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I n some medical disorders, a single genetic variant is sufficient
to directly cause illness. However, common conditions are mul-
tifactorial in etiology, influenced by both genetic and nonge-

netic factors. Genome-wide association studies have shown that
common diseases are polygenic, ie, thousands of DNA variants
contribute to risk, and most of these have very small effect.1-3 In spite
of this complexity, it is now possible to estimate the degree to which
an individual is at risk of common illnesses owing to their genetic
makeup. The so-called polygenic risk scores4,5 (PRS) are generated
from DNA taken from a saliva or blood sample with DNA variants
measured using genotyping technologies that are inexpensive
(< US $100 per person). From these data, PRS can be calculated
for a wide range of diseases (by multiplying count of DNA variants
with trait-specific, predetermined effect sizes). The DNA collec-
tion is only needed once, but the PRS can be recalculated from the
genetic data if new information to improve PRS for a given disease
becomes available. As with many risk factors used in health care
(eg, cholesterol levels6), these risk scores have limited predictive ac-
curacy (ie, they cannot confidently predict the clinical outcome of
interest with precision at the individual patient level). Even if the

risk DNA variants were identified with perfect accuracy, imperfect
prediction by PRS is expected for 2 key reasons. First, genetic fac-
tors are not the only risk factors for common disorders. Second, the
risk scores currently only provide data about part of the genetic
contribution (that associated with common DNA variants, which
typically each have small effect). Moreover, in real applications,
other factors contribute to the accuracy with which risk variants and
their weights are estimated (eAppendix in the Supplement).

Accepting that PRS are never going to be able to definitively pre-
dict complex conditions, the natural question for a physician, the
patient, or their family, is “can PRS be useful in clinical practice, now
or ever?” While a single test can generate risk scores for many
diseases simultaneously, the utility of those scores varies between
conditions. Here, we highlight some aspects of the basic science
underpinning PRS that are relevant to considerations of clinical
applications.

While the costs of generating PRS are low, we do not consider
downstream associated costs in a health system nor implications for
health insurance. This is outside of our expertise, but evaluation of
these topics needs to be informed by an understanding of what PRS

IMPORTANCE Polygenic risk scores (PRS) are predictors of the genetic susceptibilities of
individuals to diseases. All individuals have DNA risk variants for all common diseases, but
genetic susceptibility differences between people reflect the cumulative burden of these.
Polygenic risk scores for an individual are calculated as weighted counts of thousands of risk
variants that they carry, where the risk variants and their weights have been identified in
genome-wide association studies. Here, we review the underlying basic science of PRS,
providing a foundation for understanding the potential clinical utility and limitations of PRS.

OBSERVATIONS Polygenic risk scores can be calculated for a wide range of diseases from a
saliva or blood sample using genotyping technologies that are inexpensive. While genotyping
only needs to be done once for each individual in their lifetime, the PRS can be recalculated
as identification of risk variants improves. On their own, PRS will never be able to establish
or definitively predict future diagnoses of common complex conditions because genetic
factors only contribute part of the risk, and PRS will only ever capture part of the genetic
contributions. Nonetheless, just as clinical medicine uses a multitude of other predictive
measures, PRS either on their own or as part of multivariable predictive algorithms could
play a role.

CONCLUSIONS AND RELEVANCE Utility of PRS in clinical medicine and ethical issues related
to their use should be evaluated in the context of realistic expectations of what PRS can
and cannot deliver. For different diseases, PRS could have utility in community settings
(stratification to better triage people into established screening programs) or could
contribute to clinical decision-making for those presenting with symptoms but where
formal diagnosis is unclear. In principle, PRS could contribute to treatment choices, but
more data are needed to allow development of PRS in this context.
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can and cannot deliver. In particular, it is important to dispel the
dogma that equates a genetic test with high levels of accuracy of cur-
rent/future diagnosis. We hope this article will contribute to this
understanding. We also do not consider deeply the way in which risk
should be communicated to the general public or to those present-
ing with current or past clinical symptoms, ie, genetic risk literacy.
This is an important topic, and we recognize that the interrelation-
ship between genetic test information and mental health may be
complex7,8; we refer readers to some thoughtful commentaries.9-11

We do note that return of PRS to patients is already undergoing re-
search trials in health systems around the world. Moreover, com-
mercial genotyping is now available in the public domain from a num-
ber of private companies by mailing in a saliva sample. Some direct-
to-consumer companies report PRS for a number of diseases and
traits. Consumers can also download their genotype (genetic vari-
ant) data and upload them into online PRS calculators.12 Clinicians
may wish to consider the possibility of a patient (and/or family mem-
ber or future spouse) attending their consultation in the near fu-
ture armed with their own, commercially derived, individual disease-
specific PRS in the expectation that the clinician will interpret them.
Our goal is to present an understandable narrative about the utility
of PRS for the general reader (there are many other useful review
articles13-19), and we plan to provide a psychiatry-specific evalua-
tion in a future article.

