northern and Western 324

European ancestry from CEPH collection
CHB Han Chinese in Beijing, China 160
CHD Chinese in Metropolitan Denver, Colorado 140
GIH Gujarati Indians in Houston, Texas 166
JPT Japanese in Tokyo, Japan 168
LWK Luhya in Webuye, Kenya 166
MXL Mexican ancestry in Los Angeles, California 142
MKK Maasai in Kinyawa, Kenya 342
TSI Toscani in Italia 154
YRI Yoruba in Ibadan, Nigeria 326
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HapMap III SNP Data

Some allele frequencies are:

SNP ASW CEU CHB CHD GIH JPT LWK MXL MKK TSI YRI

------------------------------------------------------------------------------------------
1 0.4789 0.8375 0.9000 0.9143 0.8133 0.8631 0.5060 0.8169 0.5263 0.8506 0.4049
2 0.0704 0.0932 0.4684 0.4357 0.2831 0.4085 0.1084 0.0423 0.1382 0.1104 0.0525

3 0.5563 0.8735 0.9000 0.9143 0.8373 0.8795 0.5663 0.8310 0.6355 0.9156 0.4907
4 0.3944 0.1512 0.1125 0.1214 0.2831 0.1548 0.4819 0.2817 0.2924 0.2338 0.3988

5 0.3732 0.5957 0.6076 0.6812 0.5602 0.4695 0.2530 0.4718 0.3676 0.5909 0.3405
6 0.6690 0.8272 0.9000 0.9071 0.6988 0.7976 0.7952 0.7143 0.8187 0.7597 0.7362

7 0.6197 0.0216 0.4375 0.4500 0.1084 0.4643 0.6024 0.1268 0.4532 0.0390 0.7270
8 0.3803 0.9784 0.5625 0.5357 0.8916 0.5357 0.3795 0.8732 0.5205 0.9610 0.2669
9 0.2183 0.7407 0.4750 0.5000 0.6566 0.4167 0.2439 0.5915 0.4006 0.6908 0.1265

10 0.0986 0.0031 0.0886 0.0286 0.0120 0.0952 0.3012 0.0286 0.3588 0.0519 0.1933
------------------------------------------------------------------------------------------

What questions can we answer with these data, and how?

164



Questions of Interest

• How much genetic variation is there? (animal conservation)

• How much migration (gene flow) is there between popula-

tions? (molecular ecology)

• How does the genetic structure of populations affect tests for

linkage between genetic markers and human disease genes?

(human genetics)

• How should the evidence of matching marker profiles be

quantified? (forensic science)

• What is the evolutionary history of the populations sampled?

(evolutionary genetics)

165



Additional Questions of Interest

If genotypic data are available, individual inbreeding and kinship

values can be estimated:

• What is the Genetic Relatedness Matrix? (association map-

ping)

• How do social behaviors evolve?

• How should captive breeding programs be managed? (con-

servation genetics)

• Are these remains from a person in this family? (disaster

victim identification)
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Statistical Analysis

Possible to approach these data from purely statistical viewpoint.

Could test for differences in allele frequencies among populations.

Could use various multivariate techniques to cluster populations.

These analyses may not answer the biological questions.

167



Notation
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Genetic Analysis: Frequencies of Allele Au

Population 1 Population r

p1u . . .

πu

pru

Among samples of ni alleles from population i: counts for allele u
follow a binomial distribution with mean piu and variance nipiu(1−
piu). Sample allele frequencies p̃iu have expected values piu and

variances piu(1 − piu)/ni.

Among replicates of population i: piu values follow a distribution

with mean πu and variance πu(1− πu)θi. Distribution sometimes

assumed to be Beta.
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Beta distribution: Theoretical

The beta probability density is proportional to pv−1(1 − p)w−1

and can take a variety of shapes.
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Beta distribution: Experimental

The beta distribution is suggested by a Drosophila experiment with 107 repli-

cate populations of size 16, starting with all heterozygotes, by P. Buri (Evo-

lution 10:367, 1956).
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What is θ?

Two ways of thinking about θ.

It measures the probability a pair of alleles are identical by de-

scent: and this is with respect to some reference population.

The target alleles may be in specified populations, and this leads

to characterization of population structure, of they may be in

specified individuals and this leads to characterization of inbreed-

ing and relatedness.

θ also describes the variance of allele frequencies among popu-

lations, or among evolutionary replicates of a single population.

Weir BS, Goudet J. 2017. A unified characterization of popula-

tion structure and relatedness. Genetics 206:2085-2103.

Goudet J, Kay T, Weir BS. 2018. How to estimate kinship. (in

review).
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Allele-level θ’s

Population i

B
B

B
B

B
BBM

�
�
�
�
�
���

θi

. . .

HHHHHHHHHY

���������*

θii
′

Population i′

B
B

B
B

B
BBM

�
�
�
�
�
���

θi
′

θ’s are ibd probabilities for pairs of alleles from specified popu-

lations.

θiW is average of the within-population probabilities θi. Average

over populations of θiW is θW .

θB is average of the between-population-pair probabilities θii
′
.
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Genotype-level θ’s
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θ’s are ibd probabilities for pairs of alleles from specified individ-

uals.

θiS is average of the within-population coancestries θijj′. θS is

average over populations of θiS.

