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Glossary

Bayesian inference Statistical inference
approach based on the combination of prior
information and evidence (i.e., observations)
for estimation or hypothesis testing. In Bayes-
ian analysis the prior information is updated
with the experimental data to generate the pos-
terior distribution of unknowns, such as model
parameters. The name “Bayesian” comes from
the use of the Bayes’ theorem in the updating
process.

Breeding value A measure of the genetic merit
of an individual for breeding purposes.

Genetic correlation The correlation between
traits that is caused by genetic as opposed to
environmental factors. Genetic correlations
can be caused by pleiotropy (genes that affect
multiple traits simultaneously) or by linkage
disequilibrium between genes affecting the dif-
ferent traits.

Genomic selection Genomic selection is a form
of marker-assisted selection in which genetic
markers covering the whole genome are used
such that all quantitative trait loci (QTL) are in
linkage disequilibrium with at least one
marker.

Heritability (narrow sense) The fraction of the
phenotypic variance that is due to additive
genetic effects.

Infinitesimal genetic model A genetic model
that assumes that a trait is influenced by a
very large (effectively infinite) number of
loci, each with infinitesimal effect.

Linkage disequilibrium Non-random associa-
tion of alleles at two or more loci, leading to
combinations of alleles (haplotypes) that are
more or less frequent in a population than
would be expected from a random formation
of haplotypes from alleles based on their
frequencies.

Mixed models A mixed-effects model (or sim-
ply mixed model) is a statistical model
containing both fixed and random effects.
Such models are useful in a wide variety of
disciplines in the physical, biological, and
social sciences, especially for the analysis of
data with repeated measurements on each sta-
tistical unit or with measurements taken on
clusters of related statistical units.

Population genetics The study of allele fre-
quency distribution and change under the influ-
ence of the four main evolutionary processes:
selection, genetic drift, mutation, and
migration.

Quantitative genetics The study of complex
traits (e.g., production and reproductive traits,
disease resistance) and their underlying genetic
mechanisms. It is effectively an extension of
simple Mendelian inheritance in that the com-
bined effect of the many underlying genes
results in a continuous distribution of pheno-
typic values or of some underlying scale or
liability thereof.
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Definition of the Subject

The term Animal Breeding refers to the human-
guided genetic improvement of phenotypic traits
in domestic animals such as livestock and com-
panion species [1]. The genetic improvement of
production and reproductive traits, as well as of
disease resistance traits, is essential for the sus-
tainability of animal agriculture operations, not
only in terms of their economic viability, but
also increased animal welfare and decreased envi-
ronmental impact of production. Animal breeding
is based on principles of Quantitative Genetics
[2–4] and aims to increase the frequency of favor-
able alleles and allelic combinations in the popu-
lation, which is achieved through selection of
superior individuals and specific mating systems
strategies. Selection methods and mating strate-
gies are developed by combining principles of
quantitative and population genetics with sophis-
ticated statistical methods and computational
algorithms for integrating phenotypic, pedigree,
and genomic information, along with the utiliza-
tion of reproductive technologies that allow for
larger progeny cohorts from superior animals as
well as shorter generation intervals.

Through selection and mating of superior ani-
mals the frequency of favorable alleles is
increased, so the overall additive genetic merit of
a population is increased through successive gen-
erations [5]. Selection can be regarded as the most
important tool for the improvement of lines or
breeds within a specific species in terms of addi-
tive genetic effects. Such lines or breeds can be
then inter-mated such that non-additive genetic
effects such as dominance and epistasis can be
exploited through specific inter- and intra-locus
allelic combinations [1–4].

The theoretical foundations of population and
quantitative genetics can be traced back to the
work of R. A. Fisher, J. B. S. Haldane, and
S. Wright. The rational animal breeding has its
origins in the work of J. L. Lush, who made
substantial contributions to animal genetics and
biometrics research and is generally referred to as
the father of modern scientific animal
breeding [1].

