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Abstract
Background/Aims: Response adaptive randomization has many polarizing properties in two-arm settings comparing
control to a single treatment. The generalization of these features to the multiple arm setting has been less explored,
and existing comparisons in the literature reach disparate conclusions. We investigate several generalizations of two-
arm response adaptive randomization methods relating to control allocation in multiple arm trials, exploring how cri-
tiques of response adaptive randomization generalize to the multiple arm setting.
Methods: We perform a simulation study to investigate multiple control allocation schemes within response adaptive
randomization, comparing the designs on metrics such as power, arm selection, mean square error, and the treatment
of patients within the trial.
Results: The results indicate that the generalization of two-arm response adaptive randomization concerns is variable and
depends on the form of control allocation employed. The concerns are amplified when control allocation may be reduced
over the course of the trial but are mitigated in the methods considered when control allocation is maintained or increased
during the trial. In our chosen example, we find minimal advantage to increasing, as opposed to maintaining, control alloca-
tion; however, this result reflects an extremely limited exploration of methods for increasing control allocation.
Conclusion: Selection of control allocation in multiple arm response adaptive randomization has a large effect on the
performance of the design. Some disparate comparisons of response adaptive randomization to alternative paradigms
may be partially explained by these results. In future comparisons, control allocation for multiple arm response adaptive
randomization should be chosen to keep in mind the appropriate match between control allocation in response adaptive
randomization and the metric or metrics of interest.
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Background/Aims

Multiple arm clinical studies allow the investigation of
multiple therapies within a single trial, sharing logistical
and patient resources in evaluating therapies.1 In addi-
tion to operational and statistical gains resulting from a
shared control arm, further efficiencies can be achieved
by reducing or eliminating allocation to poorly per-
forming experimental arms during the trial. This has
been implemented through strategies such as arm drop-
ping,2 multi-arm multi-stage designs,3 or response
adaptive randomization.4,5

The latter of these methodologies, response adaptive
randomization (RAR), is highly controversial on both
statistical and ethical grounds. For two-arm trials, with
a single control and single treatment under comparison,

RAR performs poorly on a variety of metrics. RAR
has been shown to have reduced power6,7 relative to
fixed allocation, reflecting the theoretical result that 1:1
randomization is optimal for power and RAR deviates
from that ratio. Thall et al.6 show that for a specific
implementation of RAR, where adaptive allocation is
begun very early in a trial, severely biased estimates
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and a meaningful probability of excessive allocation to
an inferior arm may occur. While there are specific
instances where RAR has optimality properties,8 typi-
cally these require a short patient horizon, meaning
that a sizable proportion of the total population under
consideration is treated within the clinical trial itself.9

Ethically, RAR has the appealing property of treating
more patients in the trial on better performing arms
and therefore increasing the expected number of desir-
able outcomes for patients within a trial,6,8 but RAR
has also been criticized from an ethical standpoint.10,11

Hey and Kimmelman10 argue against the ethics of
RAR on a number of fronts, including (1) the reduction
of power in the two-arm setting represents an ethical
harm by increasing the cost of research, (2) the com-
plexity of the trial design can complicate the validity of
informed consent if patients are unable to understand
the trial conduct, (3) equipoise may be violated by allo-
cating any number of patients to arms with meaningful
but not conclusive evidence of being inferior, and (4)
the disadvantage to patients enrolling early in a study
compared to patients enrolling late when there is a
higher probability of receiving a better performing arm.
While some of these concerns apply generally to all
adaptive designs, others such as the concern about
equipoise are specific to RAR and have been raised in
practice by Buyse et al.12 in response to the use of RAR
in the ISPY2 trial.13

RAR has been employed in settings with control
and multiple treatment arms,4,14–17 including large-
scale platform trials.18 Given this usage, it is imperative
to understand the degree to which criticisms of RAR in
the two-arm setting generalize to the multiple arm set-
ting. Comparisons and explorations in this area have
been highly varied, with results showing adequate per-
formance of RAR2,19,20 in comparison to multi-arm
multi-stage designs and arm dropping (Friedlin and
Korn2 and Trippa et al.4 have an additional aspect of
their debate involving the operational complexity of
arm dropping versus RAR) while others such as
Wathen and Thall21 show RAR underperforming in
the multiple arm setting in a similar manner to the two-
arm setting.

