
GENETICS | REVIEW

Genetic Diversity and Societally
Important Disparities

Noah A. Rosenberg1 and Jonathan T. L. Kang
Department of Biology, Stanford University, Stanford, California 94305-5020

ABSTRACT The magnitude of genetic diversity within human populations varies in a way that reflects the sequence of migrations by
which people spread throughout the world. Beyond its use in human evolutionary genetics, worldwide variation in genetic diversity
sometimes can interact with social processes to produce differences among populations in their relationship to modern societal problems.
We review the consequences of genetic diversity differences in the settings of familial identification in forensic genetic testing, match
probabilities in bone marrow transplantation, and representation in genome-wide association studies of disease. In each of these three
cases, the contribution of genetic diversity to social differences follows from population-genetic principles. For a fourth setting that is not
similarly grounded, we reanalyze with expanded genetic data a report that genetic diversity differences influence global patterns of human
economic development, finding no support for the claim. The four examples describe a limit to the importance of genetic diversity for
explaining societal differences while illustrating a distinction that certain biologically based scenarios do require consideration of genetic
diversity for solving problems to which populations have been differentially predisposed by the unique history of human migrations.
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THE publication of an article suggesting that geographic
patterns in economic development across countries world-

wide have been driven by genetic diversity (Ashraf and Galor
2013) has generated considerable controversy (Callaway
2012; Chin 2012; Gelman 2013; Feldman 2014). Connecting
data on measures of genetic diversity in different human pop-
ulations to proxy measures of economic success, Ashraf and
Galor (2013) argued that an optimal level of genetic diversity
exists for enhancing the economic development of nations and
that the optimum lies in an intermediate range characteristic
of populations of Europe and Asia. In response to prepublica-
tion reports of the upcoming paper, a large interdisciplinary
group of scholars vehemently criticized the methods and con-
clusions, objecting to the line of inquiry on genetic determina-
tion of economic outcomes on the grounds of its potential for
misuse (d’Alpoim Guedes et al. 2013).

This controversial attempt to apply a population-genetic
variable in an analysis of a societal outcome provides an

occasion to examine the ways in which population differences
in genetic diversity might contribute to consequential societal
differences across populations. Several such examples have
been reported. After reviewing the origins of differences across
human populations in levels of genetic diversity, we describe
three documented cases in which the variation in genetic di-
versity across populations interacts with social processes to
produce population differences in important outcomes. We
then return to the economic development study, investigating
a genetic data set that expands beyond the data examined by
Ashraf and Galor (2013). Our analysis finds that even when
the samemethods used by Ashraf and Galor are applied to this
larger data set, no support for their claims of a major role of
genetic diversity in economic development is evident. We dis-
cuss the characteristics that distinguish between this case in
which no role for genetic diversity is observed and the three
examples in which genetic diversity is seen to be important.

Genetic Diversity in Humans

Measuring genetic diversity

We first clarify that the concept of genetic diversity of interest
in the examples we consider is the diversity of genetic types
observed among members of a population—and not the di-
versity in a collection of populations that is contributed by
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differences across the constituent groups. This concept of the
genetic diversity of a population is computed from data on
that population alone, and it is unaffected by the composition
of the larger data set of populations used for its calculation.

Within-population genetic diversity is most commonly
measured by expected heterozygosity, the probability that
two draws from a population at a specific site in the genome
will produce different genetic types. Formally, suppose that
a genetic locus l has Kl distinct alleles, with nonnegative
frequencies pl1; pl2; . . . ; plKl such that

PKl
i¼1pli ¼ 1. The

expected heterozygosity of locus l is defined by

Hl ¼ 12
XKl

i¼1

p2li: (1)

For a collection of L loci, the mean expected heterozygosity
across loci is

H ¼ 1
L

XL
l¼1
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XKl
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p2li

!
: (2)

When the allele frequencies pli are estimated from data rather
than treated as known parameters, a correction is introduced
in order to obtain statistically unbiased estimators. Suppose
that a sample of nl observations is collected at locus l and that
nli of them have type i, with

PKl
i¼1nli ¼ nl. Then p̂li ¼ nli=nl

estimates the frequency of allele i, and expected heterozygos-
ity is estimated by (Nei 1987)

Ĥl ¼
nl

nl 2 1

 
12

XKl

i¼1

p̂2li

!
: (3)
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Expected heterozygosity is a sensible diversity measure,
with larger values indicating greater diversity (Figure 1). It
has a natural interpretation in diploid organisms, measuring
the probability that the two copies of a locus in an individual,
treated as independent and identically distributed draws
from a population with a specified allele frequency distribu-
tion, are distinct.

Origins of human genetic diversity

Surveys of genetic diversity in indigenous human populations
worldwide have documented considerable variation in the
level of heterozygosity present within a population (Bowcock
et al. 1994; Rosenberg et al. 2002; Prugnolle et al. 2005;
Ramachandran et al. 2005). These differences in heterozy-
gosity follow a geographic pattern, with a systematic linear
decline occurring as a function of increasing distance from
East Africa, measured over land-based routes. The highest
heterozygosities appear in populations from Africa, followed
by populations from the Middle East, Europe, and Central
and South Asia. Populations of East Asia have still lower

heterozygosities, and Pacific Islander and Native American
populations, at the greatest geographic distance from Africa
over migration paths traversed in human evolution, are the
least heterozygous. The linear decrease in heterozygosity
with increasing distance from Africa is a strong and replicable
relationship, achieving correlation coefficients near 20.9 in
a variety of studies of different genetic markers and sets of
populations (Prugnolle et al. 2005; Ramachandran et al.
2005; Conrad et al. 2006; Jakobsson et al. 2008; Li et al.
2008; Pemberton et al. 2013).

