
The first wave of large-scale, high-density genome-wide 
association (GWA) studies has improved our understanding 
of the genetic basis of many complex traits1. For several 
diseases, including type 1 (Refs 2,3) and type 2 diabetes4–9, 
inflammatory bowel disease10–14, prostate cancer15–20 and 
breast cancer21–23, there has been rapid expansion in the 
numbers of loci implicated in predisposition. For others, 
such as asthma24, coronary heart disease25–27 and atrial 
fibrillation28, fewer novel loci have been found, although 
opportunities for mechanistic insights are equally prom-
ising. Several common variants influencing important 
continuous traits, such as lipids7,29–31, height32–35 and 
fat mass36–38, have also been found. An updated list of 
published GWA studies can be found at the National 
Cancer Institute (NCI)-National Human Genome 
Research Institute (NHGRI)’s catalog of published  
genome-wide association studies.

These findings are providing valuable clues to the 
allelic architecture of complex traits in general. At the 
same time, many methodological and technical issues 
that are relevant to the successful prosecution of large-
scale association studies have been addressed. However, 
despite understandable celebration of these achieve-
ments, sober reflection reveals many challenges ahead. 
Compelling signals have been found, often highlighting 
previously unsuspected biology, but, for most of the 

traits studied, known variants explain only a fraction of 
observed familial aggregation39, limiting the potential 
for early application to determine individual disease 
risk. Because current technology surveys only a lim-
ited subset of potentially relevant sequence variation, 
this should come as no surprise. Much work remains 
to obtain a complete inventory of the variants at each 
locus that contribute to disease risk and to define the 
molecular mechanisms through which these variants 
operate. The ultimate objectives — full descriptions of 
the susceptibility architecture of major biomedical traits 
and translation of the findings into clinical practice —  
remain distant.

With completion of the initial wave of GWA scans, it 
is timely to consider the status of the field. This Review 
considers each major step in the implementation of a 
GWA scan, highlighting areas where there is an emerg-
ing consensus over the ingredients for success, and those 
aspects for which considerable challenges remain.

Subject ascertainment and design
Although there is a growing focus on the application 
of GWA methodologies to population-based cohorts, 
most published GWA studies have featured case– 
control designs, which raise issues related to the optimal  
selection of both case and control samples.
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Genome-wide association 
(GWA) studies
studies in which a dense array 
of genetic markers, which 
captures a substantial 
proportion of common 
variation in genome sequence, 
is typed in a set of DNA 
samples that are informative 
for a trait of interest. The aim is 
to map susceptibility effects 
through the detection of 
associations between genotype 
frequency and trait status.
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Abstract | The past year has witnessed substantial advances in understanding the 
genetic basis of many common phenotypes of biomedical importance. These advances 
have been the result of systematic, well-powered, genome-wide surveys exploring the 
relationships between common sequence variation and disease predisposition. This 
approach has revealed over 50 disease-susceptibility loci and has provided insights into 
the allelic architecture of multifactorial traits. At the same time, much has been learned 
about the successful prosecution of association studies on such a scale. This Review 
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the challenges that remain as researchers seek to obtain more complete descriptions  
of the susceptibility architecture of biomedical traits of interest and to translate the 
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Case–control design
An association study design in 
which the primary comparison 
is between a group of 
individuals (cases), ascertained 
for the phenotype of interest 
and that are presumed to have 
a high prevalence of 
susceptibility alleles for that 
trait, and a second group 
(controls), not ascertained for 
the phenotype and considered 
likely to have a lower 
prevalence of such alleles.

Selection bias
Bias arising from the fact that 
the samples ascertained for the 
study (particularly controls) 
might not be representative of 
the wider population that they 
are purported to represent.

Misclassification bias
Bias resulting from the failure to 
correctly assign individuals to 
the relevant group in a case–
control study; for example, the 
presence of some individuals 
who meet the criteria for being 
cases in a population-based 
control sample.

Population stratification
The presence in study samples 
of individuals with different 
ancestral and demographic 
histories: if cases and controls 
differ with respect to these 
features, markers that are 
informative for them might be 
confounded with disease 
status and lead to spurious 
associations.

Case selection. The principal issues with regard to case 
ascertainment revolve around the extent to which selec-
tion should be driven by manoeuvres that are designed 
to improve study power through enrichment for spe-
cific disease-predisposing alleles. These include efforts 
to minimize phenotypic heterogeneity or to focus on 
extreme and/or familial cases (defined, for example, 
by early age of onset or ascertainment from multiplex 
pedigrees). Because the genetic architecture of most 
complex traits remains poorly understood, the value of 
such efforts is hard to predict. In most circumstances, 
and particularly when the total GWA sample size has 
financial or operational constraints, efforts to enrich 
case selection are likely to improve power. However, 
there are situations in which selection of familial 
cases or extreme individuals might have the opposite 
effect40,41.

Control selection. optimal selection of control samples 
remains more controversial, although the accumulating 
empirical data indicate that many commonly expressed 
concerns have been overstated. The Wellcome Trust 
Case Control Consortium (WTCCC) study was able 
to demonstrate the effectiveness of a ‘common control’ 
design in which 3,000 uK controls were compared 
with 2,000 cases from each of 7 different diseases1. The 
WTCCC also assuaged concerns about the potential 
for selection bias when using non-population-based 
controls1. Comparison of the genome-wide genotypic 
distributions from the two constituents of the WTCCC 
common-control resource (one derived from a popula-
tion-based birth cohort, the other from opportunistic 
sampling of blood donors) revealed no excess of sig-
nificant associations, indicating that ascertainment, 
selection and survival biases were, in this situation at 
least, having minimal impact on genotype distributions. 
Although each prospective control sample must be 
critically evaluated, these findings suggest that a broad 
range of ascertainment schemes are compatible with 
GWA analysis.

one consequence of the common-control design is 
the potential loss of power that is associated with the 
inability to exclude latent diagnoses of the phenotype 
of interest through intensive screening of controls. 
Fortunately, the consequences of misclassification bias are 
modest unless the trait is common, and any loss of power 
is recoverable by increasing the sample size (BOX 1).  
For common traits, such as obesity and hypertension, in 
which the effect of misclassification on power is great-
est1, one remedy involves adopting a more stringent case 
definition, for example, based on early age of onset or 
ascertainment of a more extreme phenotype, while 
still excluding monogenic cases. Although the most 
powerful strategy for a given fixed sample size involves 
a ‘hypernormal’ control group, it might be difficult to 
identify such individuals without introducing inadvert-
ent selection effects. For instance, selecting extremely 
low-weight individuals as controls for a case–control 
study of obesity could result in overrepresentation of 
alleles primarily associated with chronic medical dis-
ease or nicotine addiction rather than weight regulation 
per se.

Other case–control design issues. Four other issues loom 
large in the design of case–control studies. The first is 
sample size, and with this issue the consensus view  
is clear: the more samples the better1,34,35,38. The initial 
wave of GWA studies has shown that, with rare excep-
tions, the effect sizes resulting from common SNP 
associations are modest, and that sample sizes in the 
thousands are essential1.