What Does “Polygenic” Mean for Individuals?
Common diseases and disorders are recognized to be polygenic.3

This means that thousands of DNA variants contribute to genetic

risk, where a variant is defined as a difference in DNA code at
a particular location between people. Given we each carry 2 ver-
sions of each chromosome, at each DNA variant location, individu-
als can have 2 risk-associated variants (variants are often called
alleles), 2 protective variants, or 1 of each (where risk and protec-
tive are relative terms). So when we say common diseases are
polygenic, it means each of us have some risk variants in our DNA
for all diseases, but those who carry a higher burden of risk vari-
ants for a particular disease have increased risk for that disease
(Figure 1 provides a visualization of this) or are more vulnerable to
developing a condition in the context of other risk factors, and
chance. In fact, we expect manyfold more rare variants to contrib-
ute to disease risk than common variants. However, rare variants
are difficult to identify with confidence. There are so many of
them that testing for their association with disease massively
increases the multiple testing burden; therefore, very large
samples are needed to identify those associated with disease.
When so many risk loci contribute to disease etiology, it is likely
that each person has a unique combination of risk variants
(Figure 1), which, together with an individual’s unique combination
of life experiences, generates the variable presentation and life
course that characterize common disorders, such as heart disease,
type 2 diabetes, cancers, immune disorders, and mental health
disorders.

What Are PRS?
Polygenic risk scores for a disorder are calculated as weighted
sums of risk variants for that disorder (Figure 2). Polygenic risk

Figure 1. A Visualization of Genetic Profiles of Individuals for Polygenic Disease

Affected over lifetime A

Not affected over lifetime B

Count RV =202 Count RV =196 Count RV =214 Count RV =206 Count RV=212

Count RV =182 Count RV =168 Count RV =171 Count RV =189 Count RV=199

A toy example to visualize the genetic profiles for 10 individuals for a polygenic
disease. Each block represents the genetic profile of an individual for 900
common DNA locations that contribute to risk of disease. Each dot is the
genotype of the individual at a risk variant. The dots are colored gray if the
person carries nonrisk (or protective) variants on both chromosomes, blue if

they carry 1 risk and 1 nonrisk variant, and red if they carry 2 risk variants. The
count at the top of the box is the sum of the total number of risk variants. For
simplicity, each risk variant has frequency 0.1 and each contributes equal risk to
disease. See the eAppendix in the Supplement for more detail. RV indicates
DNA risk variants.
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scores can be calculated from an individual’s DNA sample for all
disorders for which risk variants have been identified and are
essentially a count of the number of the risk variants present in
the person’s DNA, weighted so that the presence of some risk
variants is considered more important than others. The identities
of the specific risk variants, and the basic information about
how to weigh them, comes from the allele frequency differences
between cases and controls identified in genome-wide associa-
tion studies (GWAS).5 The optimal selection of variants and
the weights associated with them is an active area of research
(eAppendix in the Supplement). Notably, risk prediction does not
need knowledge of causal variants and can tolerate inclusion of
some false-positive variants. Polygenic risk scores are validated
by application in cohorts with already known case/control status.
If the PRS are found to be predictive of the disease, then the PRS

can be applied to an individual with unknown disease status,
with the score benchmarked against a large group of ancestry-
matched individuals. Ideally, at this stage, the PRS should be fur-
ther validated for utility through formal clinical trials. Although
the acronym PRS is currently the most widely used nomenclature,
other acronyms are used (eAppendix in the Supplement). There
are many statistics to evaluate PRS and they are interrelated
(eAppendix in the Supplement). Most GWAS to date have been
conducted in those of European ancestry; therefore, while some
predictive ability is expected for individuals from other ancestral
populations, the prediction is expected to be attenuated particu-
larly into those with African ancestry20,21 (eAppendix in the
Supplement). There is considerable effort to increase GWAS
sample collection across worldwide population groups to address
this concern.20,21

Figure 2. Schematic of the Steps Needed to Generate and Validate Polygenic Risk Scores (PRS)
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Applications and Evaluations of PRS