Population-genetic models have explained the pattern of
variation in human genetic diversity, with a decrease in
heterozygosity at a greater distance from Africa, in relation
to the relatively recent history of human migrations starting
from an African origin. Under these models, during a geo-
graphic expansion,newregionsareoccupiednotbyexpansion
in the rangeof anexisting population in its entirety but instead
by a recursive procedure of new settlement formation by
subgroups that separate from their parental colonies (Ram-
achandran et al. 2005; Liu et al. 2006; DeGiorgio et al. 2009,
2011; Deshpande et al. 2009). Each founding group carries
only a subset of the total genetic diversity of its parental
population, leading to a loss of genetic diversity in the new
group (Figure 2). Newly established populations then gener-
ate their own subgroups that again separate to found new
populations, and the founding process is repeated anew. In
this model of serial founder effects, each founding event pro-
duces a loss of genetic diversity, so the populations at the
greatest distance from the starting point possess the lowest
heterozygosity.

Although other processes, such as admixture between
populations and changes in population size, also affect genetic
diversity patterns (DeGiorgio et al. 2009; Pickrell and Reich
2014), the general utility of serial founder models in human
evolution as a first approximation for explaining the global
pattern of genetic diversity is supported both by the strength
of the correlation between heterozygosity and distance from

Figure 1 Expected heterozygosity as a measurement of diversity. Each
axis in the unit square represents an allele frequency distribution, with
each area representing the probability that an individual has a particular
ordered pair of alleles. The shaded regions represent heterozygous com-
binations. The two loci shown represent different expected heterozygos-
ity levels (equation 1). (A) A smaller heterozygosity (0.540). (B) A larger
heterozygosity (0.725).
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Africa and by an observation that within large geographic
regions, source regions more accessible to colonizing popu-
lations along likely migration routes also have greater hetero-
zygosity than more distant regions—for example, southern
Europe compared to northern Europe (Lao et al. 2008), coastal
Melanesia compared to inland Melanesia (Friedlaender et al.
2008), and northwest South America compared to the Ama-
zon region (Wang et al. 2007). Further, serial founder models
explain patterns in statistics of genetic differentiation and al-
lelic correlation along the genome that other, substantially
different models cannot explain (DeGiorgio et al. 2009, 2011).

We can therefore observe that population-genetic models
of the spread of human populations explain the variation
across human populations in levels of genetic diversity and
that this variation is informative about theparticularhistory of

human migrations. We now turn to examining the effects of
these genetic diversity differences on a variety of societally
important scenarios.

Examples: Interactions of Genetic Diversity and Social
Factors

Familial identification in forensic genetic testing

A comparatively new form of forensic DNA testing uses crime-
scene samples to identify unknown suspects through genetic
relatedness profiling (Bieber et al. 2006; Butler 2011;
Gershaw et al. 2011). When no perfect DNA match of a crime-
scene sample to an entrant in a database of potential suspects
is found, investigators can test for a partial match to assess

Figure 2 The serial founder model in human evolution. (A) A schematic of the model. Each color represents a distinct allele. Migration events outward
from Africa tend to carry with them only a subset of the genetic diversity from the source population, and some alleles are lost during migration events.
(B) An example of the model at a particular genetic locus, TGA012. Each set of vertical bars depicts the allele frequencies in a population, with different
colors representing distinct alleles. Within continental regions, populations are plotted from left to right in decreasing order of expected heterozygosity
at the locus [equation (3)]. This figure illustrates the loss of alleles across geographic regions; Native Americans all possess the same allele. The allele
frequencies are taken from Rosenberg et al. (2005).
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whether the crime-scene sample might be from a genetic
relative of an entrant in the database. A positive test leads
investigators to consider as potential suspects genetic rela-
tives of the person with the partial match.

The identification of relatives through partial matches
raises new statistical and population-genetic issues largely
absent in the standard setting of forensic profiling via exact
matches. In the basic forensic scenario, a crime-scene sample
is tested at a number of DNA markers that is small, but large
enough that a false-positive match of a genetically unrelated
noncontributor to the crime-scene sample at all the loci is
extremely unlikely. Forensic marker systems are designed so
that the false-positive probability is acceptably low for use as
evidence in court irrespective of the actual alleles found in the
genetic profile.

In familial identification, the false-positive rate is substan-
tially higher because familial identification generally must
rely on databases and marker sets designed for the simpler
exact-match problem. In the absence of genotyping error,
across a DNA marker set, the sibling of the actual contributor
of a DNA sample, for instance, will match the crime-scene
sample for a substantial fraction of the alleles. A sibling is
expected to share both alleles identically by descent at a quar-
ter of all loci—inheriting the same pair of alleles from shared
parents—and one allele identically by descent at half the loci.
Thus, the fraction of alleles shared with the sibling is one-half
or more: on average, half the alleles are shared identically by
descent, and an extra contribution arises from the chance
that alleles not shared identically by descent have the same
state nonetheless. The sibling, however, is not expected to
match all alleles with the crime-scene sample; on average,
at a quarter of loci, siblings share neither allele identically by
descent, and these generally will not have the same allelic
type. A partial match of the DNA profile is therefore expected
for the sibling, with different loci having no, one, or two
matching alleles. Thus, for a fixed marker set, because a true
genetic relative of the contributor has only a partial match
with the crime-scene sample, the chance of a false-positive
match—the probability that a nonrelative also achieves the
less stringent partial-match threshold—greatly exceeds the
probability that the same nonrelative is a false exact match.

The underlying genetic diversity in a population affects the
probability that anonrelativeof theDNAcontributorproduces
a false-positive partial match close enough to appear to be
a relative of the contributor of the crime-scene sample. Con-
sider a hypothetical low-diversity population in which all
members are homozygous at some locus for the same allele,
implying a complete absenceof genetic diversity. Suppose also
that the contributor to the crime-scene sample has this same
homozygous genotype. The locus contains no identifying in-
formation, and every individual in the populationhas an exact
match at the locus—both genetic relatives and nonrelatives of
the contributor.

Now consider a hypothetical high-diversity population
with many rare alleles, so that individuals tend to have more
distinctive genotypes at the locus. In this population, the

contributor’s homozygous genotype would be rare rather
than common, andmost of the individuals who possess a par-
tial or exact match to the contributor at the locus could only
do so if they had obtained the same alleles through shared
familial lines of descent. The locus is highly informative for
individual identification in this population, and it is primarily
the genetic relatives who have a partial match.