The second issue relates to the propensity for latent 
population substructure (population stratification and  
cryptic relatedness) to inflate the type 1 error rate  
and generate spurious claims of association around 
variants that are informative for that substructure42,43. 
The evidence emerging from GWA studies is reassur-
ing: as long as cases and controls are well matched for 
broad ethnic background, and measures are taken to 
identify and exclude individuals whose GWA data 
reveal substantial differences in genetic background, 
the impact of residual substructure on type 1 error 
seems modest1. Several statistical tools exist to detect 
and adjust for residual stratification42,44, and invento-
ries of markers that are informative for the detection of 
ethnic substructure are a useful by-product of current 
scans1,45–47. These approaches can be used to adjust for 
substructure even in populations with quite diverse 
antecedents (such as european-descent populations 
in North America)46,47 and with negligible impact on 
power48. Analysis in African-descent populations is 
complicated by their greater haplotypic diversity and 
fine-scale geographical structure49, and by the exten-
sive admixture demonstrated by African-descent 
populations that are resident in europe and North 
America. Furthermore, it is important to note that the 
tools mentioned above (particularly genomic-control 
approaches44) correct for ‘average’ genome-wide meas-
ures of ethnic admixture, and will not always eliminate 
spurious associations immediately adjacent to markers 
that are strongly informative about ancestry.
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Cryptic relatedness
evidence — typically gained 
from analysis of GWA data — 
that, despite allowance for 
known family relationships, 
individuals in the study sample 
have residual, non-trivial 
degrees of relatedness, which 
can violate the independence 
assumptions of standard 
statistical techniques.

Family-based association 
methods
A suite of analytical approaches 
in which association testing is 
performed within families: such 
approaches offer protection 
from population substructure 
effects but at the price of 
reduced power.

The third issue concerns the relative merits of family-
based and case–control association methods. Although 
family-based association methods provide a robust strategy 
for dealing with stratification, this typically comes at 
the cost of reduced power50. Given the ease with which 
GWA data enable the detection of, and correction for, 
population substructure42,44, this particular justification 

has become less persuasive. Nevertheless, there are many 
valuable clinical resources (for example, isolates) for 
which pedigree information can be usefully exploited. 
one option for the efficient use of family data in such a 
setting is to restrict high-density scanning to a subset of 
pedigree members and then use information on patterns 
of chromosomal segregation derived from low-density 

Box 1 | The impact of selection by phenotype among controls on power and sample size

In a case–control study, the manner in which the controls are ascertained (with respect to the phenotype of interest) 
has implications for the power of the study and for sample size. The panels on the left show estimates of power for a 
sample size of 2,000 cases and 2,000 controls and α (p value) = 10–6. Those on the right show the sample sizes (that is, 
the number of case–control pairs) that are required for 80% power at the same threshold. In the upper panels, the 
disease of interest has a population prevalence of 5% (so that cases are ascertained purely from the top 5% of the 
population distribution); in the lower panels, the population prevalence is 20%. In each panel, power or sample size 
estimates are shown for a range of control selection thresholds, that is, the trait-distribution threshold that is used to 
define the controls. Under scenario A, controls are ascertained from the full distribution (that is, population-based 
controls): a proportion (5% or 20%) will meet the criteria for being cases. Under scenario B, controls are ascertained 
only if they cannot be cases: they come from the residual part (bottom 80% or 95%) of the distribution. Under scenario 
C, hypernormal controls have been selected exclusively from the lowest 5% of the distribution. Each panel considers 
four potential susceptibility loci. Tracks in blue denote loci that account for 0.25% of overall trait variance, tracks in red 
denote loci that account for 1%. Light red and light blue symbols denote that the variant responsible is common 
(overall allele frequency 30%), red and dark blue symbols denote that the variant is rare (1%).

As expected, in all settings, scenario C is the most powerful strategy for given overall case–control sample size, and 
scenario A is the least powerful strategy. When the disease prevalence is modest (5%; upper panels), the distinctions 
between scenarios A and B are not large, and it will often be easier to increase sample size than to undertake detailed 
phenotypic examination of the controls to exclude latent cases. When the disease prevalence is higher (20%; lower 
panels), misclassification is more prevalent under scenario A, the adverse consequences of using population-based 
controls are more marked, and the advantages of using hypernormal controls (scenario C), if available, are most obvious.

Nature Reviews | Genetics

B

A

C

C

A 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

15,000

12,500

10,000

7,500

5,000

2,500

Sa
m

pl
e 

siz
e

Sa
m

pl
e 

siz
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

15,000

12,500

10,000

7,500

5,000

2,500

Po
w

er
Po

w
er

Trait prevalence 5%

Trait prevalence 20%

Control selection threshold

Control selection threshold

Control selection threshold

Control selection threshold

α = 10–6; 2,000 cases; 2,000 controls 80% power; α = 10–6

QTL variance 0.25% 
QTL allele frequency 30%

QTL variance 0.25% 
QTL allele frequency 1%

QTL variance 1% 
QTL allele frequency 30%

QTL variance 1% 
QTL allele frequency 1%

C

AB

AB

BC

R E V I E W S

358 | MAy 2008 | voluMe 9  www.nature.com/reviews/genetics

© 2008 Nature Publishing Group 



Pleiotropy
The phenomenon whereby a 
single allele can affect several 
distinct aspects of the 
phenotype of an organism, 
often traits not previously 
thought to be mechanistically 
related.

Linkage disequilibrium
(LD). The nonrandom allocation 
of alleles at nearby variants to 
individual chromosomes as a 
result of recent mutation, 
genetic drift or selection, 
manifest as correlations 
between genotypes at closely 
linked markers.

Copy number variant
(CNV). A class of DNA 
sequence variant (including 
deletions and duplications) in 
which the result is a departure 
from the expected diploid 
representation of DNA 
sequence.

DnA pooling approaches
Association studies that are 
conducted using estimates of 
allele frequencies derived from 
pools of DNA compiled from 
multiple subjects rather than 
individual DNA samples.

genotyping in the remaining members to propagate 
genotypes through the family51.

The fourth question relates to the potential to use 
historical control genotypes to substitute for, or supple-
ment, newly typed controls in future GWA studies. The 
risks associated with this (particularly inflation of the 
type 1 error) will clearly depend on the extent to which 
there are disparities between the new cases and historical 
controls with respect to population origins, DNA format 
(whole-genome amplified DNA versus native DNA as 
well as storage conditions)52,53 and genotyping imple-
mentation (platform, genotyping centre, generation of 
chip or allele-calling software). The limits of acceptable 
divergence are not yet known, but it seems safest that 
studies intending to use historical control data also 
type a sample of ethnically matched controls (including 
a subset of the historical control samples, if available) 
using the same assay as for the newly defined cases. This 
should allow the detection of systematic effects that are 
attributable to non-disease-related differences between 
the historical and new data. An alternative approach 
would involve the re-genotyping of any interesting GWA 
signals in all samples using a dedicated assay.

From case–control to cohort studies. Increasingly, the 
GWA approach is being extended from analysis of 
case–control samples to population-based cohorts54–56. 
Although typically underpowered for dichotomous phe-
notypes (given limited cases for any given disease), such 
cohorts often offer a rich tapestry of longitudinal meas-
ures for a wide range of quantitative traits, and lifestyle 
and exposure data can enable an evaluation of the joint 
effects of genes and environment. These studies promise 
new insights into the genetic basis of continuous traits 
and enhanced opportunities for revealing pleiotropy57, 
although low power remains an issue — especially 
for the detection of non-additive gene–environment 
interactions58,59. Whereas GWA data meta-analysis is 
the obvious solution to overcome restrictions of sam-
ple size, such procedures are often complicated by the 
lack of standardization that characterizes the meas-
urement of many key continuous biological traits and  
environmental exposures60.