θB is average of the between-population-pair coancestries θii
′

jj′.
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Allelic Measure Predicted Values
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Predicted Values of the θ’s: Pure Drift

Our estimation procedure for the θ’s holds for all evolutionary

scenarios, but the theoretical values of the θ’s do depend on the

history of the sampled populations.

In the case of pure drift, where population i has constant size Ni
and there is random mating, t generations after the population

began drifting from an ancestral population in which θi = 0

θi(t) = 1 −
(

1 − 1

2Ni

)t

If t is small relative to large Ni’s, θ
i(t) ≈ t/(2Ni), and θW (t) ≈

t/(2Nh) where Nh is the harmonic mean of the Ni.
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Drift Model: Two Populations

Now allow ancestral population itself to have ibd alleles with

probability θ12 (the same value as for one allele from current

populations 1 and 2):

?

t

θ12

�
�

�
��

@
@

@
@@θ1 θ2

θi = 1 − (1 − θ12)

(

2Ni − 1

2Ni

)t

, i = 1,2

We avoid needing to know the ancestral value θ12 by making

θ1, θ2 relative to θ12:

βi =
θi − θ12

1 − θ12
= 1 −

(

2Ni − 1

2Ni

)t

≈ t

2Ni
, i = 1,2
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Two populations: drift, migration, mutation

Population 1Time t

?

Drift

N1

Population 2

?

Drift

N2

HHHHHHHHHHHHHHHHHHHHj

���������������������

Migration

m1 m2

Population 1Time t+ 1 Population 2

There is also a probability µ that an allele mutates to a new type.
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Drift, Mutation and Migration

For populations 1 or 2 with sizes N1 or N2, if m1 or m2 are the

proportions of alleles from population 2 or 1, the changes in the

θ’s from generation t to t+ 1 are

θ1(t+ 1) = (1 − µ)2
[

(1 −m1)
2φ1(t) + 2m1(1 −m1)θ

12(t)

+m2
1φ

2(t)
]

θ2(t+ 1) = (1 − µ)2
[

m2
2φ

1(t) + 2m2(1 −m2)θ
12(t)

+(1 −m2)
2φ2(t)

]

θ12(t+ 1) = (1 − µ)2
[

(1 −m1)m2φ
1(t) + [(1 −m1)(1 −m2)

+m1m2]θ
12(t) +m1(1 −m2)φ

2(t)
]

where φi(t) = 1/(2Ni)+(2Ni−1)θi(t)/(2Ni) and µ is the infinite-

allele mutation rate.

It is possible that both of β1 = (θ1 − θ12)/(1 − θ12) and β2 =

(θ2 − θ12)/(1− θ12) are positive, or that one of them is negative

and the other one positive.
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Drift and Mutation

If there is no migration, the θ’s tend to equilibrium values of

θ̂1 ≈ 1

1 + 4N1µ

θ̂2 ≈ 1

1 + 4N2µ

θ̂12 = 0

so βi = θi, i = 1,2.
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Drift, Mutation and Migration

The θ’s are non-negative, but one of the β’s may be negative.
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Genotypic Measure Predicted Values
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Genotypes vs Alleles

So far we have ignored individual genotypic structure, leading

to an analysis of population allele frequencies as opposed to

genotypic frequencies.

θi is the probability two alleles drawn randomly from population i

are ibd, and θii
′
is the probability an allele drawn randomly from

population i is ibd to an allele drawn from population i′.

Within population i, we define θijj as the probability that two

alleles drawn randomly from individual j are ibd, and θijj′ as the

probability that allele drawn randomly from individual j is ibd to

an allele from individual j′.
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Coancestry vs Inbreeding

The coancestry of individuals j, j′ in population i is the probability

an allele from j is ibd to an allele from j′. This is θijj′.

The inbreeding of individual j in population i is the probability

the two alleles in that individual are ibd. Write this as F ij .

Two alleles drawn from individual j are equally likely to be the

same allele or different alleles:

θijj =
1

2

(

1 + F ij

)

184



Predicted Values: Path Counting

A
↙ ↘

... ...
↘ ↓ ↓ ↙

X Y
↘ ↙

I

Identify the path linking the parents of I to their common an-

cestor(s).
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Path Counting

If the parents X,Y of an individual I have ancestor A in common,

and if there are n individuals (including X,Y, I) in the path linking

the parents through A, then the inbreeding coefficient of I, or

the coancestry of X and Y , is

FI = θXY =

(

1

2

)n
(1 + FA)

If there are several ancestors, this expression is summed over all

the ancestors.
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Average Coancestries

The average over all pairs of distinct individuals, j 6= j′, of the

coancestries θijj′ is written as θiS. The average of this over pop-

ulations is θS. These are probabilities for individuals.

When there is random mating and Hardy-Weinberg equilibrium in

a population, any pair of distinct alleles in a population (within

or between individuals) is equivalent and then the average ibd

probability for all these pairs is written as θiW , where W means

within populations. The average over populations is θW . These

are probabilities for distinct alleles.

The ibd probability for any allele from population i and any allele

from population i′ is θii
′

B , where B means between populations.