These two extreme scenarios convey the idea that different
levels of genetic diversity confer varying degrees of individual
identifiability. The more genetically homogeneous a popula-
tion is, the less identifying information an ostensible genetic
match provides, and the conclusion that a partial match
indicates a direct familial genetic relationship is more likely
to represent a false-positive result (Figure 3).

The connection between genetic diversity and the distin-
guishability of genetic relatives and unrelated individualswas
demonstrated by Rohlfs et al. (2012, 2013), who studied the
effect of differences in genetic diversity on the extent to
which relatives and nonrelatives can be distinguished in a fa-
milial identification context, employing the 13 Combined
DNA Index System (CODIS) forensic identification loci widely
used as the standardmarker panel in forensic testing. Relying
on allele-frequency distributions at the CODIS loci for each of
five population samples that represent different levels of ge-
netic diversity—in decreasing order, largely following the
serial founder model (Figure 2), African American, Latino,
European American, Vietnamese, and Navajo—the authors
simulated unrelated pairs of individuals and sibling pairs,
generating sibling pairs by transmitting alleles through ped-
igrees with shared unrelated parents. Next, they computed
a likelihood ratio to quantify whether a partial genetic match
between two individuals is more likely under the hypothesis
of a familial relationship—a sibling relationship in this case—
or under the hypothesis of a chance partial match of unre-
lated individuals. For each population, Rohlfs et al. (2012)
measured a “distinguishability statistic” based on the likeli-
hood-ratio distributions for the simulated unrelated pairs and
sibling pairs, arguing that significant overlap between the
two distributions indicates reduced potential to distinguish
between siblings and unrelated pairs—and more chance par-
tial matches of nonrelatives—as more pairs are assigned like-
lihood ratios compatible with either category.

Computing thedistinguishability statistic in eachof thefive
populations, Rohlfs et al. (2012) found a strong relationship
across populations between population-level heterozygosity
and the distinguishability measure (squared correlation of
0.95), confirming that a higher false-positive rate occurs in
low-diversity populations. The authors then took their result
one step further. In performing the likelihood-ratio computa-
tion, a distribution of allele frequencies must be specified for
the population to which the crime-scene sample belongs. In
practical conditions, this population might be unknown, so
the allele frequencies used in the likelihood-ratio computa-
tion might be misspecified. The authors examined the distin-
guishability statistic in the context of misspecified allele
frequencies, for each choice of population using each of the
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four other populations to misspecify the allele frequencies. In
simulations with the misspecified allele frequencies, they
found that distinguishability was lower than in the case in
which allele frequencies were properly specified, particularly
when individuals from a less genetically diverse population
were erroneously assumed to belong to a more genetically
diverse population.

The analysis of Rohlfs et al. (2012) and subsequent work
extending beyond sibling relationships (Rohlfs et al. 2013)
illustrate that in familial identification based on a fixed
marker system shared across all groups, populations with
lower genetic diversity are likely to have higher false-positive
match rates: the genetic diversity of the population has a di-
rect impact on the familial identification setting. The results
further suggest that similar issues are relevant to other foren-
sic problems involving partial matches, such as when the
crime-scene sample represents a DNA mixture from many
individuals rather than a single person, potentially with de-
graded DNA, missing genotypes, or genotyping errors (Bald-
ing 2013; Steele and Balding 2014). In this context, which
relies on partial matches to determine whether a test individ-
ual might be included in the mixture, the false-positive prob-
ability that a noncontributor is erroneously regarded as a
contributor is likely to depend on genetic diversity in a paral-
lel manner to the familial identification setting. As in familial
identification, a chance partial match of a mixed crime-scene
sample with a random individual has greater probability in
a low-diversity population, so the probability of a false-positive
partial match is likely to exceed the corresponding probability
in a more diverse population.

The demonstration of variability across populations in
false-positive match rates is purely population-genetic, using
population-genetic theory to evaluate the influence of genetic

relatedness and population allele frequencies on the proba-
bility of DNA matches, but the result exists in a context in
which substantial differences exist across groups in the prob-
ability that an individual appears in forensic databases. In the
United States, representation of an individual in a database is
related to the past experience of the individual with criminal
investigation, a factor that varies across populations. The
probability that an individual has a close genetic relative in
a forensic database—and therefore has a DNA profile acces-
sible to investigators through familial identification—then
also varies by population. The potential inequalities that
could arise from this variation have been much discussed
(Greely et al. 2006; Garrison et al. 2013). The analysis of
Rohlfs et al. (2012), however, indicates that outcomes of
familial identification analyses depend not only on inequality
across groups in representation in criminal investigations,
which affects the chance that a genetic relative of the DNA
contributor is in the database, but also on the difference
across groups in genetic diversity, which affects the distin-
guishability of DNA profiles from genetic relatives and un-
related individuals. Genetic diversity and its interaction with
variation across populations in representation in the justice
system are therefore both essential to determining and im-
proving the utility and fairness of a familial identification test.

Bone marrow transplantation matching

Genetic diversity has a quite different impact in another area
that also relies onmatch probabilities: transplantationmatch-
ing. In medical transplantation, an immunologic match be-
tween a recipient and donor reduces the risk that the recipient
immune system will recognize the donor cells as foreign and
therefore produce an undesirable immune response. The
problem is particularly salient in bone marrow transplanta-
tion, which involves a transplant of donor cells from the
immune system itself—cells that can recognize the recipient
as foreign.

In bonemarrow transplantation, the degree of matching is
assessedusingmultilocusgenotypesat a setofproteinvariants
encoded by the genes of the human leukocyte antigen (HLA)
system on chromosome 6. TheHLA system contains six highly
polymorphic loci whose alleles determine the core of an in-
dividual HLA multilocus genotype and that are generally
matched for bone marrow transplantation. The number of
alleles at highly polymorphic HLA loci can run into the
thousands, and as of 2014, the database of HLA alleles
(Robinson et al. 2013) records more than �12,000 distinct
alleles across the six major genes. An already large number of
potential types at each locus increases to tens or hundreds of
millions as multilocus types are considered to ensure a lower
chance for rejection.