To demonstrate why there is considerable discussion about imple-
mentation of PRS into health systems, we consider the application
in cardiovascular medicine because it was highlighted22 that PRS pro-
vide a level of predictive information that can be considered similar
to the risk of specific single rare variants that are currently clinically
actionable. In standard practice, the detection of such rare variants
(often investigated in families that have multiple affected individu-
als) can lead to changes in clinical management (eg, surveillance or
prophylactic measures).22 In this retrospective study, it was shown
that those in the top 1% of cardiovascular PRS had lifetime risk of
greater than 10%, which is equivalent to the risk faced by those car-
rying single rare genetic variants that, when detected, can inform
changes in clinical management. On the flip side, approximately 90%
of people in this top 1% would not go on to have heart disease, but
encouraging this subgroup of the population to consider preven-
tion strategies could be worthwhile in reducing risk. Use of risk in-
formation in this way is sometimes referred to as precision preven-
tion genomics, where the precision focus is a population stratum.

Risk prediction for heart disease is already well established
around the world.23-25 These predictors can be found in online tools
and combine information associated with clinical risk factors, such
as sex, age, blood pressure, smoking status, family history of car-
diovascular disease, total and high-density lipoprotein cholesterol,
diabetes, and electrocardiogram measures, into a total risk score.
None of the individual contributing factors is a useful risk predictor
alone, but the combination of factors is used to inform prescription
of statins and other lifestyle preventive interventions. Another
study26 using prospective, longitudinal data from the UK Biobank26

showed that while coronary artery disease PRS were a less accu-
rate predictor of a subsequent coronary artery disease event than
the other clinical risk predictors when they were combined, it was

more accurate than any of the other individual clinical risk factors
(Figure 3A).27 Additionally, when PRS were added to the existing
combination of clinical risk predictors, the accuracy increased. Ex-
trapolating the UK Biobank results to 13 million UK residents aged
40 to 55 years, it is estimated that incorporating PRS into the QRISK
algorithm23 could lead to many hundreds of thousands of people
changing risk category: more than 500 000 could move from less
than the threshold for statin prescription to greater than the risk
threshold, while more than 200 000 people could move from
greater than the risk threshold for statin prescription to less than
the threshold.28 Although application of PRS in prediction of car-
diovascular risk is an ongoing topic of discussion,29,30 incorporat-
ing genetic data into such risk algorithms used routinely in primary
care could have significant public health implications.

Global interest in using PRS is most notable for diseases that al-
ready have population-based screening and prevention programs.
Because screening programs carry both benefits and risks (eg, un-
necessary invasive test and/or treatments), additional information
with which to stratify risk could result in screening being focused on
a more restricted group, which could potentially decrease risks as-
sociated with screening for the population overall, and lead to cost
savings.31 Hence, PRS-based risk stratification could be of poten-
tial utility in other contexts such as colorectal cancer (where screen-
ing kits are posted biannually to those older than 50 years and where
resources to encourage kit return could focus on those at highest
PRS-based risk32) or breast cancer (where PRS could personalize age
at first breast screening33). Another example is application to com-
mon eye disorders, such as glaucoma, where those with high-
glaucoma PRS34 could be particularly encouraged to take up the oph-
thalmological screening because intervention on early detection of
increased intraocular pressure can prevent otherwise irreversible
blindness.

For some common diseases, there are known rare variants of
large effect. For example, about 2% of breast cancers in women

Figure 3. Examples of Polygenic Risk Scores (PRS) Applications in Heart Disease and Breast Cancer
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A, Relative importance of conventional and PRS risk factors associated with
coronary artery disease risk.26 The y-axis can be interpreted as the probability
that a person who went on to have coronary artery disease ranked higher on
the risk predictor than someone who did not get the disease. Results from
Cox regression of incident coronary artery disease in the UK Biobank for

conventional risk factors individually and in combination with the PRS,
including covariates (sex-stratified age-as-timescale). B, Predicted breast cancer
risk by percentile of breast cancer PRS and by age within women who have
BRCA1 mutations.27 See the eAppendix in the Supplement for more detail.
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of European ancestry are associated with variants in the BRCA1 gene.
These variants are individually rare in the population but are asso-
ciated with massively increased risk in the families in which they
segregate. In women with these BRCA1 variants, high PRS for breast
cancer (derived from nonfamilial breast cancer GWAS) are associ-
ated with earlier age at breast cancer diagnosis27 (Figure 3B). Simi-
lar results using disease-specific PRS have been reported for BRCA2
breast cancer, BRCA1/2 ovarian27 and prostate cancer,35 familial
(MYOC p.Gln368Ter) glaucoma,34 and familial (Lynch syndrome)
colorectal cancer risk.36

Together, these examples demonstrate that risk prediction from
PRS will be combined with other risk information for an individual.
While predicted risk from both PRS and rare genetic variants of large
effect are available from birth, lifestyle risk factors used to gener-
ate predictors of absolute risk will change with age.

