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Incomplete Genealogy
I Widely used statistical methods for the analysis of large-scale

genetic data often assume independent samples or samples
with known pedigree relationships; e.g., standard linkage
analysis and association analysis methods
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Incomplete Genealogy
I Misspecified and cryptic relationships can invalidate many of

these methods if correlated genotypes among relatives are not
properly accounted for in the analysis
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Identifying Relative Pairs

I In principle, we could determine the relationship between two
individuals by simply looking at the percentage of the genome
that are identical by descent (IBD) for a pair where:

I parent-offspring sharing: 50% of genome IBD
I sibs: 50% of genome (on average) IBD
I avuncular: 25% of genome (on average) IBD

I However, we do not directly observe IBD sharing.

I With SNP genotyping data or DNA sequencing data, we can
estimate IBD sharing.
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IBD Sharing Probabilities and Kinship coefficients

I IBD sharing probabilities and kinship coefficients are
commonly used measures of relatedness for pairs of individuals

I For any pair of outbred individuals i and j, let δijk be the
probability that i and j share k alleles IBD at a locus where k
is 0, 1, or 2.

I Let φij to be the kinship coefficient for i and j. The kinship
coefficient is the probability that a random allele selected from
individual i and a random allele from individual j are IBD.

I Note that in outbred populations, φ = 1
2δ

ij
2 + 1

4δ
ij
1
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Relatedness Measures for a Few Relationships

Relationship φij δij2 δij1 δij0
Parent-Offspring 1

4 0 1 0
Full Siblings 1

4
1
4

1
2

1
4

Half Siblings 1
8 0 1

2
1
2

Uncle-Nephew 1
8 0 1

2
1
2

First Cousins 1
16 0 1

4
3
4

First-Cousins Once Removed 1
32 0 1

8
7
8

Unrelated 0 0 0 1
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Relatedness Inference in Homogenous Population Samples

Genome Screen Data to Identify Relative Pairs

I High-throughput genotyping data facilitated new opportunities
for the detection of pedigree errors as well assessing the degree
of relatedness among sampled individuals in genetic studies.

I A number of methods have been proposed for identifying
relatives using genome-screen data for samples from a single
homogenous population
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Relatedness Inference in Homogenous Population Samples

Inference for Close Relatives from a Homogenous
Population

I McPeek and Sun (2000) developed an approximate likelihood
method (using HMM) to identify relative pairs for close
relationships

I Purcell et al. (2007) proposed a method of moments
estimator for IBD sharing probabilities using genome-screen
data (implemented in the PLINK software)

I Choi, Wijsman, and Weir (2009) proposed using an EM
algorithm to estimate the IBD probabilities and kinship
coefficients

I Thornton and McPeek (2010) proposed a method of moments
estimator for kinship coefficients by estimating genotypic
correlations across the genome
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Relatedness Inference in Homogenous Population Samples

Identification of More Distant Relatives from a
Homogenous Population

I A variety of methods have been developed for identifying long
shared IBD segments for inference on more distant relatives

I Stankovich et al. (2005) extended HMM method of McPeek
and Sun for more distant relative pairs

I Huff et al. (2011)

I Browning and Browning (2013)

I and others...
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Relatedness Inference in Homogenous Population Samples

Estimating Kinship Coefficients via Genotypic
Correlations

I Thornton and McPeek (2010) proposed a method of moments
approach for estimating kinship coefficients from SNP
genotyping data in samples from homogenous populations
based on genetic correlations.

I Consider two individuals i and j the sample. Assume genome
screen data is available for i and j at M autosomal markers,
indexed by m = 1, 2, . . . ,M .

I Let gim be the genotype value at marker m for individual i,
where gim takes values 0, 1, or 2, corresponding to the
number of reference alleles individual i has.

I Let pm be the frequency of allelic type 1, where 0 < pm < 1.
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Relatedness Inference in Homogenous Population Samples

Estimating Kinship Coefficients in Homogenous
Populations

I It can be shown that the covariance of gim and gjm at marker
m is Cov(gim, gjm) = 4pm(1− pm)φij , where φij is the
kinship coefficient for i and j.

I Rearranging terms, we see that φij =
Cov(gim,gjm)
4pm(1−pm)

I This relationship holds for markers across the genome (but
with the allele frequency distribution changing for each
marker).

I It follows that the kinship coefficients can be estimated for
pairs of individuals using genotype data from a genome-screen.
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Relatedness Inference in Homogenous Population Samples

Estimating Kinship Coefficients in Homogenous
Populations

I For any pair of individuals i and j, we can estimate φij using
method of moments where

φ̂ij =
1

M

M∑
m=1

(gim − 2p̂m)(gjm − 2p̂m)

4p̂m(1− p̂m)

where p̂m is an allele frequency estimate for the reference
allele at marker m

I Note that this estimator is essentially the same (up to a
constant factor) as the previously discussed GRM estimator
used for population structure inference with PCA! It is also
the same estimator that is used to construct a GRM for
association testing with linear/logistic mixed models that will
be discussed later!
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Relatedness Inference in Diverse Populations

Relatedness Inference in Structured Populations

I The aforementioned algorithms for relatedness inference
assume population homogeneity.