Owing to the fact that HLA alleles are codominantly
expressed, the aim in transplantation matching is to match
asmanyalleles as possible betweendonor and recipient. Close
genetic relatives of a potential recipient have the greatest
match probability because a recipient and a relative share
a substantial fraction of their genomes identically by descent.

Figure 3 Familial identification in forensic testing. A contributor to
a crime scene DNA sample has genotype AA at a locus. A sibling of
the contributor is likely to share more alleles with the contributor than
are unrelated individuals; the probability of an exact match at a locus, as
shown, exceeds 25% for a sibling. This figure illustrates that in a low-
diversity population, the chance of a false-positive match of an unrelated
individual to a crime-scene contributor at a locus is greater than in a high-
diversity population. In the low-diversity population, two nonrelatives
have exact matches, and one has a partial match, whereas in the high-
diversity population, the nonrelatives do not have exact or partial
matches.
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Given the high genetic diversity that exists in the HLA system,
however, the probability is low that two unrelated individuals
would match perfectly at important loci.

Unlike the setting of forensic familial identification, in
which low genetic diversity generates problematic false-
positive matches, the challenge of transplantation matching
is exacerbated by high diversity in the population towhich the
recipient belongs: a population with high levels of HLA ge-
netic diversity will possess a large number of HLA multilocus
combinations. Each unique combination then appears at
a lower frequency, and the probability that any given pair
of individuals has an exact HLAmatch is reduced. Conversely,
a population that is more homogeneous at the HLA loci has
fewer unique combinations, and the chance of a match for
a random pair of individuals is increased.

In the United States, the National Marrow Donor Program
(NMDP) registry contains HLA profiles ofmillions of potential
donors, each ofwhomcan be queried if amatching recipient is
in need of a donation. In parallel with the analysis of forensic
profiles by Rohlfs et al. (2012), analyses of NMDP profiles
identify an effect of population differences in genetic diversity
on match probabilities for HLA (Cao et al. 2001). They also
illustrate the interaction between genetic diversity and social
phenomena in influencing the probability that a match exists
for potential recipients from each of a series of populations.

An investigation by Bergstrom et al. (2009) highlights the
key issues. Using NMDP three-locus genotype frequencies
reported by Mori et al. (1997), Bergstrom et al. (2009) com-
puted the theoretical match probabilities for pairs of HLA
profiles drawn from each of five populations. High-diversity
African Americans, with their high fraction of African ances-
try at the source of the serial founder expansion (Figure 2),
had the lowest theoretical match probability, a value substan-
tially lower than in the other groups. In increasing order, the
match probabilities were greater in the Hispanic and Asian-
American populations and greatest in white and Native
American groups. Although the groups studied by Bergstrom
et al. (2009) and Rohlfs et al. (2012) do not align exactly (nor
do they align with the indigenous groups in the global char-
acterization of genetic diversity in Figure 2), the pattern
of decreasing transplantation match probabilities largely
reverses the sequence describing increasing numbers of
false-positive matches in familial identification. Similar gen-
eral patterns are observed when considering theoretical
match probabilities between recipient HLA profiles chosen
from one population and donor profiles chosen from another.

As in the analysis of Rohlfs et al. (2012), the theoretical
computation of HLAmatch probabilities from transplantation
database frequencies is a calculation under a model con-
structed from population-genetic principles showing that
from population-genetic considerations alone, higher-diversity
populations are expected to have lower transplantation
match probabilities. Also similar to the analysis of Rohlfs et al.
(2012), for the practical setting, population-genetic match
probabilities appear in a context of population differences
in the frequencies with which individuals are represented

in transplantation databases. Bergstrom et al. (2009, 2012)
comment on a number of factors that vary across populations:
the overall size of the population, the rate at which members
of a population choose to contribute profiles to the database,
and the rate at which potential donors participate in a trans-
plantation when queried. Incorporating these factors, includ-
ing the nontrivial role played by the difficulty of characterizing
HLA variation in minority populations with smaller sizes, the
chance that no donor match is found is greatest for African
Americans, followed by the Asian-American, Hispanic, Native
American, and white groups. As in the forensic case, the pop-
ulation genetics of genetic diversity, together with societal fac-
tors that vary across populations, contributes to the quantity of
ultimate interest. Both genetic diversity and its interaction
with factors that affect participation in transplantation are im-
portant in increasing the probability that any given recipient
can find a successful match.

Genome-wide association studies

Athirdareaof influence fordifferences ingeneticdiversity is in
representation in thedevelopment andapplicationof research
resources inhumangenomics.Genome-wideassociation stud-
ies (GWA studies) are genomic investigations of the statistical
correlations between genetic variation among members of
a population and an observed phenotype (Hirschhorn and
Daly 2005; McCarthy et al. 2008; Stranger et al. 2011). In
humans, these studies, which seek to uncover genetic factors
that underlie a phenotype, typically compare the genotypes
of two groups of individuals—cases, who have a disease, and
control individuals, who do not. An allele found more fre-
quently in cases than in controls is said to be associated with
the disease. In recent years, GWA studies have proliferated
rapidly, producing thousands of successes in the identifica-
tion of disease-associated loci (Hardy and Singleton 2009;
Hindorff et al. 2009).

GWA studies rely on linkage disequilibrium (LD), the
associationbetweenallelic states at different loci alonga chro-
mosome: association with a disease occurs not only for a risk
mutation but also for other alleles located proximate on the
genome to the susceptibility allele (Figure 4). Thus, nearby
alleles in the ancestor in whom a disease mutation originally
occurred are transmitted to diseased descendants with
greater probability than are distant alleles. At the same time,
recombination breaks down the correlation—the LD—
between the disease allele and distant alleles. As a result,
among diseased descendants, alleles that remain associated
with the disease allele—and, consequently, with the disease
phenotype—are likely to lie close on the genome to the dis-
ease mutation. The premise that LD enables variants to “tag”
their neighbors (Carlson et al. 2004; International HapMap
Consortium 2005) and, hence, to facilitate the discovery of
disease variants through the separate associations of a dis-
ease variant with both the disease phenotype and a tag-SNP
proxy, made it possible to begin performing GWA studies
without requiring full genome sequences in every sampled
individual.
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LD varies across human populations, however, with pop-
ulations that possess a greater diversity of haplotypes having
a lower probability that a genotype at one site on the genome
will be informative about other nearby sites. In parallel with
thedecrease in genetic diversitywith increasingdistance from
Africa, a decrease in haplotype diversity and a concomitant
increase in LD exist with increasing distance from Africa
(Conrad et al. 2006; Jakobsson et al. 2008; Li et al. 2008).
This pattern has had the consequence that sets of tag SNPs
used in early GWA studies are less successful in tagging ge-
netic variants in low-LD African populations at the source of
the serial founder human expansion (Figure 2), generating
reduced potential for uncovering disease associations in
these groups (Conrad et al. 2006; Debakker et al. 2006).
The problem has persisted as tag-SNP approaches have been
replaced with genotype imputation studies, which rely on LD
to impute unmeasured genotypes that can be tested for dis-
ease association in a similar manner to genotypes that have
actually been measured: low-LD African populations gener-
ate lower imputation accuracy (Huang et al. 2009, 2011).