Averaging over all pairs of distinct populations gives θB.
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Within-population Inbreeding: FIS

For population i, the inbreeding coefficient for individual j, rela-

tive to the identity of pairs of alleles between individuals in that

population, is

βij =
F ij − θiS

1 − θiS

The average over individuals within this population is the population-

specific F iIS, and it compares within-individual ibd to between-

individual ibd in the same population. It is the quantity being

addressed by Hardy-Weinberg testing in population i.

If the reference set of alleles is for pairs of individuals within

populations, averaged over populations, then the average relative

inbreeding coefficient is βIS = (F I − θS)/(1− θS) where F I is the

average of F ij over individuals j and populations i. It is generally

called FIS.
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Total Inbreeding: FIT

For population i, the inbreeding coefficient for individual j, rela-

tive to the identity of pairs of alleles from different populations

averaged over all pairs of populations, is

βij =
F ij − θB

1 − θB

The average over individuals within this population is the population-

specific F iIT . The average of these over all populations is the

total inbreeding coefficient FIT = (F I − θB)/(1 − θB).
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Within-population Coancestry

For population i, the coancestry of individuals j, j′ relative to the

coancestry for all pairs of individuals in that population is

βijj′ =
θijj′ − θiS

1 − θiS
and these average zero over all pairs of individuals in the popu-

lation.

If the reference set is all pairs of alleles, one from each of two

populations,

βijj′ =
θijj′ − θB

1 − θB

The average βiST over all pairs of individuals in population i is

the population-specific F iST , and averaging this over populations

gives the global FST = (θS − θB)/(1 − θB). It is the ibd proba-

bility between individuals within populations relative to the ibd

probability between populations.
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Genotypic Measues

When individuals are distinguished:

(1 − FIT) = (1 − FIS)(1 − FST)

FIS =
FIT − FST
1 − FST

This classic result also holds for population-specific values

(1 − F iIT) = (1 − F iIS)(1 − F iST)

F iIS =
F iIT − F iST
1 − F iST
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Within-population Allelic Measures

For random union of gametes, when individual structure is not

needed, the ibd probability θiW for any distinct pair of alleles

within population i relative to the ibd probability between popu-

lations is

βiWT =
θiW − θB

1 − θB

This is the population-specific F iST for alleles.

Averaging over populations:

βWT =
θW − θB

1 − θB

and this is the global FST for alleles.
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k-coefficients

The coancestry coefficient is the probability of a pair of alleles

being ibd.

For joint genotypic frequencies, and for a more detailed charac-

terization of relatedness of two non-inbred individuals, we need

the probabilities that they carry 0, 1, or 2 pairs of ibd alleles.

For example: their two maternal alleles may be ibd or not ibd,

and their two paternal alleles may be ibd or not.

The probabilities of two individuals having 0, 1 or 2 pairs of ibd

alleles are written as k0, k1, k2 and θ = 1
2k2 + 1

4k1.
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Parent-Child
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Pr(c ≡ a) = 0.5, Pr(c ≡ b) = 0.5, k1 = 1
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Grandparent-grandchild
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Pr(c ≡ a) = 0.25, Pr(c ≡ b) = 0.25, k1 = 0.5&k0 = 0.5
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Half sibs
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c ≡ e c ≡ f

0.5 b ≡ e 0.25 0.25
0.5 b ≡ f 0.25 0.25

Therefore k1 = 0.5 so k0 = 0.5.

196



Full sibs
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197



First cousins
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Non-inbred Relatives

Relationship k2 k1 k0 θ = 1
2k2 + 1

4k1
Identical twins 1 0 0 1

2

Full sibs 1
4

1
2

1
4

1
4

Parent-child 0 1 0 1
4

Double first cousins 1
16

3
8

9
16

1
8

Half sibs∗ 0 1
2

1
2

1
8

First cousins 0 1
4

3
4

1
16

Unrelated 0 0 1 0
∗ Also grandparent-grandchild and avuncular (e.g. uncle-niece).
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Estimates for Individuals
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Estimation of β’s

Now that the various measures for individuals and populations

are defined, it is straightforward to estimate them from genotypic

or allelic data.

For any allele we set its indicator variable xu to be 1 if that

allele is of type u and to be 0 if it is not of type u. Then the

expected value of xu or of x2u is the allele frequency πu. For any

two distinct alleles, the expected value of the product of their

xu’s is π2
u + πu(1 − πu)θ where θ is the ibd probability for those

two alleles.

We examine pairs of alleles to see whether or not they are the

same type: i.e. they match. When two alleles match, the prod-

uct of their indicators is 1 and the expected value of the propor-

tion of matching pairs depends on θ. We manipulate matching

proportions to give estimates of the θ’s.
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Allelic Matching Proportions for Individuals

For individual j in population i the proportion of its distinct alleles

that match is either 0 or 1. It is convenient to work with allele

dosages Xi
ju for the number of its alleles that are of type u and

write the matching proportion as

M̃ i
j =

1

2

∑

u
Xi
ju(X

i
ju − 1)

For biallelic SNPs, the reference allele dosage is Xi
j (with values

0, 1 or 2) and the matching proportion is (Xi
j − 1)2 - this is still

0 or 1. The expected value over replicates of the population is

E(M̃ i
j) = MT + (1 −MT )F ij

where MT =
∑

u π
2
u is unknown.