RAR represents a large class of designs, and varying
factors such as the aggressiveness and timing of adapta-
tion have been shown to have a significant impact on
RAR performance.22 Comparisons between classes of
designs should be premised on comparing exemplars of
each class optimized to perform on the metrics of inter-
est. Control allocation represents a particularly inter-
esting feature in the generalization of two-arm RAR
results to multiple arms, as many deficiencies of two-
arm RAR, such as the loss of power, may be traced to
the reduction of control allocation over the course of
the trial. In contrast, the multiple arm setting allows
for the possibility of maintaining or even increasing
control allocation over the course of the trial while

employing RAR on the active arms, increasing the
sample size on both the control and best arm relative
to fixed allocation.

Our primary aim is to systematically compare differ-
ent control allocations in a multiple arm RAR setting
and explore the degree to which critiques of RAR in the
two-arm setting generalize according to control alloca-
tion in the multiple arm setting. We also aim to explore
the degree to which differing allocations to control may
explain the differing results reported in comparisons
between RAR and alternative paradigms (fixed designs,
arm dropping, multiple arm multiple stage designs, etc.)
as well as to suggest more optimal representatives of
RAR for future comparisons.

We focus on statistical aspects of multiple arm RAR
in this article, in particular power, which is reduced for
two-arm RAR, and estimation of treatment effects as a
risk of significant biases has been observed in some var-
iants of two-arm RAR. We additionally consider arm
selection. Arm selection is moot for two-arm trials but
is a significant issue for multiple arm trials with the goal
of identifying the best experimental arm. We do not
focus on the ethical objections to RAR described above
except to the degree that increased efficiency (higher
power, a better estimation of treatment effects) in clini-
cal trials itself represents an ethical gain by reducing the
societal and patient burden of clinical trials. London23

presents a potential counterargument to the equipoise
concerns10,12 by focusing on a societal representation of
equipoise, arguing potentially unequal randomization
is ethical for any arm for which a reputable clinical sub-
community would recommend that arm in practice.

We conduct this exploration with a simulation
exploring multiple variants of RAR within a multiple
arm trial with a dichotomous primary endpoint. In the
‘‘Methods’’ section, we describe the hypothetical trial,
metrics for comparison, scenarios used in the simula-
tion, and eight different control allocation schemes. We
then describe results and provide conclusions and dis-
cussion in the following sections.

Methods

Clinical setting and modeling

We consider an experiment with control (t = 0) and
three active treatment arms (t = 1,2,3) in a dichoto-
mous setting. Let Yi be the indicator of response for the
ith patient with distribution

Yijt;Bernoulli ptð Þ

where pt is the underlying response rate for arm t.
Define the log-odds of pt

log
pt

1� pt

� �
= ut
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In what follows inference is based on independent
normal priors on each arm

ut;N 0, 1:822
� �

for t= 0, 1, 2, 3

These priors are roughly uniform when transformed
back to pt and thus minimally informative. The effective
sample size of this prior distribution is approximately
two patients’ worth of information. The trial is consid-
ered successful at the final analysis if there is a high pos-
terior probability that at least one arm has a higher rate
than control

maxt Pr pt.p0ð Þ.d

where d is a threshold chosen to maintain familywise
type I error for the study at one-sided 2.5%.

Metrics

We employ five metrics to characterize the performance
of RAR. Three of these are standard statistical mea-
sures, including power, mean square error, and accu-
racy of arm selection. We also consider the number of
responders within the trial. These metrics cover proble-
matic areas for two-arm RAR designs, power, and esti-
mation,6,7 as well as an area where RAR in the two-
arm setting typically generates an improvement over
fixed allocation, the number of responders in the
trial.6,8,9 Finally, we introduce a combined power/arm
selection metric described below that captures the
expected response rate for patients treated after the
trial is complete. This measure, quantifying the benefit
to the broader patient population, is a complement to
the expected number of responders within the trial. We
present the mean and, where applicable, the cumulative
distribution function of each of these metrics.