The heterogeneity in genetic diversity, as reflected in the
low LD for African populations and its consequences in gen-
erating relatively low tag-SNP “portability” and genotype
imputation accuracy, has rendered African genomes compar-
atively less well suited to GWA studies based on LD. Partly as
a result of this phenomenon, GWA studies have been imple-
mented unevenly across human populations, generating con-
cerns that the benefits of human genetics research will not
accrue equally in different groups (Need and Goldstein 2009;
Rosenberg et al. 2010; Bustamante et al. 2011). Most GWA
studies have focused on populations of European ancestry,
and other populations have been underrepresented, quite
dramatically in some cases.

Differences in genetic diversity that have influenced GWA
studies have interacted with sociological factors in the scien-
tific community that have also prioritized the use of European

samples (Rosenberg et al. 2010; Teo et al. 2010). Because
GWA studies are expensive, early studies focused on a small
number of populations for which shared sets of genomic
resources—standardized marker panels, shared controls,
and shared databases of densely genotyped samples with
deep characterization of genetic variation—could be gener-
ated. Well-developed networks of investigators in countries
of Europe and North America with the resources to conduct
GWA studies generally had easiest access to patient popula-
tions of European descent, further contributing to an
emphasis on these populations in early studies. Though the
incorporation of non-European populations has increased,
initial inequalities across populations in GWA representation
have persisted because subsequent investigations continue to
build on patient populations, funded projects, and researcher
networks from earlier studies (Burchard 2014).

This interaction of a form of genetic diversity and societal
variables in the structure of the scientific research enterprise
has led to a situation in which one estimate recorded 96% of
GWA subjects as having European ancestry (Bustamante et al.
2011). Though this disparity has a basis partly in variation in
access to populations generated by the structure of scientific
collaboration networks and the distribution of research fund-
ing, it has been exacerbated by considerations of genetic di-
versity; indeed, a feedback loop exists between differences in
societal variables and genetic diversity phenomena because
initial differences among populations in practical and techni-
cal feasibility have contributed to overemphasis on European
populations in developing technical capabilities, making fur-
ther European overrepresentation enticing to researchers
and funding panels. In parallel with the variation across
populations observed in the familial identification and bone
marrow transplantation scenarios, a consequential practical
difference across populations in representation in genomic
studies arises from the interaction of genetic diversity with
social factors.

An Effect of Genetic Diversity on Economic Development?

We have described three examples that each involve an in-
teraction of differences in genetic diversity with population
differences in society to produce a difference in an important
phenomenon—false-positive matches in forensic genetics,
match probabilities in transplantation, and research efforts
in GWA studies. Each of these settings involves a problem
that is fundamentally biological—DNA-based identification,
transplantation, and genetics of disease. In each setting, prin-
ciples from population-genetic theory in which aspects of
genetic diversity feature prominently underlie the contribu-
tion of genetic diversity: theories of forensic and transplan-
tation matching explicitly produce an inverse relationship
between match probabilities and genetic diversity, and
GWA statistics rely onmodels of the decay of genetic diversity
and production of LD during human migrations. When ge-
netic diversity appears as a variable in a context in which no
similar theory exists, in which theoretical constructs are

Figure 4 The principle of linkage disequilibrium that underlies genome-
wide association studies. This figure depicts a series of individuals with
a disease, tracing the genealogy of the section of the chromosome on
which a disease-causing allele is located. A disease allele (orange) occurs
on an ancestral chromosome containing several marker alleles (yellow,
brown, red, and purple). Recombination events (arrows) break down
correlations between the disease mutation and marker alleles, so the
closer a marker allele is to the mutation, the more likely it is to be found
in present-day disease cases.

Review 7

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/201/1/1/5930028 by guest on 17 July 2022



drawn from outside population genetics, is genetic diversity
similarly important? How far do implications of genetic di-
versity extend for societal phenomena, in scenarios that
a priori have no evident connection to biology? We have
reexamined the study of Ashraf and Galor (2013) to evaluate
their hypothesis that genetic diversity is a key determinant of
economic development.

Economic development

Ashraf and Galor (2013) advanced the claim that genetic
diversity levels have had a persistent long-term effect on
comparative economic development. They argued that ge-
netic diversity at the high and low extremes—characteristic
of African and Native American populations, respectively—
has been detrimental for development, whereas the interme-
diate genetic diversity of European and Asian populations
has, however, facilitated development. In other words, eco-
nomic development has a “hump-shaped” negative quadratic
relationship with genetic diversity.

To argue for their hypothesis, Ashraf and Galor (2013) relied
on short-tandem-repeat geneticmarkers genotyped in 53world-
wide populations from the Human Genome Diversity Panel
(Ramachandran et al. 2005; Rosenberg et al. 2005), using
expected heterozygosities previously reported for each popula-
tion according to equation (4). They adopted the distances of
Ramachandran et al. (2005) of each population fromEast Africa,
taking into account geographic waypoints to approximate mi-
gratory paths of human populations outward from Africa.