We avoid having to know MT by estimating F ij relative to either

pairs of alleles from different individuals (i.e. coancestry) in the

same population, or pairs of alleles from different populations.
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Allelic Matching Proportions for Pairs of Individ-
uals

The proportion of pairs of alleles, one from individual j and

one from j′ in population i that match is 0, 0.5 or 1. These

proportions can be expressed in terms of allele dosages

M̃ i
jj′ =

1

4

∑

u
Xi
juX

i
j′u

For biallelic SNPs, with reference allele dosages Xi
j the matching

proportion is [1 + (Xi
j − 1)(Xi

j′ − 1)]/2 - this is still 0, 0.5 or 1.

The expected value over replicates of the population is

E(M̃ i
jj′) = MT + (1 −MT )θijj′

Averaging over all pairs of individuals, the observed and expected

matching proportion are

M̃ i
S =

1

ni(ni − 1)

ni
∑

j=1

ni
∑

j′ 6=j

M̃ i
jj′ , E(M̃ i

S) = MT + (1 −MT )θiS
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Within-population Inbreeding Estimates

The inbreeding coefficient of an individual can be estimated as its

allelic matching proportion relative to the matching proportion

for pairs of individuals in the same population:

Estimate :β̂ij =
M̃ i
j − M̃ i

S

1 − M̃ i
S

, Parameter :βij =
F ij − θiS

1 − θiS

The estimates may be negative.

Averaging over individuals, with M̃ i
I =

∑ni
j=1 M̃

i
j/ni,

Estimate :β̂iIS = F̂ iIS =
M̃ i
I − M̃ i

S

1 − M̃ i
S

, Parameter :βiI = F iIS =
F iI − θiS
1 − θiS

If there are data from several populations, we may use M̃S as

the average within-population coancestry, averaged over popu-

lations, so that inbreeding is estimated relative to this average.
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Multiple Loci

The unweighted estimators for locus l are of the form

β̂l =
Numeratorl

Denominatorl

There are several ways to combine estimates over loci. Here,

we weight by the denominators: With several loci, these can be

extended to

β̂ =

∑

lNumeratorl
∑

lDenominatorl

and these estimate β if each locus has the same value of the θ’s.

Otherwise they estimate a weighted average of the different θ

values, where the weights are functions of the allele frequencies

at the loci in the sum.
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1000Genomes ACB Chr 22 Inbreeding
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1000Genomes ACB Inbreeding
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Comparison with Simple and Standard Inbreeding
Estimates

For SNPs, omitting population superscripts and adding locus
subscripts,

β̂j =

∑

l(Xjl − 1)2 − M̃Sl

1 − M̃Sl

There is a simple estimate, analogous to the previous MLE f̂
values for within-population inbreeding:

f̂j = 1 − H̃jo

H̃e
where, with sample allele frequencies p̃l =

∑n
j=1Xjl/2n,

H̃jo =
∑

l

Xjl(2 −Xjl) , H̃e =
∑

l

2p̃l(1 − p̃l)

There is an estimate in GCTA, also using p̃

GCTA3j =

∑

l[X
2
jl − (1 + 2p̃l)Xijl + 2p̃2l ]

2
∑

l p̃l(1 − p̃l)
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Maximum-likelihood Inbreeding Estimates

Individual j is either heterozygous or homozygous at SNP l, with

probabilities [2pil(1 − πl)Fj] and [1 − 2pil(1 − πl)Fj]. If SNPs are

independent, the likelihood is

L(F ) =
∏

l

[2πl(1 − πl)Fj]
Xj(2−Xj)[1 − 2πl(1 − πl)Fj]

(Xj−1)2

where Fj is the pedigree-predicted inbreeding coefficient.

If the sample values p̃l are used instead of πl then this leads to an

estimate of the within-population, individual-specific inbreeding

coefficient fj = (Fj − θS)/(1 − θS).

In either case, the likelihood is most easily maximized by a grid

search over valid values of Fj or fj.
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Within-population Coancestry Estimates

The coancestry coefficient of two individuals can be estimated

as their allelic matching proportion relative to the matching pro-

portion for pairs of individuals in the same population:

Estimate :β̂ijj′ =
M̃ i
jj′ − M̃ i

S

1 − M̃ i
S

, Parameter :βijj′ =
θijj′ − θiS

1 − θiS

These estimates have been constructed to have an average value

of zero over pairs of individuals in a population.
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Simulated Data

The sim package was used to construct a base population with

SNPs in linkage blocks of 20 Morgans. A set of 20 founders

was selected for a defined pedigree, and 79,069 SNPs chosen

independently to provide genotypes for 115 descendants in a de-

fined pedigree. Only data for the non-founders were used in the

analyses reported here. There are 17 individuals with inbreeding

coefficient of 0.125, and 98 with inbreeding coefficien of zero,

so FW = 0.0185 for the sample of 115 individuals. For the 6,555

pairs of distinct individuals, the coancestries (and numbers of

pairs with each value) are 0 (6340), 1/32 (1146), 1/16 (2176),

3/32 (786), 1/8 (1398), 5/32 (228), 3/16 (302), 1/4 (584)

and 5/16 (150). The average coancestry θS = 0.0538 is greater

than the average inbreeding,
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Simulated Data Inbreeding Estimates
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Simulated Data Inbreeding Estimates
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Inbreeding Parameters

For a single population:

The β̂j are estimating
Fj−θS
1−θS .