I This assumption is often untenable. Many genetic studies,
(such as TOPMed) have samples from populations with
different ancestries.

I relationship estimation methods that assume homogeneity can
give extremely biased results in the presence of population
structure.

I The degree of relatedness among related and unrelated sample
individuals with similar ancestry can be systematically inflated
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Relatedness Inference in Diverse Populations

KING: Relatedness inference with Distinct Ancestral
Subpopulations

I The KING estimator (Manichaikul A et al., 2010) discussed in
the previous lecture was developed for estimating kinship
coefficients for pairs of individuals from ancestrally distinct
subpopulations

I KING-robust estimates kinship coefficients for a pair of
individuals by using the shared genotype counts as a measure
of the genetic distance between the pair.

I The method does not require allele frequency estimates at the
marker: is based on allele sharing counts for individuals

I A limitation of the method is that it gives biased kinship
estimates for individuals with different ancestry, including
close relatives who are admixed.
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Relatedness Inference in Diverse Populations

Relatedness Inference in Admixed Samples

I Genetic models used to identify related individuals from large
scale genetic data often make simplifying assumptions about
population structure – either random mating or simple
structures.

I In reality, human populations do not mate at random nor are
there simple endogamous subgroups.

I While large-scale genetic studies have primarily examined
populations of European ancestry, more recent studies,
including TOPMed, involve multi-ethnic cohorts with samples
from admixed populations.
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Relatedness Inference in Diverse Populations

Recent versus Distant Genetic Relatedness

I Distinguishing familial relatedness from population structure
using genotype data is difficult, as both manifest as genetic
similarity through the sharing of alleles.

I It is important to note that relatedness and ancestry are a
continuum

I Two alleles that are considered to be identical copies (e.g.,
IBD) of an ancestral allele is relative to some choice of
previous reference point in time, with the implication being
that more distant allele sharing prior to that time is not
considered in the determination of IBD
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Relatedness Inference in Diverse Populations

Recent versus Distant Genetic Relatedness
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Relatedness Inference in Diverse Populations

Deconvolution of Recent and Distant Genetic
Relatedness
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Relatedness Inference in Diverse Populations

PC-Relate: Relatedness Inference in Diverse
Samples

I The PC-Relate method of Conomos et al. (2016) estimates
IBD sharing probabilities and kinship coefficients in the
presence of unknown population structure

I Let gim and gjm be the previously defined genotype value at
marker m for individuals i and j respectively.

I For all individuals in the sample, PC-Relate uses a regression
model to estimate the expected genotypic values for each
marker m conditional on i’s inferred ancestry using principal
components from PC-AiR.

I A regression model is used to estimated the expected
genotypic count, where the top principal components (PCs)
from PC-AiR are included as predictors.
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Relatedness Inference in Diverse Populations

PC-Relate: Relatedness Inference in Diverse
Samples

I We denote µim = 1
2E[gim|PCs] to be the individual specific

allele frequency for individual i at marker m based on the
PCs. Note that 2µim is the expected value of gim conditional
on i’s ancestry that is represented by the PCs from the
regression model.

I The PC-Relate estimator of φij for i and j is obtained via
method of moments:

φ̂Aij =

∑M
m=1(gim − 2µ̂im)(gjm − 2µ̂jm)∑M

m=1 4
√
µ̂im(1− µ̂im)µ̂jm(1− µ̂jm)
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Relatedness Inference in Diverse Populations

PC-Relate: Relatedness Inference in Diverse
Populations

I PC-Relate also estimates IBD sharing probabilities

I In all calculations, baseline differences in genotypic values that
are due to ancestry differences (i.e., the PCs) are regressed
out (or adjusted for)

I PC-Relate kinship coefficients and IBD sharing probabilities
are robust to population structure, admixture, and HWE
departures

I See Conomos et al. (2016) for more details.
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Relatedness Inference in TOPMed

TOPMed Phase I: Relatedness Inference

I TOPMed cohorts are multi-ethnic

I There is also extensive relatedness in TOPMed cohorts due to
family-based-sampling and samples from founder populations
(Amish).

I Also likely a number of cryptic relationships within and among
the cohorts.

I The PC-AiR algorithm was first applied to TOPMed Phase I
data for inference on population structure in the presence of
relatedness

I PC-Relate was used to estimate relatedness in the TOPMed
Phase I samples where the top PCs from PC-AiR were
adjusted for in the analysis.
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Relatedness Inference in TOPMed

TOPMed Phase I: PC-Relate Kinship by Study
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Relatedness Inference in TOPMed

TOPMed Phase I: PC-Relate Kinship Across Studies
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