In detail, our five metrics are as follows:

1. Power: the probability of meeting the trial success
condition.

2. Arm selection: the probability of choosing each
arm as the best arm. If no experimental arm meets
the criteria for declaring superiority to control, the
control arm is viewed as the selected arm (as the
trial may be unlikely to change clinical practice).

3. Mean square error: if an experimental arm is
selected, we also produce estimates (posterior
means) of the responder rate for that arm as well
as the treatment effect for that arm compared to
control. These estimates are relevant to payers, reg-
ulators, and anyone conducting future trials with
the selected arm. Formally, we compute the mean
square error of the selected arm rate E½(p̂t0 � pt0 )

2�
and the mean square error of the selected arm’s
treatment effect E½f(p̂t0 � p̂0)� (pt0 � p0)g2� where
t# is the selected arm.

4. Expected number of responders in the trial— a
random number of responders are observed in
each trial. We compute the expected value of this
quantity, the average number of responders aver-
aged over trials. This is a function of the number
of patients on the arms with the highest true rates.
Formally, we compute E½

P
i Yi�.

5. Ideal design percentage—a combination of arm
selection and power. Let pt be the probability arm
t is selected (t = 0,1,2, or 3 as defined in the arm
selection metric). The expected responder rate for
the external patient population (outside the trial) is

Expected Rate=
X3

t= 0

ptptf g

In the worst design possible, we always pick the arm
with the lowest response rate. In the ideal design
(impossible in practice), we would always pick the arm
with the highest response rate. The expected rate is
somewhere between the lowest true responder rate and
the highest true responder rate. The ideal design per-
centage measure is

IdealDesignPercentage=100�
ExpectedRate�MinTrueRateð Þ=
MaxTrueRate�MinTrueRateð Þ

This metric quantifies where the design performance
falls in the range from worst possible to best possible,
combining arm selection and power and naturally mea-
sures the degree of any incorrect arm selections. For
example, choosing the second-best arm when that arm
is 1% worse than the best is different than choosing the
second-best arm when that arm is 10% worse than the
best. The ideal design percentage incorporates these dif-
ferences in the expected value.

The relative value of these metrics within each spe-
cific trial must be considered in determining a design
choice. Designs best for an external patient population
may provide less benefit to patients within the trial,
and vice versa. We consider power, arm selection, and
ideal design percentage as measures meaningful to the
broader patient population and the number of respon-
ders as the measure meaningful to the patients in the
trial.

Scenarios

Table 1 shows the four clinical scenarios investigated.
The null scenario is used to control type I error, with
the remaining scenarios representing various degrees of
effectiveness and varying numbers of effective arms.
Note the order of the experimental arms is unimpor-
tant. The experimental arm labels can be interchanged
with no change in design performance.
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Designs

We consider eight designs, each with a total sample size
of N = 228. This sample size was chosen to achieve
approximately 80% power in the nugget scenario using
equal randomization and a Bonferroni correction for
multiplicities. Our first three designs employ fixed allo-
cation in three ratios:

1. F25: an equal randomization design (1:1:1:1 allo-
cation in blocks of 4), thus allocating 25% of the
patients to control.

2. F40: a trial randomizing 2:1:1:1 in blocks of size 5,
allocating 40% of the patients to control.

3. F50: a trial randomizing 3:1:1:1 in blocks of size 6,
allocating 50% of patients to control.

Our remaining designs all employ RAR with some
common elements. All have interims occurring at
N = 40, 80, 120, 160, and 200 patients. We employ a
burn-in of 10 patients per arm for the first 40 patients.
After each interim analysis, the randomization prob-
abilities for the experimental arms are set to be propor-
tional to the probability that each experimental arm
has the maximal responder rate, Prt(Max) = Pr(pt =
maxi pi).

21 If an allocation probability for an active
arm is below 10%, we truncate that allocation to zero
and renormalize the remaining probabilities, resulting
in temporary arm dropping.