More recent theoretical developments in pop-
ulation and quantitative genetics have been fos-
tered by researchers such as C. C. Cockerham,
C. W. Cotterman, J. F. Crow, W. J. Ewens, W. G.
Hill, M. Kimura, G. Malécot, T. Nagylaki, and
B. S. Weir, among others. A landmark in the area
of animal breeding and genetics is the develop-
ment of mixed model methodology, first proposed
by C. R. Henderson, which has been used exten-
sively in many applications in the field, ranging
from breeding value prediction under the infini-
tesimal assumption to gene mapping and segrega-
tion analysis. Most recently, Bayesian methods,
Monte Carlo, and re-sampling techniques have
been employed to fit and evaluate complex
models in different contexts, including nonlinear
systems, generalized models, survival analysis,
and situations in which the number of parameters
or covariates surpasses the number of observa-
tions, such as in association analysis and whole-
genome marker-assisted selection using high den-
sity panels of single nucleotide polymorphism
(SNP) markers.

Introduction

Since domestication, artificial selection has
greatly changed the shape, size, and production
and reproduction performance of livestock and
companion animal species. For example, there is
an incredible diversity of canine breeds –and
between dogs and their wolf ancestor – from
differences in overall appearance to behavior and
their ability to perform specific tasks. Although to
a lesser degree, the same can be observed in many
other companion animal species, such as cats and
horses. With livestock species, tremendous
genetic changes have been accomplished as well,
markedly in the last 60 years or so. For example,
Fig. 1 depicts the average growth curves of
broilers from selected and control populations.
These results refer to a population of birds
selected for over 40 years for increased growth
rate, and another population kept without artificial
selection, with both groups derived from the same
base population, starting in 1957 [6]. In the exper-
iment presented in Fig. 1, the two groups of birds
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were fed diets typical of 1957 and 2001, such that
the interaction between genetics and feed, as well
as the genetic contribution to the phenotypic dif-
ferences observed, could be assessed. It is seen
that the 2001 genetics group presented an average
body weight of about 4 kg at 56 days of age, while
its 1957 counterpart weighed only 800 g or
so. Moreover, it is shown that 85–90% of this
fivefold improvement is accounted for by genet-
ics, with the remaining 10–15% to nutrition.

Similar levels of genetic improvement can also
be observed in many other species, such as swine,
beef and dairy cattle, and some species of fish. For
example, as illustrated in Fig. 2, the average
breeding value for milk yield in the US Holstein

or Red & White populations has increased over
4400 kg in the last 60 years.

Such genetic improvements have been accom-
plished mostly through the selection and breeding
of superior animals, which can be chosen using
specific statistical methods such as those
discussed in the subsequent sections. In this chap-
ter, the discussion will focus on methods devel-
oped for normally distributed (Gaussian) traits,
under the infinitesimal assumption, i.e., that traits
are affected by a large (virtually infinite) number
of genes of small effects [2–4], although this
assumption is somewhat alleviated in marker
assisted selection, which is discussed later.
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Quantitative Methods
Applied to Animal
Breeding, Fig. 1 Average
growth curves of
commercial broilers. Blue
and red lines represent birds
with “2001” and “1957”
genetics, respectively. Solid
and dashed lines represent
birds fed diets typical of
2001 or 1957, respectively.
(Adapted from Ref. [6])

Quantitative Methods
Applied to Animal
Breeding, Fig. 2 Genetic
trend for milk yield in the
US Holstein or Red &
White populations. Males
and females average
breeding values are in blue
and red, respectively;
genetic base refers to cows
born in year 2015. (Source:
Council on Dairy Cattle
Breeding – CDCB; https://
www.uscdcb.com/)
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Principles of Selection