The f̂j are estimating
(Fj−θS)− 1

2n(1+FW−2θS)

(1−θS)− 1
2n(1+FW−2θS)

≈ Fj−θS
1−θS

where FW =
∑n
j=1Fj/n.

The GCTA3j are estimating

[Fj−2ψj+θS− 1
2n(3+4Fj−8ψj−FW+2θS)]

1−θS− 1
2n(1+FW−2θS)

≈ Fj−2ψj+θS
1−θS

where ψj =
∑

j′ 6=j θjj′/(n− 1).
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Comparison with Simple and Standard Coances-
try Estimates

For SNPs, without population superscripts, with locus subscripts:

β̂jj′ =

∑

l{1
2[1 + (Xj − 1)(Xj′ − 1)]− M̃S}

∑

l(1 − M̃S)

There are simple estimates, analogous to the previous MLE f̂

values for within-population inbreeding:

θ̂jj′
Sim.

= 1 −
∑

l(1 − M̃jj′l
)

∑

l 2p̃l(1 − p̃l)

where

M̃jj′l
=

1

2
[1 + (Xjl − 1)(Xj′l

− 1)]

Estimates in GCTA are

GCTAjj′ =

∑

l(Xjl − 2p̃l)(Xj′l − 2p̃l)

4
∑

l p̃l(1 − p̃l)
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1000 Genomes Coancestry Estimates
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Coancestry is relative, not absolute

The β coancestry estimates have been applied to 1000 Genomes

data, and compared to standard estimates, shown on next slide.

For the whole world, all 26 populations, as reference the β es-

timates show a relatively narrow range of values within each

African population (AFR) and lower African values than in the

rest of the world, as expected from our understanding of higher

genetic diversity within African than non-African populations

from the migration history of modern humans. This pattern

was not shown by the GCTA estimates - those estimates showed

higher coancestry among African individuals than among non-

Africans.

The wide plots for the Admixed American populations (AMR)

reflect the admixture within those populations, with greater re-

latedness reflecting more ancestral commonality. When each

continental group is used as a reference, all populations show

low coancestry, except for the admixed AMR.
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Coancestry is relative, not absolute

Top row: Whole world reference. Bottom row: Continental group reference.

Beta estimates GCTA estimates

Chromosome 22 data from 1000 Genomes.

Continents (left to right): AFR, SAS, EUR, EAS, AMR

Populations (l to r):AFR: ACB, ASW, ESN, GWD, LWK, MSL, YRI;
SAS: BEB, GIH, ITU, PJL, STU; EUR: CEU, FIN, GBR, IBS, TSI;
EAS: CDX, CHB, CHS, JPT; AMR: KHV, CLM, MXL, PEL, PUR
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Coancestry Parameters

For a single population:

The β̂jj′ are estimating
θjj′−θS
1−θS .

The θ̂jj′
Sim.

are estimating
θjj′−θS

(1−θS)− 1
2n(1+FW−2θS)

≈ θjj′−θS
1−θS .

The GCTAjj′ are estimating

(θjj′−ψj−ψj′+θS)−1
n

(

1
2(2+Fj+Fj′)−ψj−ψj′−FW+θS

)

(1−θS)− 1
2n(1+FW−2θS)

≈ (θjj′−ψj−ψj′+θS)

1−θS .

where

ψj =
1

n− 1

n
∑

j′=1

j′ 6=j

θjj′ , θS =
1

n

n
∑

j=1

ψj =
1

n(n− 1)

n
∑

j=1

n
∑

j′=1

j 6=j′

θjj′
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Method of Moments for k Coefficients

PLINK (Purcell, S., Neale, B., Todd-Brown, K., Thomas, L.,

Ferreira, M.A.R,Bender, D., Maller, J., Sklar, P., de Bakker,

P.I.W., Daly, M.J., & Sham, P.C. 2007. PLINK: A tool set for

whole-genome association and population-based linkage analy-

ses. American Journal of Human Genetics 81,559–575.) uses

MOM to estimate three IBD coefficients k0, k1, k2 for non-inbred

relatives. Two individuals are scored as being in IBS states 0,1,2.

State : Genotypes Probability

2 : (MM,MM), (mm,mm), (Mm,Mm) (p4M + 4p2Mp
2
m + p4m)k0

+ k1(p3M + pMpm + p3m) + k2

1 : (MM,Mm), (Mm,MM), (mm,Mm), (Mm,mm) 4pMpm(p2M + p2m)k0 + 2pMpmk1

0 : (MM,mm), (mm,MM) 2p2Mp
2
mk0
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MOM Approach: k0

Count the number of loci in IBS state i; i = 0,1,2. These num-

bers are N0, N1, N2. The previous table gives the probabilities of

IBS state i given IBD state j. From

Pr(IBS = 0) = Pr(IBS = 0|IBD = 0)Pr(IBD = 0)

sum over loci l to get

N0 =
∑

l

2p2l (1 − pl)
2 Pr(IBD = 0)

This gives a moment estimate

Pr(IBD = 0) =
N0

∑

l 2p
2
l (1 − pl)

