MCMC I Practical session: Chain binomial model I: Gibbs sampler

Background

In this computer lab, we apply Gibbs sampling to incompletely observed data in a chain binomial model. The observations are based on outbreaks of measles in Rhode Island during the years 1929-1934 [1]. We restrict the analysis to families with 3 susceptible individuals at the onset of the outbreak. This example is based on references [1]-[4].

We assume that there is a single index case that introduces infection to the family. Thus, possible epidemic chains are $1,1 \rightarrow 1,1 \rightarrow 1 \rightarrow 1$ and $1 \rightarrow 2$. Denote the probability for a susceptible to escape infection when exposed to one infective in the family by q (and $p=1-q$). The following table lists chain probabilities, with the actually observed frequencies of the size of epidemic:

chain	prob.	frequency	observed frequency
1	q^{2}	n_{1}	34
$1 \rightarrow 1$	$2 q^{2} p$	n_{11}	25
$1 \rightarrow 1 \rightarrow 1$	$2 q p^{2}$	n_{111}	not observed
$1 \rightarrow 2$			p^{2}

In this exercise, we assume that frequencies n_{111} and n_{12} have not been observed. Only their $\operatorname{sum} N_{3}=n_{111}+n_{12}=275$ is known.

The estimation problem concerns the escape probability q, so that there is basically only one unknown parameter in the model. However, the fact that not all frequencies have been observed creates a computational problem that can be solved by Bayesian data augmentation and Gibbs sampling [2].

Marginal likelihood. The joint probability of the complete data ($n_{1}, n_{11}, N_{3}, n_{111}$) is proportional to a multinomial probability:

$$
\begin{align*}
f\left(n_{1}, n_{11}, N_{3}, n_{111} \mid q\right) & =\left(q^{2}\right)^{n_{1}}\left(2 q^{2} p\right)^{n_{11}}\left(2 q p^{2}\right)^{n_{111}}\left(p^{2}\right)^{N_{3}-n_{111}} \\
& =\mathrm{constant} \times q^{2 n_{1}+2 n_{11}+n_{111}} p^{n_{11}+2 N_{3}} \tag{1}
\end{align*}
$$

The marginal likelihood $f\left(n_{1}, n_{11}, N_{3} \mid q\right)$ would be obtained by summing up expressions (1) with n_{111} running from 0 to N_{3}.

The Bayesian approach. Instead of using the marginal likelihood, we will treat frequency n_{111} as a model unknown in addition to parameter q. The joint distribution of the observations
(n_{1}, n_{11}, N_{3}) and the model unknowns $\left(n_{111}, q\right)$ is

$$
\begin{equation*}
f\left(n_{1}, n_{11}, N_{3}, n_{111}, q\right)=f\left(n_{1}, n_{11}, N_{3}, n_{111} \mid q\right) f(q) . \tag{2}
\end{equation*}
$$

The first term in is the complete data likelihood (see (1)), based on the augmented data (i.e. the data are augmented with the unknown frequency n_{111}).

The second term is the prior density of probability q. We choose a Beta prior for parameter q : $q \sim \operatorname{Beta}(\alpha, \beta)$ so that $f(q) \propto q^{\alpha-1}(1-q)^{\beta-1}$. With the choice $\alpha=\beta=1$, this is uniform prior on $[0,1]$.

The joint posterior distribution of the model unknowns is $f\left(q, n_{111} \mid n_{1}, n_{11}, N_{3}\right)$.
Gibbs sampling. In the lecture we demonstrated that the joint posterior distribution of the model unknowns n_{111} and q can be investigated by Gibbs sampling. This means making a numerical sample from the posterior distribution by drawing samples of n_{111} and q in turn from their full conditional posterior distributions:

$$
f\left(q \mid n_{1}, n_{11}, N_{3}, n_{111}\right) \quad \text { and } \quad f\left(n_{111} \mid n_{1}, n_{11}, N_{3}, q\right) .
$$

These were found to be

$$
\begin{equation*}
q \mid n_{1}, n_{11}, N_{3}, n_{111} \sim \operatorname{Beta}\left(2 n_{1}+2 n_{11}+n_{111}+\alpha, n_{11}+2 N_{3}+\beta\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{111} \mid n_{1}, n_{11}, N_{3}, q \sim \operatorname{Binomial}\left(N_{3}, 2 q /(2 q+1)\right) . \tag{4}
\end{equation*}
$$

Exercises

1. Gibbs sampling. The R program (chainGibbs_reduced.R) contains a function chainGibbs (mcmc.size, α, β) that draws samples from the joint posterior distribution of q and n_{111}. The function has this particular data set "hardwired" within the program. Starting with the initial values $\left(q^{(1)}, n_{111}^{(1)}\right)=(0.5,275 *(2 * 0.5) /(2 * 0.5+1))$, it iterates between sampling

$$
\begin{aligned}
& q^{(i)} \mid n_{1}, n_{11}, N_{3}, n_{111}^{(i-1)} \quad \text { and } \\
& n_{111}^{(i)} \mid n_{1}, n_{11}, N_{3}, q^{(i)}, i=2, \ldots, \text { mcmc.size. }
\end{aligned}
$$

This creates a sample $\left(q^{(i)}, n_{111}^{(i)}\right), i=1, \ldots, m c m c . s i z e$.
Your task is to complete the Gibbs sampler by programming the two lines of code that draw samples in turn from the full conditional distributions (3) and (4).

2. Writing a more general Gibbs sampler function

(a) You might like to write a function mychainGibbs($\mathrm{n} 1, \mathrm{n} 11, \mathrm{~N} 3, \mathrm{mcmc} . \operatorname{size}, \alpha, \beta$) that allows you to do inference on other data sets with observed $\left(n_{1}, n_{11}, N_{3}\right)$.
(b) If you write such a function, try altering the value of N_{3}. How do larger and smaller values of N_{3} alter the posterior distribution of q ?
3. Sensitivity to the choice of prior. Assess how the choice of the prior distribution affects estimation of the escape probability. Use the $\operatorname{Beta}(\alpha, \beta)$ prior with different values of α and β. Note that both parameters can be given as input to the function chainGibbs (mcmc.size, α, β) in chainGibbs.R.
4. Write your own Gibbs sampler: Alternatively to chainGibbs.R, you might like to try writing your own Gibbs sampler for the chain binomial problem. Assume you will run mcmc.size iterations.
(a) Reserve space for the mcmc.size-vector of q and n_{111} values.
(b) Initialize the model unknowns q[1] and n111[1] (round the n111[1])
(c) Enter the data n1, n11, N3
(d) Draw the MCMC samples 2:mcmc.size using the rbeta() and rbinom() functions

Posterior inferences. By discarding a number of "burn-in" samples, you can use the rest of the numerical sample to explore the posterior of escape probability q. It is enough to discard a few hundred first samples, say 500, in this simple model.
(a) Make a histogram of the samples 501:mcmc.size of q and n 111 .
(b) Use the summary () function to get summaries the samples 501:mcmc.size of q and $n 111$.

Now you can convert the program to a function similar to the function in the file chainGibbs.R chainGibbs(mcmc.size, α, β).

References:

[1] Bailey T.J.N. "The Mathematical Theory of Infectious Diseases", Charles Griffiths and Company, London 1975.
[2] O'Neill P. and Roberts G. "Bayesian inference for partially observed stochastic processes", Journal of the Royal Statistical Society, Series A, 162, 121-129 (1999).
[3] Becker N. Analysis of infectious disease data. Chapman and Hall, New York 1989.
[4] O'Neill P. A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods. Mathematical Biosciences 2002; 180:103-114.