Basic Genetic Model for Quantitative Traits
The basic genetic model can be expressed as [2,
3, 7]:

yi ¼ mþ gi þ ei ð1Þ

where yi is the phenotypic value of animal i
(i.e., the animal’s performance for a specific
trait); m is the population mean (average perfor-
mance of the animals); gi is the genotypic value of
the animal, expressed as a deviation from the
mean; and ei is a term representing environmental
factors affecting the animal’s performance, also
expressed as a deviation from the mean. Hence, it
is assumed that E[gi] ¼ 0 and E[ei] ¼ 0, such that
E[yi] ¼ m, where E[.] represents the expectation
function. Moreover, the variance of yi is given by
Var yi½ � ¼ s2y ¼ s2g þ s2e , where s

2
g ¼ Var gi½ � and

s2e ¼ Var ei½ � are the genetic and environmental
variances, respectively. Normally distributed
traits, i.e., phenotypic traits with a bell-shaped
distribution, are generally represented as

yi ~ N m, s2y
� �

. Such distribution has a probability

density function that can be described as [2, 4]:

f yið Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2y

q exp � 1

2s2y
yi � mð Þ2

( )
,

for �1 < yi <1, �1 < m <1, and s2y > 0,

which can be represented as in Fig. 3. To simplify
the notation used throughout the text, it is noted
that either random variables or their realizations
will be represented with lower case letters. How-
ever, the context should make it clear to the reader
when a letter represents one or the other.

The genetic component gi of Model (1) can be
partitioned into additive (ai) and non-additive (ci)
genetics effects, i.e., gi ¼ ai þ ci, where ai is also
called “breeding value,” and ci refers to the “gene
combination value,” which encompasses interac-
tion effects between alleles within each locus
(i.e., dominance effects) or between alleles in
different loci (i.e., epistatic effects).

Hence, Model (1) can be expressed also as:

yi ¼ mþ ai þ ci þ ei, ð2Þ

where ai ~ N 0, s2a
� �

, ci ~ N 0,s2c
� �

, and
ei ~ N 0, s2e

� �
, with all these terms assumed inde-

pendent from each other. The phenotypic variance
can be then expressed as Var yi½ � ¼ s2y ¼
s2a þ s2c þ s2e , from which two important defini-
tions are derived. The first one is called broad
sense heritability (H2), expressed as Η2 ¼ s2g=s

2
y ,

where s2g ¼ s2a þ s2c, which represents the propor-
tion of the phenotypic variance that is due to
genetic effects. The second, called narrow sense
heritability (h2), refers to the specific contribution
of additive genetic effects to the phenotypic vari-
ance, i.e., h2 ¼ s2a=s

2
y . These two quantities,
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Fig. 3 Probability density
function of a normally
distributed trait with mean
m ¼ E[yi] and variance
s2y ¼ Var yi½ �, i.e.,
yi ~ N m, s2y

� �
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particularly the narrow sense heritability, will be
further discussed and used in the next sections.

The breeding value of an individual (ai) is
equal to the sum of the additive effects of individ-
ual alleles within and across loci, and it is some-
times called “additive genetic deviation” or
“additive genetic effect”. Because individual
alleles, and therefore independent allele effects,
are passed from parent to offspring, the breeding
value of an individual is important for predicting
its progeny’s performance, and so it is central to
selection of superior animals [1, 3]. The gene
combination value (ci) is the difference between
the genetic merit (gi) of an animal and its breeding
value, i.e., ci ¼ gi � ai, so it is often called “non-
additive genetic deviation”. Because the compo-
nent ci involves interactions between alleles (both
within and between loci), and only a single allele
(as opposed to a pair of alleles) in each locus is
transmitted from parents to offspring, non-
additive effects are not transmitted in a predictable
manner. Hence, while average breeding value in a
population can be changed over generations with
the selection of superior animals, the gene combi-
nation value should be explored through specific
mating systems. In this Chapter, the discussion
will focus on selection approaches and the genetic
improvement of a population in terms of additive
genetics effects only. For a discussion on mating
systems, such as inbreeding and outbreeding strat-
egies, see, for example, [1, 7, 8]. Additional dis-
cussion on inbreeding depression and heterosis
(or hybrid vigor) can be found in [3, 4].