Will People With Known Family History
Have High PRS?
People with known family history of a common disease are likely
to have higher than average PRS, but may not. Why not? First,
because family history encompasses both genetic and nongenetic
risk factors shared by family members, although the genetic con-
tribution is on average larger.37 Second, the risk variants included
in the PRS only capture part of the genetic contribution, and so
those with family history are not guaranteed to have high PRS.
Third, an individual may share fewer risk variants than expected
with their affected family members because of the random segre-
gation of risk variants from parents to offspring. In fact, PRS have
the potential to differentiate risk between family members who
have the same family history information. In the clinical context, if
people present with relevant family history of a disorder but low
PRS, then the clinician should make any clinical decisions in a
manner guided by the family history. Such patients could be pri-
oritized for testing of other genetic risk factors not included in
the PRS, such as chromosomal rearrangements or structural
variants.38

Could People Have High PRS
But No Family History?
It is fully expected that many of those with high PRS for a specific
disease will have no family history of that disease. From polygenic
theory, the only way to reconcile both the polygenic nature of
common disease and the frequency of a disease in the population
is that most people presenting with common disease have no
known affected family members.39 This is consistent with the risk
of disease being highly nonlinear with the genetic contribution to
liability of disease (or “true” PRS).40 For example, for a disease of
lifetime risk of 1% and heritability 70% (approximately representa-
tive of a range of common diseases/disorders such as rheumatoid
arthritis, schizophrenia, bipolar disorder, and colon cancer), just
based on idealized families without the additional vagaries associ-
ated with real-life knowledge of family history, about 75% of those
affected are expected to have no first-degree, second-degree, or
third-degree relatives with the condition.39,40 These perhaps non-

intuitive but observationally endorsed results reflect that impor-
tant genetic differences occur between family members as a result
of the segregation of variants from parents to children at meiosis.
While each child receives half their DNA complement from their
mother and half from their father, there are more than 8 million
ways that the chromosomes of each parent can be split. For poly-
genic disorders, the genetic variance between siblings in a family is
expected to be half of the genetic variance in liability between all
individuals in the population41 (Figure 1). For this reason, although
the PRS of 2 family members will be more similar than the PRS of
2 people selected randomly, the PRS will vary between family
members. As PRS become more accurate, the variation in PRS
between full siblings will increase and will differentiate the risk
between them despite having the same family history. Hence,
a high polygenic risk for a condition is simply a consequence of the
genetic lottery of life.

What Is the Maximum Expected Future Accuracy
of PRS?
Polygenic risk scores can only explain part of the genetic aspect of
a condition. Because nongenetic factors also contribute to risk,
the maximum accuracy of genetic predictor is limited by the heri-
tability of the disorder, where heritability is the proportion of the
variance between people in their liability to a disease that is
attributed to genetic factors.42 However, construction of PRS is,
to date, limited to DNA risk variants that have frequency of at
least 1% in the population (and in some applications, variants are
only included if they have a frequency of more than 10%43,44

owing to greater instability in PRS using low frequency variants
[currently]). Hence, PRS are not designed to capture all genetic
variation only tagged by common single nucleotide variants
(SNVs). Therefore, the so-called SNV-based heritability gives the
upper limit of the variance between people in their liability to
a disease that can be explained by PRS and represents the vari-
ance explained by common DNA variants. As GWAS sample sizes
increase, the variance explained by PRS will also increase and
approach the SNV-based heritability. The SNV-based heritability
estimates vary across diseases, but an approximate upper limit is
approximately 30%. Although in principle, use of whole-genome
sequence data could increase the variance explained by PRS (be-
cause more variance would be tagged by measured markers, ie,
the SNV-based heritability approaches the heritability), it is
unlikely (at least in the short term) to improve PRS (eAppendix in
the Supplement). Risk stratification based on current and future
PRS is illustrated in Figure 4.

Conclusions
Polygenic risk scores are not and never will be stand-alone predic-
tors of common diseases. The expected role for PRS across medi-
cal applications is partly predicated on the fact that the genotyping
needed for calculation of PRS is cheap, that a one-off generation of
genome-wide genotypes can provide PRS for multiple conditions,
and that even small changes in health outcomes can have a large ef-
fect on health economics because polygenic diseases are common
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diseases of society. Polygenic risk scores are already available to those
who have undertaken direct-to-consumer testing or through the up-
load of genome-wide genotypes received through ancestry testing
into PRS calculating online tools.12 Therefore, it seems likely that
PRS will become available; the question then becomes, if we have
PRS, do we use them?