Implementation
Marker selection and assay design. The debates about 
marker selection that dominated early discussions of 
GWA approaches have now boiled down to choices 
between a limited range of commodity genome-wide 
chips61,62. This is not the place for a detailed discussion 
of the relative merits of specific array-designs other than 
to point out that, genotype for genotype, designs that 
take linkage disequilibrium (lD) structure into account 
when defining content will achieve greater coverage, 
in the index population at least. However, they will also 
be more vulnerable to loss of coverage when assays fail, 
or when typing samples whose genetic ancestry differs 
from that of the reference panel or panels used to guide 
marker selection61,62. Although greater feature density, 
which allows more variants to be typed in a single array, 
increases coverage, this does not necessarily equate to 

greater power. When funding is limited, but the avail-
ability of samples is not, overall power might be maxi-
mized by typing more individuals with a less dense and 
less costly array. In populations of non-African ancestry, 
some of the drive towards ever-increasing array density 
has been blunted by the capability to impute genotypes 
at untyped loci (discussed later)63,64.

A new option in array selection comes with the inclu-
sion on contemporary commodity arrays of additional 
probes that are designed to type copy number variants 
(CNvs)65. However, because the global inventory of 
CNvs remains incomplete66, and with limited empirical 
data currently available, the extent to which the cur-
rent round of products (such as the Affymetrix 6.0 and 
Illumina Human1M arrays) captures the structural vari-
ome remains unclear. However, their use should provide 
early insights into the contribution such variants make to 
common phenotypes of biomedical importance67.

For any given study, the final choice of array platform 
is often a pragmatic one, based not only on the number 
and ethnic origin of the samples, and the overall research 
objectives, but also on factors such as cost, array delivery 
schedules and available genotyping capacity.

DNA pooling. The costs of well-powered GWA stud-
ies have reignited interest in the value of DNA pooling 
approaches as a means to conduct more economical 
genome-wide surveys for association68. However, even 
though several studies have been completed69, the falling 
costs of commodity genotyping and the intrinsic limita-
tions of the pooling approach (reduced power, loss of 
individual genotype data and difficulties ensuring equi-
molar representation of samples) mean that the future of 
this approach, for GWA studies at least, is uncertain.

Obtaining robust genotype data. experience from the 
first wave of GWA studies has demonstrated that scru-
pulous attention to detail is required throughout because 
each stage is fraught with the potential for error and 
bias1,52,53,70,71. Many of these errors and biases have the 
potential to generate extreme values for the association 
test statistic; if uncorrected, these can dominate the tails 
of the distribution, such that interesting true associa-
tions become lost in a sea of spurious signals. efforts to 
prevent, detect and eradicate sources of bias and error 
therefore remain a high priority in GWA studies1, despite 
continuing improvements in genotyping performance.

These efforts start with careful attention to the qual-
ity and accurate quantification of the starting DNA. 
Differences in extraction methods between cases 
and controls can be an important source of bias52,53. 
Implementation of genotyping-performance metrics allows 
poorly performing arrays to be targeted for re-analysis  
and deficient samples to be selected for replacement1.

Given the scale of data generation, conversion of raw 
experimental data into genotypes has necessitated the 
development of automated methods. Indeed, the very 
idea of assigning a discrete genotype call has increasingly 
been replaced by measures of the posterior probability of 
each possible genotype, given the observed data1. Several 
algorithms have been developed for defining the three 
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Informative missingness
If patterns of missing data are 
nonrandom with respect to 
both genotype and trait status, 
then analysis of the available 
genotypes can result in 
misleading associations where 
none truly exists.

Signal intensity (cluster) 
plots
Plots of raw intensity data for 
individual variants that are 
generated by the genotyping 
platform and represent the 
extent to which the various 
genotypes can be 
discriminated: these provide a 
useful visual diagnostic for the 
genotyping data quality.

Hardy–Weinberg 
equilibrium
(HWe). A theoretical 
description of the relationship 
between genotype and allele 
frequencies that is based on 
expectation in a stable 
population undergoing random 
mating in the absence of 
selection, new mutations and 
gene flow: in the context of 
genetic studies, departures 
from equilibrium can be used 
to highlight genotyping errors.

Quantile-quantile plot
(Q-Q plot). In the context of 
GWA studies, a Q-Q plot is a 
diagnostic plot that compares 
the distribution of observed 
test statistics with the 
distribution expected under 
the null.

Cochran–Armitage test
A genotype-based 
contingency-table test for 
association that is well suited 
to the detection of trends 
across ordinal categories  
(in this case, genotypes).

Frequentist
A school of statistics that uses 
p values and combines them 
with hypothesis testing to 
make inferences.

genotype clusters at a given SNP, and for assigning geno-
type calls to each1,53,72–74, with each generation of soft-
ware heralding steady improvements in both accuracy 
and call rate. This last point is crucial because there is 
no room for complacency regarding SNPs that display 
low call rates1,53. Case–control studies, in particular, are 
vulnerable to informative missingness, whereby spurious 
associations arise through differences in the patterns of 
missing data with respect to genotype.

Considerations such as these have highlighted a 
tension between stringency and call rate, which has pre-
vented the promulgation of quality-control thresholds 
with a universal value for defining the set of ‘clean’ geno-
types for analysis. If researchers aim to maximize accu-
racy by setting the threshold for calling genotypes too 
high, the consequence for many SNPs will be a low call 
rate (such that some true signals are discarded) and/or  
a rise in type 1 error (due to informative missingness). 
However, if a lower threshold is favoured, as some groups 
have done1, call rates will be preserved (and informative 
missingness minimized) at the expense of accuracy. Those 
who adopt this more liberal strategy accept that a non-
trivial number of poorly performing SNPs will survive the 
quality-control process and might be disproportionately 
represented among the most extreme association signals. 
If resources are not to be wasted in fruitless validation 
and replication studies, it becomes essential to subject 
interesting signals to individual reviews of quality-control 
parameters (especially visualization of the signal intensity 
(cluster) plots) (BOX 2) before proceeding. one corollary is 
that GWA data-sharing efforts should extend to the pro-
vision of raw signal data as well as ‘finished’ genotypes.

once armed with a set of called genotypes, the 
final phase of quality control beckons. experience has 
shown that most SNPs showing extreme departures 
from Hardy–Weinberg equilibrium (HWe) in controls can 
be safely discarded1, although lesser (but nevertheless 
quite marked) departures are to be expected under the 
null hypothesis, given the number of tests performed. 
Appropriate thresholds for any given study will depend 
on the sample size and overall data quality, and might best 
be defined by using the observed distribution of HWe 
statistics (the WTCCC used this approach to set a thresh-
old at an exact p < 5.7 x 10–7 in controls)1. In any event, 
HWe is an imprecise tool for quality control purposes. 
Tests of departure from HWe are underpowered for the 
detection of genotyping error75,76, whereas overenthusi-
astic use of HWe as a quality criterion can prove to be 
counterproductive given that modest disequilibrium (in  
cases particularly) can be a signature of true association.

Recent studies have emphasized the importance of 
detecting individuals whose GWA data reveal an ancestry 
that is discrepant with self-described labels, allowing them 
to be removed from consideration1 or analysed separately. 
Similarly, sample integrity needs to be confirmed using 
recorded gender or previously obtained genotypes. 
Inadvertent sample duplication and swaps, cross-contami-
nation and cryptic relatedness43 are frequently revealed by 
analysis of GWA data, and, if unresolved, would violate 
assumptions of statistical independence and introduce 
misclassification effects. It is straightforward to identify 

first- and second-degree relatives at least and exclude 
one member of each pair from analysis. In the presence 
of more remote relationships, options include explicit 
modelling of those relationships, or adjustment through 
genomic-control approaches43,44.

This sequence of manoeuvres has proved challenging 
enough for experienced groups given the size of the data 
sets concerned. However, all groups working with such 
data, whether generated themselves or downloaded from 
the web, need to appreciate the intricacies of data quality 
control if they are to avoid potential misinterpretation. 
The comments above refer to the implementation of SNP-
based scans, but the task of converting intensity traces 
and SNP-based data into multi-allelic CNv genotypes is 
far more demanding and is only now being tackled65.