We vary control allocation within RAR, investigat-
ing three designs with constant control allocation,14 a
design which potentially reduces allocation to control
throughout the trial,21 and one design which potentially
increases control allocation throughout the trial, simi-
lar to Trippa et al.4

4. R25: 25% of patients on control using blocks of
size 4 with 1 control per block, and the remainder,
after burn-in, allocated in proportion to Prt(Max)
among the experimental arms.

5. R40: 40% of patients on control using blocks of
size 5 with two controls per block.

6. R50: 50% of patients on control using blocks of
size 6 with three controls per block.

7. RAdjCtrl: in this design, control allocation can
increase or decrease (potentially to zero with
thresholding) throughout the trial. All arms,

including control, are allocated in proportion to
their probability of being the maximal arm. This is
analogous to an approach evaluated by Wathen
and Thall.21

8. RMatch—define Vt = Prt(Max). Allocation to
control is determined by computing

V0 = min
X3

t= 1

Vt
nt + 1ð Þ
n0 + 1ð Þ ,max V1,V2,V3ð Þ

( )

and then renormalizing V0, V1, V2, V3 to sum to 1.
Primarily this rule simply allocates the control in pro-
portion to the best arm, setting V0 = max(V1, V2, V3)
and renormalizing. This quantity is directly focused on
Prt(Max) as opposed to Pr(pt . p0) as in the article by
Trippa et al.,4 which is similar in spirit. In addition, the
first term in the minimization allows for the possibility
that an arm with lower enrollment may become the
arm with the highest Vt, in which case that arm is given
higher allocation than control. In the extreme, suppose
we had N = 100 on control, N = 20 on arms 1 and 2,
and N = 100 on arm 3, with V1 = 0.1, V2 = 0.8,
V3 = 0.1. Arm 2 now has high probability of being the
best arm, but the control allocation already signifi-
cantly exceeds arm 2. Here V0 = 0.287 and
V2 = 0.800, allowing arm 2 to catch up to control
from its current limited enrollment.

Results

Type 1 error control

To ensure comparability among designs, type 1 error
was controlled by simulating 100,000 trials in the null
scenario for each design and choosing the d required to
achieve a one-sided 2.5% family-wise type I error. This
value was then used to simulate 100,000 trials in each
of the remaining scenarios. FACTS version 6.1 was
used for all simulations. For the fixed allocation
designs F25, F40, and F50 the required thresholds were
between 0.9912 and 0.9924. For the RAR designs the
required thresholds were between 0.9872 (for R25) and
0.9892 (for RMatch). RAR generally requires less con-
servative thresholds for trial success compared to fixed
allocation. Type I errors can occur when there is a ran-
dom low on the control arm and/or a random high on
the experimental arms. RAR increases allocation to
better performing experimental arms, providing more
opportunity for random highs on the experimental
arms to regress to their true mean and thereby reduce
the risk of a type I error.

Operating characteristics for each metric

Figures 1 and 2 show the results for each metric. In
each panel, the x-axis represents the scenario (nugget,
two, or mixed). The y-axis gives the particular metric

Table 1. Scenarios to be investigated.

Scenario Control rate Arm 1
rate

Arm 2
rate

Arm 3
rate

Null 0.35 0.35 0.35 0.35
Nugget 0.35 0.35 0.35 0.65
Two 0.35 0.35 0.65 0.65
Mixed 0.35 0.45 0.55 0.65

Viele et al. 55



Figure 1. Results for external patient considerations. Left panel shows power, middle panel the probability of selecting the best
arm, and the right panel ideal design percentage. The text string within each column indicates the design, either ‘‘F25,’’‘‘F40,’’ or ‘‘F50’’
for the fixed designs, ‘‘R25,’’‘‘R40,’’ and ‘‘R50’’ for the RAR designs with fixed control, and ‘‘RAdjCtrl’’ and ‘‘RMatch’’ for the RAR
designs that alter control throughout the trial.

Figure 2. The left and middle panel show mean square error for estimated treatment effects (left) and the response rate on the
selected arm (middle), while the right panel shows the expected number of responders. The text string indicates the design as
shown in Figure 1.
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of interest (power, arm selection, expected responders,
etc.).