In their economic analysis, the 53 populations were
grouped into 21 present-day countries based on geographic
coordinates. For each of these countries, an “observed diver-
sity”was computed as the mean of the expected heterozygos-
ities of populations sampled within the country. Several
ordinary-least-squares regressions then were performed us-
ing as the dependent variable the natural logarithm of pop-
ulation density in 1500 CE, treated as a proxy for economic
development, and as the independent variables the observed
diversity, its square, and control variables relating to geogra-
phy and to the local timing of the Neolithic transition. The
regressions produced a generally significant quadratic rela-
tionship between the dependent variable and observed di-
versity, even after conditioning on various control variables
(Table 1 and Supporting Information, Table S1). The authors
used these results to claim that economic development has
a statistically significant “hump-shaped” dependence on ob-
served diversity.

Next, Ashraf and Galor (2013) extended their analysis to
a worldwide sample of 145 countries. For most of the coun-
tries, however, information on expected heterozygosity was
unavailable. In place of actual data on expected heterozygos-
ity for most of these countries, the authors used as the ob-
served diversity the predicted expected heterozygosity from
the linear regression of expected heterozygosity in 53 popu-
lations with migratory distance from East Africa. They justi-
fied this choice on the grounds that expected heterozygosity
has a strong relationship with distance from East Africa, en-

abling heterozygosity predictions for unsampled populations
and, because the 21-country analysis produced a significant
economic effect for diversity, suggesting the plausibility of
using an estimated value of this quantity in place of actual
genetic data. It was then possible in the absence of genetic
data on additional countries to enable incorporation of eco-
nomic variables on those countries.

To calculate predicted diversity, for each of the 145 coun-
tries, the migratory distance from East Africa of its capital city
was substituted into the regressionof expectedheterozygosity
onmigratorydistance.Usingpredicteddiversity in regressions
of the economic development variable similar to those per-
formedwithobserveddiversity, abroadly significantquadratic
relationship between economic development and predicted
diversity was observed, even after controlling for other var-
iables. On the basis of this analysis, Ashraf and Galor (2013)
claimed that a “hump-shaped” effect of genetic diversity on
economic development from the 53-population data set was
a general worldwide phenomenon.

The reanalysis

We sought to examine the argument of Ashraf and Galor
(2013) on its own terms using their assumptions, methods,
economic variables, and regression models—all contested
elsewhere (d’AlpoimGuedes et al.2013;Gelman2013; Feldman
2014)—and changing the analysis only by expanding the
genetic data. In particular, we revisited their analysis with
a recently assembled data set that largely subsumes the ear-
lier 53-population data set. These data consisted of 237 pop-
ulations studied by Pemberton et al. (2013), excluding from
a larger set of 267 the populations with unknown or ambig-
uous geographic assignments, populations with sample size
#5, and populations from Micronesia and Samoa, for which
Ashraf and Galor (2013) did not provide values of the eco-
nomic variables. The 237 populations represent 39 countries.
From Pemberton et al. (2013), we used the expected hetero-
zygosities reported using 645 loci in the full 5795-individual
data set; the calculation is analogous to the earlier expected
heterozygosities computed with 783 loci and 1048 individu-
als (Ramachandran et al. 2005).

Repeating the regressions of the economic development
variable on “observed diversity”—with the only difference
from Ashraf and Galor (2013) being use of the data on 237
populations in 39 countries instead of 53 populations in 21
countries—we observe that the quadratic relationship is no
longer close to statistically significant (Table 1). The magni-
tude of the effects for observed diversity and its square are
much reduced, and none of the regressions involving either
variable generates significance (Table S2). This result sug-
gests that the “hump-shaped” effect of observed diversity was
limited by the particular set of countries and populations
covered by the earlier available data: with an expansion of
the number of countries, the observed diversity variable fails
to produce an effect.

We further investigated this claim in two ways. First, we
subsampled only the 136 populations studied by Pemberton
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et al. (2013) from countries with geographic coordinates that
placed them in the earlier set of 21 countries, repeating the
same regressions, again computing observed diversity for
a country by averaging values for its constituent populations.
This analysis represents an expansion of the data used by
Ashraf and Galor (2013), but examining only the same 21
countries they considered. For some models, as in the analy-
sis of Ashraf and Galor (2013), the 21-country analysis con-
tinues to produce a significant effect for observed diversity
and its square when more populations are considered (Table
1 and Table S3).

Next, to assess whether the significant result for observed
diversity from the 21-country subset was anomalous among
possible choices of countries, we considered alternative 21-
country subsamples of the Pemberton et al. (2013) data set,
repeating the regressions for each subsample. We randomly
selected 1000 subsamples of 21 countries among the 39
countries available, maintaining the continental distribution
in the original 21-country data set (eight in Africa, four in
Europe, three in the Americas, and six in Asia and Oceania).
Note that because the Pemberton et al. (2013) data set does
not cover any countries in Europe beyond the earlier genetic
data, all 1000 subsets use the same four European countries
(France, Italy, Russia, and the United Kingdom). If a regres-
sion represents a true effect of observed diversity on the de-
pendent variable irrespective of the subsample of countries,
then we would expect a low P-value in most of the 1000
replicates. If, however, the 21-country subsample of Ashraf
and Galor (2013) is an anomalous false-positive result, then
we expect relatively few replicates to produce small P-values,
with a uniform distribution of P-values across replicates oc-
curring under the null hypothesis that observed diversity has
no effect.

For each regression, P-values for the observed diversity
and observed diversity squared variables in the 1000 subsam-
ples appear in Figure 5. For both variables, across regressions,
only at most�27% of subsamples produce a significant effect
at the 5% level. For the most complete regression, regression

5, accounting for nongenetic covariates and continent fixed
effects, the P-value distributions are nearly uniform, with 4–
5% of replicates producing P, 0.05. Thus, had a different set
of 21 countries been used by Ashraf and Galor (2013), effects
for observed diversity and its square are unlikely to have been
seen.

This analysis thus finds that the 21-country set of Ashraf
and Galor (2013) is unlike both the enlarged 39-country data
and most other 21-country data sets in producing significant
effects for genetic diversity. Recalling that Ashraf and Galor
(2013) used significance in the 21-country analysis as a basis
for replacing actual values of genetic diversity with “pre-
dicted diversity,” our reanalysis both contests the result of
the first component of the genetic diversity analysis of Ashraf
and Galor (2013) and undermines the rationale for the sec-
ond component. We can conclude that even if the suitability
of the methods and data of Ashraf and Galor (2013) to study-
ing the effect of genetic diversity on economic development is
left unquestioned, the “hump-shaped” effect for genetic di-
versity does not persist with an expanded genetic data set.