Analysis and interpretation
Diagnostic plots. A limited number of formats have 
emerged as standard tools for representing the data 
emerging from a GWA scan, with the quantile-quantile 
plot (Q-Q plot) among the most widely used52,77 (BOX 2).  
These plots help to indicate whether the study has gener-
ated more significant results than expected by chance and 
to put such findings in context. undetected population  
stratification or cryptic relatedness result in deviation 
from the null across the entire distribution, whereas 
large-effect susceptibility loci generate deviations at the 
highly significant end of the range.

Single-point analyses. In most situations, the most power-
ful tool for the analysis of GWA data has been a single-
point, one degree of freedom test of association, such as the  
Cochran–Armitage test. Such tests allow comparison of  
the genotype distributions of cases and controls at each 
SNP in turn, and can be conducted with or without 
adjustment for relevant covariates, such as the principal 
components of population substructure42. Although the 
Cochran–Armitage method directly tests only one of sev-
eral possible genetic models, it has the merit of being robust 
to modest deviations from additivity on the logistic scale 
(at least to those most likely to be biologically relevant). 
Furthermore, in situations in which the true model at the 
causal variant is non-additive, even modest departures 
from perfect lD will result in greatly reduced power to 
detect that non-additivity at nearby variants: in the GWA 
context therefore, in situations when few causal variants 
will be directly typed, the additive model is likely to per-
form well. Whereas the use of alternative models (general, 
dominant or recessive) could result in enhanced detection 
of some signals78, the use of multiple correlated tests also 
complicates computation of type 1 error rates and can  
reduce the efficiency of subsequent follow-up efforts.

Historically, interpretation of genetic association find-
ings has adopted the standard frequentist approach to the 
evaluation of significance. From such a view-point, GWA 
results are compared against a single criterion of genome-
wide significance. Although several benchmarks have 
been proposed, in european-descent GWA studies opin-
ion is coalescing around the need to adjust for 1–2 million 
independent tests, which results in a target α (p value) of 
~5 x 10–8 (Refs 49,79,80). However, such an approach fails 

R E V I E W S

360 | MAy 2008 | voluMe 9  www.nature.com/reviews/genetics

© 2008 Nature Publishing Group 



Box 2 | Visualization of genome-wide association data

Quantile-quantile (Q-Q) plots provide a visual summary of the distribution 
of the observed test statistics generated by a genome-wide association 
(GWA) study52,77. Typically, a single test statistic (for case–control studies, 
a chi-squared (χ2) comparison of absolute genotype counts) is calculated 
for each variant passing quality control. In panels a–d, the blue line 
denotes expectation under the null and red circles indicate idealized test 
results from hypothetical GWA data, generated under four scenarios: in 
panel a the observed data conforms closely to expectation indicating 
little evidence for association; in panel b inflation of the observed findings 
across the distribution is seen, indicative of population stratification or 
cryptic relatedness; in panel c there is similar evidence of population 
substructure, but some suggestion of an excess of strong associations; in 
panel d there is little evidence of substructure, but compelling evidence 
for an excess of disease associations.

Signal intensity (cluster) plots provide diagnostics at the level of 
individual SNPs. Typically, raw data from the genotyping platform is 
plotted along two axes (one for each allele) to define clusters of data 
corresponding to the three genotype groups. Panels e–h display idealized 

plots based on ~200 genotypes. In panel e the three clusters are well 
defined and individual genotypes are accurately called (as shown by the 
three colours). In panel f the clusters are well defined, but an error in 
allele calling has led to two clusters being assigned the same genotype. 
In panel g significant overlap between clusters is likely to result in failure 
to call certain genotypes (shown in open symbols in panel h). In this 
example, all failed genotypes are either heterozygotes or homozygotes 
for the green allele: this generates biased estimates of genotype 
frequencies, which can result in spurious association signals owing to 
informative missingness.

Finally, genome-wide Manhattan plots display GWA findings with 
respect to their genomic positions, highlighting signals of particular 
interest. In panel i, an example from the type 2 diabetes component of the 
Welcome Trust Case Control Consortium study1,5, the strongest 
associations are seen on chromosomes 10 (transcription factor 7-like 2; 
TCF7L2), 16 (fat mass and obesity associated; FTO) and 6 (CDK5 regulatory 
subunit associated protein 1-like 1; CDKAL1). Additional strong signals 
on chromosomes 1, 2 and 12 did not replicate.
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Bayes’ factors
The Bayesian alternative to 
classical frequentist 
approaches to hypothesis 
testing, essentially equivalent 
to likelihood ratio tests: prior 
and posterior information are 
combined in a ratio that 
measures the strength of the 
evidence in favour of one 
model rather than the other.

False-positive report 
probability
The probability that a reported 
association between a genetic 
variant and a trait of interest is 
not true.

Haplotype-based methods
Association methods that rely 
on the relationship between 
the distribution of estimated 
haplotype frequencies and trait 
status, rather than each 
individual variant in turn.

Imputation methods
A set of approaches for filling in 
missing genotype data using a 
sparse set of genotypes (for 
example, from a GWA scan) 
and a scaffold of linkage 
disequilibrium relationships (as 
provided by the HapMap).

to account for factors such as the power of a study and the 
number of likely true positives, which are important com-
ponents of any comprehensive evaluation of GWA find-
ings81. Consider a small case–control GWA performed 
for a condition for which there is only weak evidence for 
genetic involvement: any associations found are unlikely 
to be genuine, whatever the p value obtained. Such 
limitations have excited interest in Bayesian approaches, 
which incorporate information on the likely number 
of true associations, and the power of a given study to 
detect associations of a given magnitude, into estimates of 
credibility81,82. These methods, which generate measures 
such as Bayes’ factors, or the false-positive report probability 
rather than p values, avoid a single threshold for genome-
wide significance but depend on the ability to assign 
plausible probabilities to each of the alternate hypoth-
eses (see Ref.1 for further discussion). Nevertheless, 
both approaches conclude that only very low p values 
equate to strong evidence for association (that is, are 
associated with a low false-positive rate). Crucially, most 
GWA signals that have attained such significance levels  
have subsequently been confirmed by replication1.

Multi-marker analyses. As expected, given the incom-
plete coverage of common variation that is provided by 
contemporary GWA platforms61,62, a modest boost to 
power can be provided by computational approaches that 
improve the detection of associations that are attribut-
able to variants that have not themselves been directly 
typed83. Haplotype-based methods and imputation methods 
are related but complementary approaches to achieve 
this. In situations when haplotype-based analyses83,84 

reveal evidence for association that exceeds that of any 
directly typed SNP in the vicinity (after allowance for the 
increased dimensionality), one can invoke either an effect 
that is directly attributable to the haplotype (that is, inde-
pendent causal cis effects at multiple SNPs) or the expla-
nation that the haplotype tags more efficiently than any 
individual genotyped SNP, an as yet untyped aetiological 
variant. Imputation methods63,64 rely on information from 
sets of resequenced and/or densely genotyped individuals 
to infer missing genotypes at untyped variants. Because 
data from the International HapMap Consortium49 are 
typically used as the reference, imputation methods have 
proved most powerful in recovering associations and 
causal effects attributable to HapMap SNPs that are not 
included on commercial arrays. Importantly, the use of 
such methods is not restricted to samples drawn from 
HapMap reference populations85.