As discussed previously, the breeding value of
an individual is equal to the sum of its indepen-
dent allele effects. Because a parent passes a ran-
dom sample of half of its alleles to its progeny, an
animal’s breeding value is twice what is often
called “transmitting ability” or “expected progeny
difference” [1, 5]. The expected breeding value of
an offspring (ao) is then equal to the average of its
parents’ breeding values (the same as the sum of
its parents’ transmitting abilities), i.e.,
E aojas, ad½ � ¼ asþad

2
, where as and ad represent

the (realized) breeding values of the offspring’s
sire and dam, respectively. However, there will be
variability in terms of breeding values within a

full-sib family because of the random sampling of
parents’ alleles that each offspring receives, the
so-called Mendelian sampling [4].

The breeding value of an individual can be
expressed as a function of its parents’ breeding
values as ao¼ 0.5asþ 0.5adþ δ, where δ refers to
the Mendelian sampling component. It is interest-
ing to notice that the variance of breeding values
in a specific generation is equal to Var[ao] ¼
0.25Var[as] þ 0.25Var[ad] þ Var[δ]. Assuming
the same additive genetic variance across genera-
tions and for both sexes
(i.e., Var ao½ � ¼ Var as½ � ¼ Var ad½ � ¼ s2a ), it is
shown that the Mendelian sampling variance is
equal to half the additive genetic variance, i.e.,
Var d½ � ¼ s2a=2.

Phenotypic Selection
The most traditional approach of genetic improve-
ment of livestock (and more generally any domes-
tic animal or plant species) is based on selection of
animals with the best performance, or “pheno-
typic selection” [1–4]. Accordingly, given a
group of animals supposedly reared in similar
environmental conditions, only those with the
highest performance are allowed to breed to pro-
duce the next generation. As discussed previously
(Model 2), the performance of each animal is a
combination of its breeding value and all other
non-additive genetics effects and environmental
factors, such that a superior performance does not
always represent superior breeding value. None-
theless, whenever s2a > 0, there will be a positive
correlation between performance and breeding
value, and the phenotypic selection will result in
genetic progress. Moreover, higher values of such
a correlation will increase the genetic response,
i.e., the effectiveness of phenotypic selection.

To illustrate this concept, consider Fig. 4, in
which a scatter plot of breeding values and phe-
notypes (centered on zero, i.e., yi � m) for a few
fictitious animals is presented. As indicated
before, in this chapter the discussion will be
focused on selection approaches and the genetic
improvement of a population in terms of additive
genetics effects only, such that Model (2) can be
conveniently re-expressed as:
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yi ¼ mþ ai þ ei, ð3Þ

where εi ¼ ci þ ei represents all non-additive
genetic and environmental effects affecting the
phenotypic value yi, assumed ei ~ N 0,s2e

� �
.

Assuming that each effect in Model (3) is inde-
pendent from each other, the covariance between
phenotype and breeding value is given by:

Cov yi, ai½ � ¼ Cov mþ ai þ ei, ai½ � ¼ Var ai½ �
¼ s2a,

such that the correlation between phenotype and
breeding value is:

ryi ,ai ¼
Cov yi, ai½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var yi½ �Var ai½ �p ¼ s2a

sysa
¼ sa

sy
¼

ffiffiffiffiffi
h2

p
,

i.e., the square root of the (narrow sense)
heritability.

In practice, the breeding values of animals are
unknown, so what phenotypic selection essen-
tially does is to predict (or estimate) the animals’
breeding values based on their own performance.
The prediction is based on the regression of

breeding values on phenotypes, and the regression
coefficient (slope) is given by:

bai�yi ¼
Cov yi, ai½ �
Var yi½ � ¼ s2a

s2y
¼ h2:

This means that an animal’s estimated breeding
value (EBV) based solely on its performance (and
with a single measurement only) can be expressed
as:

âi ¼ h2 � yi � mð Þ:

The correlation between such EBV (which is a
linear transformation of yi) and the true breeding

value (ai) is râi ,ai ¼ Cov âi , ai½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var âi½ �Var ai½ �

p ¼ h2s2affiffiffiffiffiffiffiffiffiffi
h4s2ys2a

p ¼ h ,

which is generally referred to as ‘prediction accu-
racy’ in the animal breeding literature [5]. In this
case, the square of the accuracy, which is often
called “prediction reliability,” is equal to the her-
itability of the trait. The prediction accuracy (and
consequently the reliability) can be increased by
using additional sources of information on an
animal (such as repeated measurements of the
trait or performance of progeny and other
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Fig. 4 Scatter plot of breeding values versus phenotypic
values. Each dot represents a specific animal and those
colored in red are selected animals with performance

(i.e., phenotypic value) above a specified threshold (t).
S and R represent the average phenotypic and breeding
values of the selected (top) animals, respectively
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relatives) when estimating its breeding value.
Computing EBVs using multiple sources of infor-
mation can be accomplished using selection
indexes and mixed model methodology, which
will be discussed later in this chapter.

As indicated in Fig. 4, the selected animals
(i.e., the best performing animals) will have an
average phenotypic value equal to S and an aver-
age breeding value equal to R. The expected aver-
age breeding value (and also the expected
phenotypic performance) of the progeny of the
selected animals is also R, as illustrated in Fig. 5,
and the ratio R/S is equal to the heritability (h2) of
the trait under selection. The genetic progress
after one generation of selection is then given by:

R ¼ h2 � S,

where R¼ mP� m and S¼ mS� m, with mP, mS, and
m representing the average phenotypic perfor-
mance of the progeny (generation 1), of the
selected animals, and of the selection candidate
(generation 0) populations, respectively.

The selection differential (S) can also be
expressed as S ¼ isy, where i ¼ mS�m

sy
is called

“selection intensity,” and represents the selection

differential in terms of phenotypic standard devi-
ations. In addition, as R represents the genetic
progress expected in a single generation of selec-
tion, the genetic improvement per unit of time is
then given by R� ¼ R/L, where L is the generation
interval. Hence, the expected genetic progress of
single-trait phenotypic selection is given by [1, 3]:

R� ¼ h2 � i� sy
L

,

which, given that sy¼ sa/h, can be expressed also
as:

R� ¼ h� i� sa
L

:

This equation is a special form of the so-called
breeder’s equation (or “key equation”), for the
case of phenotypic selection. In its general form,
the breeder’s equation is expressed as [5]:

R� ¼ accuracy � intensity� variation
generation interval

,

meaning that the genetic progress per unit of time
is proportional to the accuracy of breeding values
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Fig. 5 Probability density of the distribution of pheno-
typic values in the candidates-for-selection (red) and the
progeny (blue) populations. The candidates-for-selection
group represents the parental population (or generation 0),
from which the top performing animals (above the thresh-
old t) are selected and mated to produce the next generation

or progeny (generation 1). The difference between the
phenotypic average of the selected animals and that of
the generation 0 is called selection differential
(represented by S), and the difference between the pheno-
typic mean of the progeny and that of the generation 0 is
called genetic progress, or genetic response (represented
by R)
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prediction, to the selection intensity, and to the
genetic variation, and inversely proportional to
the generation interval.

Hence, to increase the genetic progress in a
population (e.g., breed or line) through selection,
animal breeders (and similarly plant breeders)
work to improve the four components of the equa-
tion above. As the genetic variability is a natural
characteristic of a population and cannot be easily
changed, genetic progress is generally
incremented either by improving prediction accu-
racy (e.g., by using specific statistical techniques
to combine different sources of information
regarding the animals’ genetic merit), or by
increasing the selection intensity, or by shortening
the generation interval, which can be accom-
plished using molecular genetics techniques
(e.g., the use of marker-assisted selection) and
biotechnology approaches (e.g., artificial
insemination).