Figure 1 shows our primary metrics related to exter-
nal patient considerations. The left panel shows power.
The worst performing design is RAdjCtrl, which is con-
sistent with results in the paper by Wathen and Thall21

that indicate power decreases when control allocation
is reduced. All other RAR designs outperform all fixed
designs, with R40 and RMatch producing the best
results. Obtaining good performance with 40% alloca-
tion to control is not specific to RAR as it is close to
the optimal sqrt(3):1:1:1 allocation among fixed
designs.24 The middle and right panels of Figure 1
show the results for arm selection and ideal design per-
centage, which indicate a similar qualitative picture.
For external patients, R40 and RMatch give the best
performance and are similar to each other, with R50
nearly identical or close behind. R40 might be preferred
in practice to RMatch given its simpler description.

Figure 2 shows the results for the statistical and
internal patient metrics. The left and middle panels
show the mean square error for the treatment effect
and the selected arm response rate. Unlike the other
measures, lower values of mean square error are desir-
able. With the exception of RAdjCtrl, all RAR choices
outperform fixed allocation for estimation of treatment
effect and response rate for the selected arm. The design
RAdjCtrl has highly varied performance, producing the
worst mean square error for the treatment effect and
the best mean square error for the response rate on the
selected arm. RAdjCtrl minimizes control allocation
when an effective arm is available. This produces a
small control sample size for estimating the control rate

and thus, a component of the treatment effect is esti-
mated poorly. In contrast, RAdjCtrl produces the high-
est allocation to the selected arm, resulting in good
mean square error for the response rate. More limited
reversals can be seen in the relative ordering of the
RAR designs, with R25 having the second-worst mean
square error among RAR designs for the treatment
effect, but the second-best mean square error for the
response rate on the selected arm.

The right panel of Figure 2 shows the expected num-
ber of responders. Here again, RAdjCtrl, with its
aggressiveness toward minimizing control allocation in
the presence of an apparently effective arm, produces
the largest number of expected responders, followed by
R25. The other RAR designs outperform their fixed
counterparts, typically by 10 or more responders.

Full distribution of each metric

The average behavior of a design may not fully reflect a
design’s performance, in that undesirable events may
still occur with meaningful probability. For example,
Thall et al.6 show that a specific form of RAR may
obtain a meaningful probability of allocating a larger
number of subjects to an inferior arm, even when the
overall average allocation is in favor of the superior
arm. Figure 3 shows the empirical cumulative distribu-
tion functions for the number of responders within each
of the 100,000 simulated trials in each scenario (left
panel) and the distribution of the squared error of esti-
mation for the treatment effect (middle panel, with a
‘‘zoomed in’’ version in the right panel). These results
are only shown for the ‘‘mixed’’ scenario, but they are

Figure 3. Empirical cumulative distribution functions for the number of responders and the treatment effect mean square error.
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qualitatively similar to the other scenarios. The relative
ordering of the designs in expected value matches the
relative ordering of the designs throughout the range of
the distribution.

Table 2 shows the cumulative probability of picking
successively better arms in the mixed scenario, ordered
by their probability of picking the best arm. While
RMatch, R25, and R40 have similar probabilities of
picking the best arm, RMatch and R40 appear to per-
form slightly better at selecting the second-best arm if
they miss the best. RAdjCtrl is particularly poor at arm
selection. It has the lowest chance of picking the best
arm, and if it misses the best arm has a far lower chance
of picking the second-best arm compared to the alter-
native designs. This explains the large separation of
RAdjCtrl from other designs on ideal design percent-
age, which averages over this arm selection.

Performance in the null scenario

Performance in the null scenario is a special case, as
several metrics become irrelevant for comparison. We
have purposely calibrated each design to have a com-
mon 2.5% familywise type I error, and any arm is ‘‘the
best’’ rendering arm selection and ideal design percent-
age equal across all designs. Given a common 35% null
rate in all arms, all designs result in a common
Binomial(n = 228,0.35) distribution on the number of
responders with expectation 79.8. Figure 4 shows the
mean squared error for both the treatment effect and
response rate estimate for the selected arm. The order-
ing is identical to the results for the alternative
scenarios.