Challenges. Immediate challenges in this area are numer-
ous. The imminent arrival of large-scale genome-wide 
CNv data65 has focused attention on the development of 
methods that are suited to the specific features of such 
data (multiallelic, semi-quantitative and probably more 
error prone) and methods that facilitate the integration of 
CNv and SNP information. There is work to be done to 
understand how best to incorporate the intrinsic uncer-
tainty that is associated with genotype calls derived from 
both direct and, in particular, imputed data63,64, and in the 
development of analysis tools that take account of, and/or 

estimate, information on population history, which will 
prove especially valuable for studies in genetic isolates86. 
evaluation of the contribution of rare variants to com-
mon disease susceptibility raises issues related to detection 
(rare variants are poorly captured by the standard GWA 
arrays87) and functional assessment (the sheer number 
of such variants and the limited power to test them for 
association88). Finally, there is a need for improved meth-
ods to estimate the joint effects of multiple genes and/or 
environmental exposures on disease predisposition. Such 
analyses raise both computational and statistical issues, 
related to the scale and complexity of the data and the 
large number of hypotheses that could be addressed89.

Validation and replication
The importance of replication. The use of small sam-
ples, which are underpowered to detect loci of realistic 
effect size, and over-liberal declarations of association 
are the main reasons why so few of the complex-trait 
associations that were claimed in the pre-GWA era 
proved genuine81,90. This history, together with the high 
dimensionality of GWA studies, their vulnerability to a 
range of errors and biases, and the modest effect sizes 
to be anticipated for most complex-trait susceptibility 
alleles, help to explain the pre-eminent role of replication 
in the evaluation of GWA findings91,92.

Terminology in this area can be confusing. Here, 
we use ‘technical validation’ to refer specifically to the 
reanalysis of original GWA samples using a second 
genotyping platform. Technical validation allows early 
detection of technical errors in typing or imputation that 
might have generated a spurious association signal, and 
is an important prelude to large-scale efforts to evalu-
ate selected signals in additional independent samples 
(referred to here as ‘replication’).

Best practice. The aim of validation and replication is to 
determine which of the findings arising from the primary 
GWA reflect true reproducible associations. Accordingly, 
the focus is not merely to provide additional evidence to 
support or refute the original association, but also the 
systematic appraisal of potential sources of error and bias 
that could have been responsible. Hence, it is important 
to use independent replication samples, and to use dis-
tinct genotyping assays to expose technical artefacts. 
Credibility is increased when multiple investigative groups  
find the same association in independent samples.

Claims of replication should be reserved for findings 
involving the same allele or haplotype (or an established 
proxy thereof), the same phenotype and the same genetic 
model as the original signal. otherwise the risk of spurious 
claims of association is increased by the testing of multiple 
hypotheses. This has an important bearing on decisions 
about the extent to which early replication efforts at a 
given signal should focus exclusively on the index variant, 
as opposed to including additional adjacent SNPs93. The 
inclusion of adjacent SNPs runs the risk of generating a 
profusion of apparent associations around spurious GWA 
signals — complicating interpretation of the evidence 
for replication — and can involve a substantial waste of 
genotyping effort around the many false-positive signals. 
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In most instances, therefore, it seems wise first to obtain 
definitive evidence of association at the index variant. So 
that failure to replicate can be meaningfully interpreted, 
the samples used in early rounds of replication should be 
broadly similar (with respect to ethnicity and ascertain-
ment) to those of the original study. of course, as loci are 
validated as truly causal, extension into multiple ethnici-
ties is highly desirable to test the generalizability and con-
sistency of the proposed association, although such efforts 
will probably entail additional efforts at variant discovery 
given ethnic differences in lD.

Multi-stage designs. Several recent reports have empha-
sized the potential advantages of multi-stage designs, in 
which signals from an initial, first-stage GWA are used 
to define a subset of SNPs that are retyped in additional 
second-stage samples94–96. Such designs have been seen as 
an effective way of retaining power while reducing geno-
typing costs. However, the substantial price differential 
between commodity and custom genotyping means that 
those cost benefits can be less dramatic than comparisons 
of genotype numbers alone would suggest. In circum-
stances in which the second-stage and GWA samples have 
similar provenance, so that the prospects for appreciable 
genetic heterogeneity between the stages are low, the 
best-powered analytical strategy involves a joint analysis 
(in which the distribution of test statistics across the data 
from both stages combined is considered), rather than 
the conventional replication design (which considers the 
second-stage results in isolation)94. Such considerations 
blur the boundaries of where exactly replication starts, but 
whichever analytical approach is taken, confirmation in 
many independent samples is important and it is the over-
all strength of the evidence of association that matters.

Power, sample size and heterogeneity. An appreciation of 
power and sample size is central to the design and interpre-
tation of appropriate replication studies. Studies that lack 
the power to offer convincing support or refutation of the 
original finding can generate misleading inferences when 
considered in isolation, although combinations of such 
studies might be of value provided that all suitable studies 
have been included. Calculations of replication sample 
size need to consider the so-called ‘winner’s curse’ effect, 
whereby the original study will typically overestimate 
the true effect size97. Replication efforts that fail to make  
such allowance will probably be underpowered98,99.

If well-performed replication studies confirm the 
original findings, then the evidence in favour of associa-
tion is enhanced (unless of course both the original and 
replication studies have succumbed to the same errors). 
Interpretation of a failure to replicate is more difficult. If 
it is clear that the replication studies were well powered 
and well performed, and that there is genuine divergence 
between the effect-size estimates (for example, no overlap 
of 95% confidence intervals), then there are two possible 
explanations. either the original finding was wrong, or 
the difference in findings is attributable to some source of 
heterogeneity100,101. The list of potential causes of hetero-
geneity is long: it includes variable patterns of lD between 
the genotyped SNP and untyped causal alleles (although 
this is unlikely if the samples are of similar ancestry); dif-
ferences in the distribution, frequency or effect size of the 
causal alleles at a given locus (due to, for example, drift or 
selection, or differences in case ascertainment); and the 
impact of non-additive interactions with other genetic 
variants or environmental exposures.

We should be wary of appealing to heterogeneity as 
a rationale for failure to replicate, as over-eagerness to 
deploy such an explanation would mean that no report 
of association could ever be refuted. Nevertheless, there 
are established instances in which the effects of proven 
associations can vary substantially across studies, so 
clearly circumstances exist where it can be justified.

The role of variants in the fat mass and obesity associ-
ated (FTO) gene on the risk of diabetes and obesity (BOX 3)  
provides one such example, illustrating how a clear case 
for heterogeneity can be made, especially when the initial 
association finding has been robustly replicated and the 
source of the heterogeneity is apparent1,5,36,37. Some sources 
of heterogeneity can be directly evaluated, including dif-
ferences in lD structure between populations (particu-
larly once the true causal allele has been identified), clear 
variation in case ascertainment that can be correlated 
with effect size or a highly significant interaction with a 
well-measured covariate. other sources of heterogeneity, 
such as an unmeasured or poorly defined environmental 
exposure, will be difficult or impossible to demonstrate. 
The number of associations for which heterogeneity has 
an important role cannot be reliably estimated from the 
evidence to date: because our inventory of ‘proven’ com-
plex-trait associations is heavily biased towards variants 
that have shown consistent replication across studies (this 
being such an important factor in determining proof), 
there is likely to be a substantial under-representation 
of causal loci that feature appreciable between-study 

 Box 3 | Informative heterogeneity

Replication of results is an essential step in establishing that the associations 
revealed by initial genome-wide association (GWA) studies are genuine. Failure to 
replicate (in an otherwise well-performed and well-powered study) is usually 
interpreted as indicating that the initial finding was spurious. However, failure to 
replicate can also result from substantive differences between the discovery and 
replication studies, for example, with respect to sample ascertainment.