Polygenic risk scores could be used at 3 key stages (Figure 5).
First, PRS could be applied in healthy populations. In principle, PRS
could be available for an individual for all common diseases from
birth. The genetic data would be held as part of the health record,
with the latest score accessed for a specific disease at a point rel-
evant to that disease. As described previously, PRS could easily be
integrated into health systems for diseases where population screen-
ing programs and preventive health management strategies are
already available. It is notable that if PRS were available for 20 dif-
ferent (and uncorrelated) diseases/disorders, while only 1% of the
population is at high risk (defined as in top 1%) for any one of them,
up to 20% of the population is expected to be in the high-risk cat-
egory for one of them. It is the ability of the same genetic data to

provide multidisease results that are important for health eco-
nomic evaluations.

Second, PRS could be used in the early phase of illness, when
patients present with very general and nonspecific symptoms that
do not fit a specific diagnosis. For many diseases/disorders, presen-
tation with clinical symptoms is sufficient together with biomarker
testing (such as electrocardiogram for heart arrhythmia45) to con-
firm diagnosis. For diabetes, although a blood glucose test con-
firms diagnosis, 15% of adults presenting with type 1 diabetes are
misdiagnosed as the more common type 2 diabetes, an impactful
misdiagnosis given differences in treatment and care.46 Within those
with type 1 diabetes, high PRS for type 1 diabetes could be used to
trigger more frequent monitoring of insulin levels because type 1 dia-
betes PRS were found to predict progression to the critical pheno-
type of insulin deficiency.15,46 In some circumstances, PRS could be
used to predict time to event.47 For example, prediction of age at
onset of breast cancer for those carrying causal variants in BRCA1
could contribute to advice on timing of mastectomy.27 We also pro-
pose that PRS could help with the triage and clinical staging of young

Figure 4. Using Polygenic Risk Score (PRS) for Population Stratification

Disease 
lifetime
risk: 1% 

100 people random
from population 

100 people from
top 10% of PRS 

Current: 
PRS explain ˜10% of liability; AUC: 0.73 

Future: 
PRS explain ˜30% of liability; AUC: 0.87 

100 people from
top 1 % of PRS 

100 people from
top 10% of PRS 

100 people from
top 1% of PRS 

Disease 
lifetime
risk: 10% 

Current: 
PRS explain ˜5% of liability; AUC: 0.62

Future: 
PRS explain ˜10% of liability; AUC: 0.67 

3.2-fold 6-fold 5.8-fold 16-fold

1.8-fold 2.4-fold 2.2-fold 3.2-fold

Rates of disease in the general population and those in the top 10% or top 1% of
the PRS distribution. Top row: a disease with lifetime risk of 1%, where PRS
explain 10% of liability variance now and 30% in the future. Bottom row:
a disease with lifetime risk of 10% where PRS explain 5% of the variance in
liability now and 10% in the future. These examples are selected to approximate

results from real data for diseases of these frequencies. AUC indicates area
under the receiver operating characteristic curve, which can be interpreted as
the probability that a person with disease ranks higher on PRS than a person
without disease. See the eAppendix in the Supplement for more detail.
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adults when they first present to services with very general and non-
specific symptoms (eg, anxiety, depression, or suicidal thoughts or
behaviors), contributing to clinical decision-making.

Third, it is possible that in the future, PRS could contribute to
treatment choices, because responses to treatment, including de-
velopment of adverse health outcomes (such as weight gain), are
likely complex genetic traits. However, investigating the utility of PRS
in the context of choice of drug treatments requires larger data sets
than are currently available. Compared with a decade ago, we now
have the tools to develop models to predict treatment response, but
are limited by data to develop and validate predictors. Large
cohorts of patients treated with different medications must be
followed up and responders contrasted with nonresponders to

generate genetic predictors of response or recovery. To date, the in-
flammatory bowel diseases research has been the flagship for trans-
lation of genetic associations into new treatments, and identifica-
tion of treatment responding subtypes is an active area of research.48

We conclude that the PRS available currently may have clinical
utility for some diseases for which investigation in clinical settings
is already justified. The breadth of applications will increase as
genetic data become increasingly available as part of routine health
records. Key to making this happen is to extinguish the dogma that
equates a genetic test with a result of very high predictive value
for current or future diagnosis and accept PRS to have an inher-
ently limited accuracy, as do to many other tests routinely used in
health care.6,49
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