Perspective

The variability of genetic diversity across different human
populations, a vestige of the history of human migrations, is
consequential for population differences in a variety of set-
tings of societal interest. Thesedifferences across populations,
each of which might be viewed through a purely social-
scientific lens, involve a population-genetic contribution of
the properties of genetic diversity.

In the familial identification, transplantation matching,
and GWA representation examples that we have examined,
addressing inequalities across populations in the phenom-
ena of ultimate interest requires a particular effort to over-
come not only the sociological determinants of inequality
across populations but also the intrinsic inequalities that
arise from differences in genetic diversity. Thus, Bergstrom
et al. (2009) study the relative value of efforts to enhance

Table 1 P-values for multiple regressions of “log population density in 1500 CE” on “observed diversity” and “observed diversity
squared”

Regression 1: genetic
variables only

Regression 4: genetic variables
and nongenetic covariates

Regression 5: genetic variables, nongenetic
covariates, and continent fixed effects

53 populations in 21 countries: same countries and populations as Ashraf and Galor (2013)
Observed diversity 0.000483*** 0.00856*** 0.0609*
Observed diversity squared 0.000634*** 0.0124** 0.0973*

136 populations in 21 countries: same countries as Ashraf and Galor (2013), more populations
Observed diversity 0.000233*** 0.00916*** 0.101
Observed diversity squared 0.000297*** 0.0122** 0.147

237 populations in 39 countries: more countries, more populations
Observed diversity 0.515 0.145 0.642
Observed diversity squared 0.639 0.266 0.719

The nongenetic covariates are “log Neolithic transition timing,” “log percentage of arable land,” “log absolute latitude,” and “log land suitability for agriculture.” Each
variable was computed and employed as in Ashraf and Galor (2013) using their regression models and the values they reported for nongenetic variables. Regression models
1, 4, and 5 are the three models of Ashraf and Galor (2013) that use genetic data. The analysis of 53 populations in 21 countries recomputes the same analysis as in Table 1
of Ashraf and Galor (2013) using scripts they provided. Significance at the 10, 5, and 1% levels is represented by *, **, and ***, respectively. Full regression tables appear in
Table S1, Table S2, and Table S3.
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representation of high-diversity African Americans not only
for the goal of achieving equality of representation but also
because each African American added can have a greater
chance than other individuals of providing the only database
match for a potential transplantation recipient. For GWA
studies, not only is reduction of inequality in participation
a desirable goal achievable via mechanisms such as funding
priorities emphasizing underrepresented groups, improve-
ment in the ultimate outcome—genetic understanding of dis-
ease for all populations—can be achieved by generating new
genomic resources for additional populations (International
HapMap 3 Consortium 2010), developing statistics for en-
hancing GWA designs and analyses in underrepresented
and high-diversity populations (Teo et al. 2010; Huang
et al. 2011), and employing studies that capitalize on unique
features of genetically admixed groups (Winkler et al. 2010;
Seldin et al. 2011). In forensic familial identification,
improvements toward the goal of equally minimal false-
positive matches in forensic casework can be achieved by
dissemination in the legal system of knowledge about false-
positive matches and the role of genetic diversity, transpar-
ency in applications of familial identification methods, and
development of new marker sets with lower error rates
(Rohlfs et al. 2012, 2013; Garrison et al. 2013).

Each of these settings can be viewed from an economic
perspective: cost differences across populations can arise
from the differential pursuit by law enforcement agencies
of false-positive forensic identifications, the variable rates of
success or failure to find transplantation matches, and the
potential inequalities in the success of treatments arising from
genomic medicine. Indeed, Bergstrom et al. (2009, 2012)

adopted an explicitly economic perspective in analyzing
improvements in transplantation matching, estimating a cost
and benefit for each additional registrant added to the NMDP
database.

Nevertheless, despite this view that economic consequen-
ces can be traced to variation in genetic diversity, we have
found no support for the claim of Ashraf and Galor (2013)
that genetic diversity has been important in contributing to
differences across human populations in levels of economic
development. Our reanalysis has focused exclusively on the
genetic data in their study, not repeating objections raised
elsewhere about their demographic and economic data, sta-
tistics, and interpretations, or about the suitability of their
data and genetic variables to addressing the question at hand
(d’Alpoim Guedes et al. 2013; Gelman 2013; Feldman 2014).
Whereas genetic diversity affects differences among human
populations in other scenarios, reproducing the work of Ash-
raf and Galor (2013) on its own terms using expanded ge-
netic data challenges the claim for a role of genetic diversity
in economic development.

What distinguishes the forensic, transplantation, andGWA
scenarios in which genetic diversity has a demonstrable im-
pact from the economic development problem? The former
scenarios are each tightly connected tobiological phenomena.
For these cases, computations frompopulationgenetics prom-
inently feature genetic diversity; in fact, it can be argued
that population genetics suggests that proper analysis of
population differences in these scenarios is incomplete with-
out consideration of genetic diversity. In the case of eco-
nomic development, however, genetic diversity is merely
another variable alongside nongenetic variables in a multiple

Figure 5 The distribution across 1000 replicate subsamples of regression P-values for the influence of observed genetic diversity and its square on
a proxy for economic development. Each panel represents a regression model (regressions 1, 4, or 5, as in Table 1 and Table S1, Table S2, and Table S3)
and a variable whose significance is tested (observed diversity or its square). Each replicate subsample considers 21 countries. The red bar indicates the
fraction of subsamples for which the P-value is smaller than 0.05.
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regression; although it is plausible that genetic diversity could
affect the regression in thesameway thatnongenetic variables
plausibly contribute to economic development, principles
from population genetics produce no theory of the economic
development of nations and thus do not contribute to this
plausibility. Thework of Ashraf and Galor (2013) is one of the
first among recent studies seeking to identify an effect of a
variable from population genetics on global economic out-
comes. Given the novelty of population-genetic variables in
attempts to address long-standing economic questions, such
studies are likely to proliferate and deepen in methodologic
sophistication. As genetic diversity and its interaction with
social phenomena are considered in new contexts across dif-
ferent areas of inquiry, however, it will be important to take
note of the distinction between fundamentally nonbiological
uses of population-genetic variables and cases in which their
utility is grounded in biology.
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GENETIC DIVERSITY AND SOCIETALLY IMPORTANT DISPARITIES - supplement S1 
 