Conclusion and discussion

Our results indicate that in the multiple arm setting, if
RAR is implemented where control allocation may be
significantly reduced during the trial (RAdjCtrl), the
design performance most closely approximates the fea-
tures and deficiencies of RAR in the two-arm setting.
Compared to equal allocation, RAdjCtrl increased the

expected number of responders but at the cost of
reduced power and poorer estimation of the treatment
effect. In addition, this approach has significantly
reduced accuracy in arm selection. These results are
consistent with Wathen and Thall21 who report poor
performance on external patient metrics such as power,
and also consistent with Berry and Eick8 and Lee9 who
emphasize good performance on internal patient popu-
lation metrics. The presence of this tradeoff between
internal and external patients also is reflective of the
importance of the size of the broader patient popula-
tion for this variant of RAR, as discussed in the com-
mentary by Lee.9

In contrast, variants of multiple arm RAR which
maintain or increase allocation to control mitigate or
reverse many critiques of RAR within the two-arm set-
ting, at least with respect to the simulation scenarios
and design variants considered here. These variants of
RAR (R25, R40, R50, and RMatch) produce higher
power, superior arm selection, and improved mean
square error of estimation compared to their fixed allo-
cation counterparts. While not as beneficial on some of
the internal patient population metrics as the RAdjCtrl
strategy, maintaining or increasing allocation to con-
trol avoids many statistical critiques of RAR while
maintaining an advantage over fixed allocation over all
metrics considered. In design comparisons where exter-
nal patient metrics such as power are a primary consid-
eration, one of these variants should be preferred as an
exemplar of RAR as opposed to RAdjCtrl. This may

Table 2. Performance of each design on arm selection in the
mixed scenario.

Pr(pick arm 1
or better) (%)

Pr(pick arm 2
or better) (%)

Pr(pick arm 3) =
Pr(pick best arm)
(%)

RMatch 93.5 92.4 78.0
R25 90.9 90.2 77.9
R40 93.9 92.8 77.8
R50 93.5 91.8 74.8
F40 87.1 85.5 69.9
F25 83.9 82.8 69.6
F50 85.4 83.4 67.1
RAdjCtrl 66.1 65.8 60.3

Figure 4. Mean square error on treatment effect and response
rate within the null scenario (all other metrics are equal for all
designs in the null scenario).
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explain the improved performance in comparisons such
as in the articles by Lin and Bunn19 and Wason and
Trippa.20 The differences between RAdjCtrl and alter-
native RAR measures are striking, for example, nearly
30% differences in power, indicating that the RAR var-
iant in any comparison needs to be carefully matched
to the metric or metrics of primary interest.

The advantages of any design choice must incorpo-
rate operational aspects of conducting the trial. Any
adaptive design requires interim analyses, and thus, the
potential gains in efficiency should be weighed against
the cost of conducting the interim analyses. This cost–
benefit analysis may differ between sponsors depending
on the availability of infrastructure designed for adap-
tive trials. In addition, within RAR, the performance
of R40 closely approximated RMatch. R40 is a simpler
design to describe and monitor and may be a preferred
choice to increasing control. Alternative methods of
increasing control allocation may produce improved
results.

The generalizability of our results to alternative
endpoints, sample sizes, and effect sizes is unclear.
Binomial distributions with moderate sample sizes are
approximately normally distributed, with the alloca-
tion probabilities and final decisions governed by
properties of the approximate joint multivariate
normal distributions. This suggests that similar rela-
tionships between standardized effect sizes and infor-
mation fractions may be present in RAR as in group
sequential designs.5

We have only explored the effect of control alloca-
tion in this article, without exploration of other features
such as interim frequency, aggressiveness of RAR, or
the thresholding to 0 employed for allocation probabil-
ities less than 10%. For example, RAR may be con-
ducted where Prt(Max) is raised to a power before
normalizing the allocation probabilities, with that
power adjusting over the course of the trial. Further
work is required to assess the interaction of these fea-
tures to determine an optimal RAR that can be com-
pared to alternative design paradigms.
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