2
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MOM Approach: k1

From

Pr(IBS = 1) = Pr(IBS = 1|IBD = 0)Pr(IBD = 0)

+ Pr(IBS = 1|IBD = 1)Pr(IBD = 1)

sum over loci to get

N1 = Pr(IBD = 0)
∑

l

4pl(1 − pl)[p
2
l + (1 − pl)

2]

+ Pr(IBD = 1)
∑

l

2pl(1 − pl)

but we already have an estimate of Pr(IBD = 0). Therefore

Pr(IBD = 1) =
N1 −∑

l 4pl(1 − pl)[p
2
l + (1 − pl)

2] Pr(IBD = 0)
∑

l 2pl(1 − pl)
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MOM Approach: k2

Having estimated k0 and k1, find k̂2 as 1 − k̂0 − k̂1.

Could then estimate θ as k̂2/2 + k̂1/4 or could go to a direct

estimate.

These k-estimates assume a lack of inbreeding, which is unlikely

in a population with relatedness, and they use sample allele fre-

quencies in place of allele probabilities.
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PLINK Example
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Estimates for Populations
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Matching Proportions for Populations

Population-structure measures are estimated by comparing within-

population allelic matching proportions to those between popu-

lations.

When genotypic data are available, the between-individual within-

population matching proportions use the averages over all pairs

of individuals within the population, from above, is

M̃ i
S =

1

4ni(ni − 1)

∑

u

ni
∑

j=1

ni
∑

j′ 6=j

Xi
juX

i
j′u

and the average over pairs of populations of between-population

matching proportions is

M̃B =
1

r(r − 1)

∑

u

r
∑

i=1

r
∑

i′ 6=i

p̃iup̃i′u
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Genotype-based FST Estimates

The within- and between-population matching proportions for

genotypic data set have expectations

E(M̃ i
S) = MT + (1 −MT )θiS

E(M̃B) = MT + (1 −MT )θB

so the population-specific, genotype-based, FST estimate is

β̂iST = F̂ iST =
M̃ i
S − M̃B

1 − M̃B

Averaging over populations, the genotype-based global FST pa-

rameter is

β̂ST = F̂ST =
M̃S − M̃B

1 − M̃B
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SNP-genotype-based FST Estimates

For SNPs, with allele dosages X:

M̃ i
S =

1

2ni(ni − 1)

ni
∑

j=1

ni
∑

j′ 6=j

[1 + (Xi
j − 1)(Xi

j′ − 1)]

M̃B =
1

r(r − 1)

r
∑

i=1

r
∑

i′ 6=i

[p̃ip̃i′ + (1 − p̃i)(1 − p̃i′)]
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Allele-based Matching Proportions within Popu-
lations

When the genotypic structure of data is ignored, or not known,

allelic data can be used to estimate FST .

If alleles from ni individuals are observed for population i, the ob-

served matching proportion of allele pairs within this population

is

M̃ i
W =

1

2ni(2ni − 1)

∑

u

2ni
∑

j=1

2ni
∑

j′ 6=j

xjuxj′u

=
2ni

2ni − 1

∑

u
p̃2iu − 1

2ni − 1

where p̃iu is the sample frequency for allele u for this population.

The expected value of this over replicates of the population is

E(M̃ i
W ) = MT + (1 −MT )θiW

where MT =
∑

u π
2
u.
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Allele-based Matching Proportions between Pop-
ulations

The observed proportion of matching allele pairs between popu-

lations i and i′ is

M̃ ii′
B =

1

4nini′

∑

u

2ni
∑

j=1

2ni′
∑

j′=1

xjuxj′u

=
∑

u
p̃iup̃i′u

The expected value of this over replicates of the population is

E(M̃ ii′
B ) = MT + (1 −MT )θii

′
B

and, averaging over all pairs of populations

E(M̃B) = MT + (1 −MT )θB
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Allele-based Estimate of FST

We avoid having to know MT by considering allele-pair matching

within a population relative to the allele-pair matching between

pairs of populations:

β̂iWT = F̂ iST =
M̃ i
W − M̃B

1 − M̃B

and this has expected value F iWT = (θiW − θB)/(1 − θB) which is

the population-specific value.

Average over populations:

F̂WT = β̂WT =
M̃W − M̃B

1 − M̃B

and the parametric global value FWT = (θW − θB)/(1 − θB).
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Simple Computing Equations for FST

For large sample sizes and r populations:

M̃ i
W ≈

∑

u
p̃2iu

M̃W =
1

r

r
∑

i=1

M̃ i
W =

∑

u
p̄2u +

r − 1

r

∑

u
s2u

where p̄u =
∑r
i=1 p̃iu/r is the mean allele frequency over popula-

tions, and s2u =
∑r
i=1(p̃iu − p̄u)2/(r − 1) is the variance of allele

frequencies over populations.