 
 

 Log population density in 1500 CE 

 (1) (2) (3) (4) (5) 

Continent fixed effects No No No No Yes 

Number of countries 21 21 21 21 21 

 
Genetic variables 

     

Observed diversity 

413.504***   225.443*** 203.817* 

(97.320)   (73.781) (97.637) 

0.000483   0.00856 0.0609 

Observed diversity 
square 

−302.647***   −161.160** −145.720* 

(73.344)   (56.155) (80.413) 

0.000634   0.0124 0.0973 

 
Non-genetic variables 

     

Log Neolithic 
transition timing 

 2.396***  1.214*** 1.135 

 (0.272)  (0.373) (0.658) 

 3.92 × 10−8  0.00578 0.112 

Log percentage of 
arable land 

  0.730** 0.516*** 0.545* 

  (0.281) (0.165) (0.262) 

  0.0188 0.00749 0.0617 

Log absolute latitude 

  0.145 −0.162 −0.129 

  (0.178) (0.130) (0.174) 

  0.427 0.230 0.475 

Log land suitability for 
agriculture 

  0.734* 0.571* 0.587 

  (0.381) (0.294) (0.328) 

  0.0711 0.0729 0.101 

      
Optimum diversity 0.683   0.699 0.699 

R2 0.417 0.540 0.568 0.894 0.903 

 

Table S1. Regressions of “log population density in 1500 CE” on a series of variables, as performed by 
Ashraf & Galor (2013). Each variable was employed and computed as in Ashraf & Galor (2013), using 
values they reported for the non-genetic variables and 53 population-specific values of genetic diversity 
from Ramachandran et al. (2005) and Rosenberg et al. (2005). The 53 populations represent 21 
countries. Each entry of the table contains an estimate of a regression coefficient, a heteroscedasticity-
robust standard error in parentheses, and the P-value. Significance at the 10, 5, and 1 percent levels is 
represented by *, **, and ***, respectively. Each column represents a regression performed with 
different subsets of independent variables. “Optimum diversity” is the diversity value at which the log 
population density is at its maximum. This table has been recomputed as in Table 1 of Ashraf & Galor 
(2013) using scripts they provided.   
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GENETIC DIVERSITY AND SOCIETALLY IMPORTANT DISPARITIES - supplement S2 
 

 
 

 Log population density in 1500 CE 

 (1) (2) (3) (4) (5) 

Continent fixed effects No No No No Yes 

Number of countries 39 39 39 39 39 

 
Genetic variables 

     

Observed diversity 

30.943   37.691 28.855 

(47.026)   (25.230) (61.403) 

0.515   0.145 0.642 

Observed diversity 
square 

−17.143   −23.088 −19.796 

(36.238)   (20.408) (54.530) 

0.639   0.266 0.719 

 
Non-genetic variables 

     

Log Neolithic 
transition timing 

 2.076***  1.693*** 1.324*** 

 (0.362)  (0.380) (0.354) 

 1.45 × 10−6  9.63 × 10−5 0.000796 

Log percentage of 
arable land 

  0.991*** 0.456** 0.487** 

  (0.262) (0.190) (0.205) 

  0.000574 0.0220 0.0240 

Log absolute latitude 

  −0.167 −0.173 −0.334* 

  (0.197) (0.181) (0.184) 

  0.404 0.348 0.0799 

Log land suitability for 
agriculture 

  0.253 0.540* 0.497** 

  (0.379) (0.269) (0.224) 

  0.510 0.0535 0.0345 

      
Optimum diversity 0.903   0.816 0.729 

R2 0.101 0.458 0.443 0.762 0.825 

 

Table S2. Regressions of “log population density in 1500 CE” on a series of variables, computed as in 
Table S1, except that 237 populations from Pemberton et al. (2013), representing 39 countries, were 
used. Unlike in Table S1, the observed diversity and observed diversity square variables are not 
significant. 
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GENETIC DIVERSITY AND SOCIETALLY IMPORTANT DISPARITIES - supplement S3 
 

 
 

 Log population density in 1500 CE 

 (1) (2) (3) (4) (5) 

Continent fixed effects No No No No Yes 

Number of countries 21 21 21 21 21 

 
Genetic variables 

     

Observed diversity 

598.189***   335.137*** 265.482 

(130.670)   (110.942) (148.199) 

0.000233   0.00916 0.101 

Observed diversity 
square 

−432.029***   −237.527** −183.002 

(96.698)   (82.622) (117.198) 

0.000297   0.0122 0.147 

 
Non-genetic variables 

     

Log Neolithic 
transition timing 

 2.396***  1.257*** 1.183* 

 (0.272)  (0.371) (0.655) 

 3.92 × 10−8  0.00442 0.0984 

Log percentage of 
arable land 

  0.730** 0.500** 0.459* 

  (0.281) (0.172) (0.252) 

  0.0188 0.0114 0.0957 

Log absolute latitude 

  0.145 −0.212 −0.145 

  (0.178) (0.145) (0.208) 

  0.427 0.167 0.501 

Log land suitability for 
agriculture 

  0.734* 0.588* 0.631* 

  (0.381) (0.297) (0.324) 

  0.0711 0.0680 0.0773 

      
Optimum diversity 0.692   0.705 0.725 

R2 0.411 0.540 0.568 0.891 0.900 

 

Table S3. Regressions of “log population density in 1500 CE” on a series of variables, computed as in 
Table S1, except that 136 populations from Pemberton et al. (2013), representing the same 21 
countries in Table S1, were used. In models 1 and 4 but not 5, the observed diversity and observed 
diversity square variables are significant. 
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