A recent example is provided by the highly significant association between 
variants in the fat mass and obesity associated (FTO) gene and type 2 diabetes that 
was first detected in a UK GWA scan (odds ratio for diabetes ~1.27, p = 2 x 10–8) and 
subsequently strongly replicated in other UK samples (odds ratio for diabetes ~1.22,  
p = 5 x 10–7)1,5,36. However, this association could not be replicated in several well-
powered diabetes GWA scans4,6–8. The explanation for these divergent findings 
derives from the fact that FTO was shown to influence diabetes risk through a 
primary effect on weight regulation, such that the diabetes risk allele is associated 
with higher fat mass, weight and body mass index36,37. In the UK studies, marked 
differences in weight between diabetic cases and non-diabetic controls meant that 
differences in FTO genotype frequencies were observed in diabetes case–control 
analyses. Several other diabetes GWA scans had explicitly targeted case selection 
on relatively lean individuals4,7 (to remove the confounding effects of obesity), 
thereby abolishing the differences in weight between the diabetic cases and 
controls, and with it the between-group differences in FTO genotype distributions. 
Rather than dismissing the FTO association with type 2 diabetes as a failure of 
replication, identification of the source of the heterogeneity (what might be termed 
informative heterogeneity) provided an explanation for the discrepant findings and 
highlighted the likely mechanism of its action.
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heterogeneity102. Moreover, estimation of between-study 
heterogeneity is highly imprecise when the number of 
studies is limited (less than 10) and/or their individual 
power is low. Systematic efforts to define the impact of 
gene–gene and gene–environment interactions, well-
powered GWA studies in multiple ethnicities and com-
prehensive exploration of variation around strong signals  
of association should all help to address this point.

Finding additional susceptibility genes
Meta-analysis. Individual GWAs are underpowered to 
detect all but the biggest effects, and the susceptibility 
variants identified so far are probably only a subset of 
the loci that would be detectable using this approach 
if power were increased39. Joint (meta) analysis of data 

from comparable GWA scans9,34,35,38,103 provides a low-
cost approach to enhance power for both main and 
joint (gene–gene and gene–environment) effects, obtain 
in silico replication, inform SNP selection for subsequent 
replication efforts and explore potential sources of heter-
ogeneity. In type 2 diabetes, joint analysis of three GWA 
scans (4,700 cases and 5,700 controls when combined)5–7,9  
was central to the robust identification of several novel 
susceptibility variants, and allowed confirmation of 
the role of previously known susceptibility variants  
of modest effect size, such as those in KCNJ11 (potassium 
inwardly-rectifying channel, subfamily J, member 11)  
and PPARG  (peroxisome proliferator-activated  
receptor gamma).

As increasingly large data sets are deployed to find 
signals for which smaller samples were underpowered, 
the average effect size of the novel variants that are dis-
covered will decrease. For some purposes, such as pre-
dictive diagnostics, this has implications for their likely 
translational impact. even so, it is worth remembering 
that owing to imperfect lD, a modest finding from the 
initial GWA might ultimately lead to fine mapping of 
variants with considerably larger effect sizes. When it 
comes to insights into disease pathogenesis, however, 
locus effect size is almost immaterial: even loci with 
modest effects, once they are established as genuine, can 
reveal novel causal mechanisms. Thus, discovery efforts 
are likely to continue to bear fruit as long as the clinical, 
logistical and financial resources are available to support 
them, and, as genotyping costs fall, ever larger studies 
will become possible.

The technical aspects of successful data combination 
have been widely discussed in the meta-analysis litera-
ture100,104. Clearly, researchers seeking to obtain an unbi-
ased estimate of the significance of a given association 
are duty-bound to be as inclusive as possible90. Although 
it might be tempting to exclude particular studies on the 
basis of some perceived failure of quality or potential het-
erogeneity, any such decisions must be carefully justified. 
In the presence of heterogeneity, random-effects models 
provide more appropriate estimates of overall effect size, 
because heterogeneity violates the basic assumption of 
fixed-effects analysis100. Although summary-level data 
will suffice for many meta-analysis purposes, access to 
primary individual-level data allows for more sophisti-
cated reanalysis, including the capacity to undertake hap-
lotype and conditional analyses, to perform imputation, 
to examine the joint effects of genes and environment, 
and to explore phenotypic heterogeneity.

Reintroducing biology. So far, most efforts at replication 
have concentrated, not unreasonably, on the signals for 
which the statistical evidence is strongest. However, the 
efficient identification of additional susceptibility loci 
with more modest effect sizes might benefit from the 
integration of statistical evidence with some assessment 
of functional candidacy. Several prioritization strategies 
for defining variant subsets with increased ‘prior’ odds for 
association can be envisaged, embracing aspects of bio-
logical candidacy (for example, variants mapping to genes 
that interact with, or lie within the same pathways as, those 

Box 4 | Strategies for resequencing within genome-wide association signals

Because genome-wide association (GWA) studies directly genotype only a small 
proportion of the variants that segregate within the population examined, it is unlikely 
that the causal variant(s) will be among those for which genotype data are available. 
Imputation methods63,64 allow association analysis to be extended to a larger set of 
variants (HapMap SNPs for which reliable imputation is possible), but this still comprises a 
minority of all common SNPs, and representation of rare variants is poorer still87. Targeted 
resequencing allows recovery of a more complete inventory of sequence variation 
within regions of interest, and enables systematic fine-mapping efforts to identify those 
putatively causal variants with the strongest effects on disease susceptibility.

For any given region, the extent and scope of resequencing efforts depends on the 
strategic goal. Consider the example of the fat mass and obesity associated (FTO) region 
that is implicated in obesity and type 2 diabetes (see the figure)1,5,36. Association analysis 
using directly typed (black) and imputed (grey) SNPs localized the association signal to a 
47 kb region (A–B) defined by flanking recombination hot spots (red trace), within intron 
1 of the FTO gene. If the goal is to identify common causal variants that could underlie 
this index signal, it should suffice to resequence this ~50 kb interval in ~200 individuals 
(a total of ~10 Mb). If the aim is, instead, to identify all common variants contributing to 
regional susceptibility (including those independent of the index signal, so-far missed 
owing to incomplete coverage) then all sequence that is relevant to gene expression or 
function (arbitrarily, C–D) needs to be considered (~600 kb, hence a total of ~120 Mb). 
Should the aim extend to identification of rare variants with independent effects on 
disease risk, recovery of the full allelic spectrum of sequence variants will require deep 
resequencing in ~500–1000 individuals: in the first instance, such deep resequencing 
efforts might be preferentially targeted to exonic and conserved non-coding sequence. 
AKTIP, AKT interacting protein; CHD9, chromodomain helicase DNA binding protein 9; 
IRX3, iroquois homeobox 3; IRX5, iroquois homeobox 5; RBL2, retinoblastoma-like 2; 
RPGRIP1L, retinitis pigmentosa GTPase regulator interacting protein 1-like.
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that were previously implicated in susceptibility to the dis-
ease of interest) and genomic annotation (for example, all  
variants capturing variation in microRNA target sites).

Other populations. Among the GWA scans that have 
already been performed there has been a strong bias 
towards samples of North european origin1–38. There 
are excellent reasons for extending analyses to samples 
from populations with differing mutational and demo-
graphical histories, including other major ethnic groups49 
and population isolates86. each such sample offers new 
opportunities in terms of detectable susceptibility vari-
ants, generating ethnic-specific patterns with respect to 
the identity of the loci themselves, the frequency and 
lD relationships of disease-susceptibility alleles, and the 
presence of additional genetic or environmental factors 
with which they might interact. Studies in other popula-
tions are therefore capable of revealing novel suscepti-
bility loci and aetiological pathways, as well as assisting 
with the fine-mapping of causal variants within those loci 
already confirmed105. Given the large sample sizes that are 
needed to achieve these ends, the ascertainment of GWA 
and replication sample sets from diverse ethnic groups 
is a priority.