For all sample sizes:

M̃ ii′
B =

∑

u
p̃iup̃i′u

M̃B =
1

r(r − 1)

r
∑

i=1

r
∑

i′ 6=i

M̃ ii′
B =

∑

u
p̄2u − 1

r

∑

u
s2u
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Simple Allele-based Estimates for FST

The allele-based population-specific estimates are

F̂ iWT =

∑

u[(p̃
2
iu − p̄2u) + s2u]

∑

u[p̄u(1 − p̄u) + 1
rs

2
u]

The corresponding global parameters are

F̂WT =

∑

u s
2
u

∑

u[p̄u(1 − p̄u) + 1
rs

2
u]
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SNP-allele-based Estimates for FST

For SNPs with two alleles, write p̃i for the reference allele sample

frequency for population i. In this case,
∑

u p̄u(1− p̄u) = 2p̄(1− p̄)
where p̄ =

∑r
i=1 p̃i/r, and

∑

u s
2
u = 2s2 where s2 =

∑r
i=1(p̃ −

p̄)2/(r − 1).

The population-specific estimates are

F̂ iWT =
p̃2i − p̄2 + s2

p̄(1 − p̄) + 1
rs

2

The global estimates are

F̂WT =
s2

p̄(1 − p̄) + 1
rs

2
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SNP-allele-based Estimates of FST for Two Pop-
ulations

For SNP studies with two populations, with reference allele sam-

ple frequencies p̃1, p̃2, p̄ = (p̃1 + p̃2)/2 and s2 = (p̃1 − p̃2)
2/2.

The population-specific estimates are

β̂1
WT = F̂1

WT =
(p̃1 − p̃2)(2p̃1 − 1)

p̃1(1 − p̃2) + p̃2(1 − p̃1)

β̂2
WT = F̂2

WT =
(p̃2 − p̃1)(2p̃2 − 1)

p̃1(1 − p̃2) + p̃2(1 − p̃1)

One of these two may be negative.

The global estimate is

β̂WT = F̂WT =
(p̃1 − p̃2)

2

p̃1(1 − p̃2) + p̃2(1 − p̃1)

This must be positive.
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Effect of Number of Loci
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Worldwide Autosomal-STR Survey

Buckleton et al, Forensic Sci Int, 2016 compiled a survey of 250

published papers showing allele frequencies at 24 forensic STR

markers from 446 populations in 8 ancestral groups. Represents

data from 494,473 individuals.

The ancestral groups were identified by a combination of clus-

tering and geographic criteria.

Moment estimates were obtained for each locus l in each popu-

lation i from

β̂iWTl
=

M̃ i
WTl

− M̃B
l

1 − M̃B
l

The “T” may refer to the group of populations with the same

continental ancestry, or it may refer to the entire set of popula-

tions.
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STR Survey: β̂ Values for Groups and Loci

Geographic Region
Locus Africa AusAb Asian Cauc Hisp IndPK NatAm Poly Aver.
CSF1PO 0.003 0.002 0.008 0.008 0.002 0.007 0.055 0.026 0.011
D1S1656 0.000 0.000 0.000 0.002 0.003 0.000 0.000 0.000 0.011
D2S441 0.000 0.000 0.002 0.003 0.021 0.000 0.000 0.000 0.020
D2S1338 0.009 0.004 0.011 0.017 0.013 0.003 0.023 0.005 0.031
D3S1358 0.004 0.010 0.009 0.006 0.012 0.040 0.079 0.001 0.025
D5S818 0.002 0.013 0.009 0.008 0.014 0.018 0.044 0.007 0.029
D6S1043 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016
D7S820 0.004 0.021 0.010 0.007 0.007 0.046 0.030 0.005 0.026
D8S1179 0.003 0.007 0.012 0.006 0.002 0.031 0.020 0.008 0.019
D10S1248 0.000 0.000 0.000 0.002 0.004 0.000 0.000 0.000 0.007
D12S391 0.000 0.000 0.000 0.003 0.020 0.000 0.000 0.000 0.010
D13S317 0.015 0.016 0.013 0.008 0.014 0.025 0.050 0.014 0.038
D16S539 0.007 0.002 0.015 0.006 0.009 0.005 0.048 0.004 0.021
D18S51 0.011 0.012 0.014 0.006 0.004 0.010 0.033 0.003 0.018
D19S433 0.009 0.001 0.009 0.010 0.014 0.000 0.022 0.014 0.023
D21S11 0.014 0.012 0.013 0.007 0.006 0.023 0.067 0.018 0.021
D22S1045 0.000 0.000 0.007 0.001 0.000 0.000 0.000 0.000 0.015
FGA 0.002 0.009 0.012 0.004 0.007 0.016 0.021 0.006 0.013
PENTAD 0.008 0.000 0.012 0.012 0.002 0.017 0.000 0.000 0.022
PENTAE 0.002 0.000 0.017 0.006 0.003 0.012 0.000 0.000 0.020
SE33 0.000 0.000 0.012 0.001 0.000 0.000 0.000 0.000 0.004
TH01 0.022 0.001 0.022 0.016 0.018 0.014 0.071 0.017 0.071
TPOX 0.019 0.087 0.016 0.011 0.007 0.018 0.064 0.031 0.035
VWA 0.009 0.007 0.017 0.007 0.012 0.022 0.028 0.005 0.023
All Loci 0.006 0.014 0.010 0.007 0.008 0.018 0.043 0.011 0.022
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Population-specific STR Estimates

Each vertical line represents one population. The length of the

line is the 95% confidence interval obtained by bootstrapping

over loci.
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FST is relative, not absolute

The white box plot is for within-population matching compared
to average matching among all pairs of populations. The grey

box plot is for within-population matching compared to average

matching among all pairs of populations in the same region.
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FST is relative, not absolute

Using data from the 1000 genomes, using 1,097,199 SNPs on

chromosome 22.

For the samples originating from Africa, there is a larger FWT ,

β̂WT = 0.013, with Africa as a reference set than there is, β̂WT =

−0.099, with the world as a reference set. African populations

tend to be more different from each other on average than do

any two populations in the world on average.

The opposite was found for East Asian populations: there is a

smaller FWT , β̂WT = 0.013 with East Asia as a reference set

than there is, β̂WT = 0.225 with the world as a reference set.

East Asian populations are more similar to each other than are

any pair of populations in the world.
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NP FST ’s are relative, not absolute

Blue box: Population relative to pairs of populations in same

continent.

Red box: Population relative to pairs of populations in whole

world.
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β̂WT in LCT Region: 3 Populations
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β̂WT in LCT Region: 11 Populations
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MKK Population

“The Maasai are a pastoral people in Kenya and Tanzania, whose

traditional diet of milk, blood and meat is rich in lactose, fat

and cholesterol. In spite of this, they have low levels of blood

cholesterol, and seldom suffer from gallstones or cardiac diseases.

Analysis of HapMap 3 data using Fixation Index (Fst) identified

genomic regions and single nucleotide polymorphisms (SNPs)

as strong candidates for recent selection for lactase persistence

and cholesterol regulation in 143156 founder individuals from the

Maasai population in Kinyawa, Kenya (MKK). The strongest

signal identified by all three metrics was a 1.7 Mb region on

Chr2q21. This region contains the gene LCT (Lactase) involved

in lactase persistence.”

Wagh et al., PLoS One 7: e44751, 2012
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Weir & Cockerham 1984 Model

W&C assumed all populations have equal evolutionary histories

(θi = θ, all i) and are independent (θii
′
= 0, all i′ 6= i), and

they worked with overall allele frequencies that were weighted by

sample sizes

p̄u =
1

∑

i ni

∑

i

nip̃iu

If θ = 0, these weighted means have minimum variance.
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Weir & Cockerham 1984 Model

Two mean squares were constructed for each allele:

MSBu =
1

r − 1

r
∑

i=1

ni(p̃iu − p̄u)
2

MSWu =
1

∑

i(ni − 1)

∑

i

nip̃iu(1 − p̃iu)

These have expected values

E(MSBu) = pu(1 − pu)[(1 − θ) + ncθ]

E(MSWu) = pu(1 − pu)(1 − θ)

where nc = (
∑

i ni−
∑

i n
2
i /
∑

i ni)/(r−1). The Weir & Cockerham

weighted allele-based estimator of θ (or FST) is

θ̂WC =

∑

u(MSBu −MSWu)

MSBu + (nc − 1)MSWu
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Weir & Cockerham 1984 Estimator

Under the β approach described here, the Weir and Cockerham

estimator has expectation

E(θ̂WC) =
θWc − θBc +Q

1 − θBc +Q
instead of

θW − θB

1 − θB

where

θWc =

∑

i n
c
iθ
i

∑

i n
c
i

, θBc =

∑

i 6=i′ nini′θ
ii′

∑

i 6=i′ nini′

nci = ni −
n2
i

∑

i ni
, nc =

1

r − 1

∑

i

nci

Q =
1

(r − 1)nc

∑

i

(

ni
n̄

− 1

)

θi

If the Weir and Cockerham model holds (θi = θ), or if ni = n, or

if nc is large, then Q = 0.
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WC84 vs Beta Allele-based Estimators
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FWT estimates for HapMap III, using all 87,592 SNPs on chromosome 1.

(Bhatia et al, 2013, Genome Research 23:1514-1521.)
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WC vs Unweighted Estimator
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FWT estimates for HapMap III, using the 42,463 SNPs on chromosome 1

that have at least five copies of the minor allele in samples from all 11

populations.

(Bhatia et al, 2013, Genome Research 23:1514-1521.)
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“RELPAIR” calculations

This approach compares the probabilities of two genotypes un-

der alternative hypotheses; H0: the individuals have a specified

relationship, versus H1: the individuals are unrelated. The alter-

native is that k0 = 1, k1 = k2 = 0 so the likelihood ratios for the

two hypotheses are:

LR(MM,MM) = k0 + k1/pM + k2/p
2
M

LR(mm,mm) = k0 + k1/pm + k2/p
2
m

LR(Mm,Mm) = k0 + k1/(4pMpm) + k2/(2pMpm)

LR(MM,Mm) = k0 + k1/(2pM)

LR(mm,Mm) = k0 + k1/(2pm)

LR(MM,mm) = k0
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Testing relationship

Hypotheses about alternative pairs of relationships may be tested

with likelihood ratio test statistics. These ratios are the prob-

ability of the observed pair of genotypes under one hypothesis

divided by the probability under the alternative hypothesis. These

ratios are multiplied over (independent) loci.

Each hypothesis is described by a set of k’s and there are three

hypotheses likely to be of interest:

1. individuals are unrelated (k0 = 1)

2. individuals have a specified (or annotated) relationship (k’s

specified)

or 3. individuals are related to an extent measured by the esti-

mated k’s.
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