Other sequence variants. Finally, it is worth reiterating 
that, so far, GWA scans have focused almost exclusively 
on the detection of effects that are attributable to com-
mon SNPs. The first wave of GWA arrays offered limited 
power to capture structural variants106 and rare variants 
of any type87. The arrival of tools that are better-suited 
to the direct evaluation of these variant types is likely to 
provide the most immediate source of novel susceptibil-
ity loci, although each brings its own set of technical and 
analytical challenges65.

Following-up confirmed signals
The confirmed signals emerging from GWA scans and 
subsequent replication efforts are just that — associa-
tion signals. The causal variants will only occasionally 
be among those that are directly typed in GWA scans, 
and the interval within which the aetiological variant(s) 
are expected to lie (typically defined in terms of flank-
ing recombination hot spots) can be sizeable, often con-
taining several genes1,24. even worse, because it seems 
likely that many complex-trait susceptibility effects are 
mediated through remote regulatory elements107, the 
coding exons of the susceptibility gene could lie well 
beyond the interval of maximal association.

Resequencing and fine mapping. The task of moving 
from confirmed association signal to complete enu-
meration of the pattern of causal variants at a given 
locus poses significant challenges. on occasion, useful 
shortcuts to exhaustive fine mapping might be avail-
able. The set of associated variants might include a 
number with particularly strong biological credentials 
— a non-synonymous coding SNP in a compelling bio-
logical candidate, for example. Alternatively, clues can 
be gathered from expression studies108–110: the cluster of 
associated variants might display strong cis associations 
with expression of one of the nearby genes, transcript 
levels of which are themselves associated with the phe-
notype of interest13,24. Although caution is warranted 
in placing weight on in silico or in vitro functional data 
(the concordance between epidemiological associa-
tions and measurable functional effects has historically 
been poor111), such findings can provide a rapid route 
towards direct functional confirmation of the implicated  
molecular mechanisms.

In the absence of such insights, further progress will 
generally require exhaustive examination of the region, 
first, to generate a comprehensive inventory of regional 
variation, and second, to use fine-mapping approaches to 
define the signals with the strongest statistical claims112. 
Despite recent advances in sequencing and genotyping, 
both are daunting tasks.

Resequencing plans need to be tailored to the 
desired objective (BOX 4). Implementation raises a host 
of unanswered issues related to optimal study design 
and data interpretation. There are numerous choices to 
be made: first, about the samples to be resequenced, that 
is, the balance of HapMap individuals versus disease 
cases and whether to favour cases carrying the known 
susceptibility variant or haplotype; second, the depth of 
resequencing to be undertaken, which defines the allele 
spectrum recovered; and finally, the merits of extend-
ing the search for rare variants beyond well-annotated 
sequence, given the difficulties associated with obtain-
ing robust evidence for a statistical or functional effect 
for rare variants in unannotated sequence (BOX 4).

Related challenges lie in the development of effi-
cient strategies for fine mapping that take into account 
the desire both to discriminate between highly corre-
lated variants (to determine which variants are causal) 
and to search for additional, independent signals. 
Given the relatively high price of custom genotyping,  

 Box 5 | Challenges in following-up confirmed associations

Dramatic advances in identifying gene variants that influence human complex traits 
have yet to be accompanied by consistent progress in understanding the mechanisms 
by which these variants influence disease. For most associations, systematic efforts to 
identify the underlying causal variant or variants have yet to be reported. There is a 
clear need to establish tools — both bioinformatic and experimental — to support 
efforts to map confirmed associations and thereby maximize the biological 
information gathered from GWA studies. On the bioinformatics side, for example, 
tools are required to display association data in the context of the increasingly rich 
functional annotation of the genome (for example, the WGAViewer126).

On the experimental side, the availability of genome-wide profiles of gene 
expression and alternate splicing across a range of human tissues and/or cell lines, 
alongside dense genotype data from the same samples, would be a valuable 
resource. Even for major cell types these do not currently exist108–110. The paucity of 
such information for multiple brain tissues and defined populations of primary 
lymphocytes, for example, impedes progress in defining causal mechanisms in 
neuropsychiatric, infectious and autoimmune diseases. In some situations, we might 
expect causal variants to have quite marked effects on expression phenotypes; in 
other situations, their molecular consequences will be subtle, or restricted in terms 
of space (for example, tissue specific) or time (for example, to particular periods of 
development). Although it is straightforward to resequence the exons of a gene  
of interest to screen for non-synonymous coding variants, establishing whether a 
variant some hundreds of kilobases from the gene could be exerting modest effects 
on the expression of specific transcripts in particular tissues is far more challenging, 
and far less amenable to large-scale genome-wide analysis.
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Mendelian randomization
An analytical approach that 
allows one to test for a causal 
relationship between two 
phenotypes that show 
observational associations, but 
are subject to confounding: 
Mendelian randomization 
makes use of the random 
segregation of susceptibility 
alleles at meiosis to explore 
causality in a model that is 
freed from most sources of 
confounding.

exhaustive fine-mapping efforts across multiple sig-
nals can cost far more than the original GWA scan. 
Multi-stage approaches to fine mapping (homing 
in on causal variants through successive rounds of 
genotyping, whereby ever fewer SNPs are typed in 
increasingly large samples) might seem efficient but 
they can involve costly, time-consuming investment 
in successive assay designs. Given inter-ethnic differ-
ences in patterns of lD and mutational histories (see 
above), samples from other ethnicities (especially 
those of African origin) should be extremely valuable 
tools for fine mapping, and considerable effort is being 
expended to identify samples on the scale required for 
robust inference.

Function and translation. once all the statistical evi-
dence has been extracted and putative causal variants 
are identified, substantial challenges remain (BOX 5). 
Prominent among these is the need to obtain func-
tional confirmation that the variants implicated are 
truly causal, and to reconstruct the molecular and 
physiological mechanisms whereby they have an impact 
on the phenotype of interest. Because many of the  
complex-trait susceptibility variants so far identified map 
to sequence of unknown function that is some distance 
from the nearest coding sequence5–9,15,17,25–27, the design 
of contextually appropriate functional assays is far from 
straightforward. Improved tools for the functional anno-
tation of the genome (for example, from the eNCoDe 
project)107 will be essential, but generating such annota-
tions for all tissues and/or cells of biomedical relevance 
remains a monumental task.

It is also important to move beyond the selected 
samples used in the discovery phase and evaluate the 
impact of the variants on unbiased population sam-
ples. From an epidemiological perspective, consensus 
guidelines have been proposed to grade the strength of 
the epidemiological evidence for a given association113. 
These take into account the extent of the evidence, the 
consistency of the replication and the protection from 
bias in the accumulated data. Population-based studies 
will enable research to establish whether, using studies of 
the joint effects of genes and environment and Mendelian 
randomization approaches114, genetic discoveries can be 
used to pinpoint modifiable environmental exposures. 
Such analyses will require very large study samples for 
which both genetic and environmental exposures are 
accurately measured58,59.

Finally, the ultimate objective of genetic research 
lies in the translation of the findings into advances in 
clinical care (BOX 6). The mechanistic insights generated 
by gene discovery might identify new therapeutic tar-
gets and lead to novel pharmaceutical and preventative 
approaches. In addition, there is growing expectation 
that individual patterns of genetic predisposition will 
be of value in health-care delivery (personalized medi-
cine). For many, but not all115, diseases the modest effect 
sizes of the variants emerging from GWA studies limits 
the degree to which this is possible (BOX 7). Higher pen-
etrance, lower frequency variants that are not detected 
by current GWA approaches but are amenable to new 
high-throughput sequencing efforts might prove more 
valuable in this respect116.

Reporting and deposition
Because wide availability of data is central to the success 
of many of these endeavours, there has been substan-
tial investment in structures to support data-sharing 
between investigators, such as the National Institutes 
of Health (NIH)-supported dbGAP programme117, and 
the european Bioinformatics Institute-based european 
Genotyping Archive. Moreover, the NIH recently 
announced a policy for sharing of data obtained in NIH 
supported or conducted GWA studies. Although aggre-
gate or summary data (genotype frequencies and asso-
ciation p values by group as provided by the WTCCC 

Box 6 | Clinical translation of findings from GWA studies

Recent successes in the identification of susceptibility variants that underlie many 
important biomedical phenotypes has increased confidence that this information 
can be translated into clinically beneficial improvements in management. There  
are two principal routes through which such translation might be effected (see  
the figure).

In the first, identification of novel causal pathways provides new opportunities for 
clinical advances of generic benefit to all those suffering from (or at risk of) the 
disease concerned. This might involve identification of therapeutic targets within 
causal pathways, leading to novel therapeutic agents for treatment and/or 
prevention. Identification of causal pathways should bolster efforts to identify 
biomarkers, allowing improved disease prediction and monitoring of disease 
progression and treatment response. Sometimes, genetic discoveries can highlight 
important environmental contributors to disease, enabling public-health-based 
disease prevention measures. Note that even modest genotype–phenotype 
associations (provided they are confirmed as genuine through extensive replication 
and functional studies) can offer significant new translational opportunities through 
the identification of novel modifiable pathways.

The second translational route lies through using knowledge of individual patterns 
of disease predisposition (for example, through genetic profiling) to develop more 
personalized approaches to disease management. The major limitation here, for 
most complex traits, is that the variants so far identified explain only a small 
proportion of individual variation in disease risk39. Consequently, for most 
individuals (all but the small proportion who have inherited extremely high or low 
numbers of susceptibility alleles for a given disease), genetic profiling using 
currently available markers provides limited information on disease risk beyond that 
available from conventional risk factors. If genetic profiling is to become widely 
applied in clinical practice, we need to: improve the accuracy of risk prediction 
through identification of additional susceptibility variants; demonstrate, by 
prospective studies, that profiling results in beneficial modifications of medical care 
and/or personal responsibility; and establish an appropriate regulatory environment 
for the use of such tests.
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and the National Cancer Institute Cancer Genetic 
Markers of Susceptibility (CGeMS) studies, for exam-
ple1,118) provide an excellent and convenient substrate 
for many data-sharing purposes, individual-level data 
(including raw signal-intensity information) provide a 
more valuable resource that supports a wider range of 
analyses (see above).

lack of transparency and incomplete reporting of 
both data and study methods have raised concerns in 
many health research fields119–121, and poor reporting 
has been associated with biased estimates of effect122. 
The importance of transparency was emphasized by 
the NCI-NHGRI Working Group on Replication in 
Association Studies91. To help remedy this problem, some 
groups have advocated the development of evidence- 
based reporting guidelines similar to the consolidated 
standards of reporting trials (CoNSoRT) guidelines 
for the reporting of randomized clinical trials123. In 

particular, the epidemiology community has recently 
developed a reporting guidance (strengthening the 
reporting of observational studies in epidemiology; 
STRoBe) for cross-sectional, case–control and cohort 
studies124: extension of this guidance to genetic associa-
tion studies is in an advanced stage of development (see 
the Human Genome epidemiology Network (HuGeNet)  
website).

In addition to formal deposition mechanisms, 
there has been a proliferation of investigator networks, 
designed to exploit the potential for novel signal dis-
covery through integration of data from large numbers 
of GWA scans that are informative for traits of inter-
est1,9,34,35,38,103,125. For phenotypes such as height and body 
mass index, which are widely and reliably recorded in 
many cohorts undergoing GWA analysis, aggregate 
data from several tens of thousands of scans has facili-
tated detection of variants with small effects34,35,38. Such 
data-sharing efforts will be vital for the success of the 
coming wave of cohort-based GWAs, each of which 
will allow the analysis of large numbers of phenotypes. 
In this situation, focused replication of the best signals 
for each trait becomes increasingly unattractive, and 
enlarging sample size through accumulation of addi-
tional GWA data seems to be the most feasible option, 
at least for initial discovery and validation efforts. 
Management of these large, dynamic and overlapping 
consortia can be challenging, particularly with respect 
to ensuring that all those involved (particularly jun-
ior investigators) obtain appropriate credit for their  
contributions.

Summary and conclusions
The past year has seen a remarkable shift in our capac-
ity to dissect the genetic basis of common diseases and 
continuous traits of biomedical significance. The GWA 
approach has proven itself extremely well-suited to the 
identification of common SNP-based variants with 
modest to large effects on phenotype. Careful imple-
mentation and appropriate interpretation has resulted in 
discoveries that have proven more robust than many had 
anticipated. Growing numbers of novel susceptibility loci 
have been identified, shedding light on the fundamental 
mechanisms that influence disease predisposition, and 
much is being learned about the complex relationships 
between changes in genome sequence and phenotypic 
variation.

However, we are far from the end of this particular 
voyage, and recent discoveries are nothing more than 
initial forays into the terra incognita of our genomes. We 
remain unable to explain more than a small proportion 
of observed familial clustering for most multifactorial 
traits, a fact that emphasizes the need to extend analy-
sis to a more complete range of potential susceptibility 
variants, and to support more explicit modelling of the  
joint effects of genes and environment. Many of  
the greatest challenges to be faced in the years ahead 
lie not so much in the identification of the association 
signals themselves, but in defining the molecular mecha-
nisms through which they influence disease risk and/or  
phenotypic expression.

Box 7 | Low-frequency variants and disease susceptibility

Genome wide association (GWA) studies are proving adept at identifying common 
variants contributing to the inherited component of common diseases. Almost all 
such variants seem to have modest effect sizes and, even when combined, their 
impact on overall population variance and predictive power is limited127. There is a 
marked disparity between the extent of overall familial aggregation observed for 
many common diseases and that attributable to variants identified to date. In type 2 
diabetes, known variants collectively account for a sibling relative risk of ~1.07 in 
Europeans, way below the overall figure (~3) from epidemiological studies4–9.

Although the identification of additional common risk variants (at the already  
identified loci, and the others that are yet to be found) will explain some of this deficit, 
one emerging hypothesis anticipates that a significant proportion of this ‘missing 
heritability’ will be attributable to low-frequency variants with intermediate 
penetrance effects, which have been largely refractory to conventional  
gene-discovery approaches116.

Consider a hypothetical variant with a minor allele frequency of 1% and an allelic odds 
ratio of 3. Given a disease prevalence of 5%, the penetrance of the risk homozygote 
(~45%) is too low to support Mendelian segregation and detection by traditional linkage 
approaches. At the same time, the low risk-allele frequency means low detectability by 
GWA1,87. Yet this variant has a stronger effect on familial risk than most known common 
susceptibility variants: a locus-specific sibling relative risk of 1.038 comfortably exceeds 
that of the strongest diabetes-susceptibility effects — that of transcription factor 7-like 2 
(TCF7L2), which is strongly associated to diabetes, is approximately 1.025. As few as 
thirty such variants across the genome would jointly generate a sibling relative risk >3, 
and offer impressive predictive power (a discriminative accuracy of 77%)127. Novel 
resequencing technologies, allied to large-scale association testing, provide the 
potential to identify and characterize variants with these properties and evaluate their 
contribution to disease risk. In the first instance, such efforts are likely to be targeted to 
genes already implicated in disease susceptibility.
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