It is important to mention that the breeder’s
equation discussed here can be extended for
more complex scenarios, such as when males
and females contribute differently to some com-
ponents of the Eq. (5). For example, prediction
accuracies and selection intensity are generally
higher for males if artificial insemination is used.
Another important issue to mention here is that
selection not only shifts the mean of the breeding
values in a population but it also changes the
genetic variance (and heritability). A primary
cause of the change in genetic variance is due to
the fact that selected parents represent one tail of
the phenotypic distribution, therefore their pheno-
typic variance is smaller than that of the whole
candidates-for-selection population. This leads to
a reduction in both the phenotypic and additive
genetic variances in the progeny population,
which is known as the “Bulmer effect” [2]. In
addition, as selection modifies allele frequencies
toward the fixation of favorable alleles, selection
in one direction over many generations is also
expected to reduce the genetic variation. Addi-
tional discussion on effects of selection on vari-
ance and other short- and long-term consequences
of artificial selection can be found, for example, in
[2, 3].

In the remainder of this chapter, specific statis-
tical techniques (such as the selection index,
BLUP, and genomic selection) for the improve-
ment of accuracy, intensity, and generation inter-
val, and consequently the increase of genetic
progress from artificial selection will be
discussed.

Correlated Response and Indirect Selection
If two traits x and y are genetically correlated,
direct selection on one of the traits (say y) will
also cause a genetic change in the other trait (trait
x), which is called “correlated response” [3]. Cor-
related response to selection (Rx�y), that is, genetic
change in trait x as a consequence of direct selec-
tion on trait y, can be predicted by:

Rx�y ¼ bx�yRy,

where Ry is the genetic progress of trait y through
direct selection on itself, and bx�y is the genetic
regression coefficient, given by:

bx�y ¼
Cov ax, ay

� �
s2ay

,

where Cov(ax, ay) is the genetic covariance
between traits x and y.

The genetic correlation between two traits
x and y is given by:

rax,ay ¼
Cov ax, ay

� �
saxsay

,

such that Cov ax, ay
� � ¼ rax,aysaxsay , and the

genetic regression can be expressed as:

bx�y ¼
rax,aysaxsay

s2ay
¼ rax,ay

sax
say

:

Using this term, and recalling the selection
response formula discussed before, given by
Ry ¼ hyiysay , the correlated response can then be

expressed as:
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Rx�y ¼ rax,ay
sax
say

hyiysay ¼ rax,aysaxhyiy,

or, given that sax ¼ hxsyx, it can be finally written
as:

Rx�y ¼ rax ,ayhxhyiysyx :

Such an equation can be used either to monitor
potential genetic changes in correlated traits when
performing direct selection on a specific trait of
economic importance or, alternatively, to explore
indirect selection strategies using indicator traits
[5]. The latter use may be of interest when a trait
of economic importance is difficult or expensive
to measure, or it is expressed later in an animal’s
life, so it may be advantageous to select on a
correlated trait, which would be the indicator
trait. To assess the effectiveness of indirect selec-
tion relative to direct selection, one may look at
the ratio of expected genetic progress per unit of
time in each scenario, i.e.:

Rx�y
Rx

¼ rax,aysaxhyiy=Ly
hxixsax=Lx

¼ rax ,ayhyiyLx
hxixLy

¼ rax,ay
hy
hx

iy
ix

Lx
Ly

:

So, it can be seen that this ratio can be higher
than 1 (meaning that the indirect selection is more
effective than the direct selection) depending on
the genetic correlation between the economic and
indicator traits, the ratios of their heritabilities,
and their potential selection intensities and gener-
ation intervals.

Selection Index
In section “Phenotypic Selection”, selection based
on a single measurement on each animal was
discussed. However, it is not always possible to
observe the phenotype for all animals, such as
traits that are expressed in only one sex or that
require the sacrifice of animals to be measured,
etc. In addition, even when it is possible to mea-
sure the phenotypic trait in each animal, informa-
tion from relatives can be used to obtain earlier or
more reliable predictions of breeding values. In

this section, the prediction of breeding values
using different sources of information (e.g., mul-
tiple measurements of the trait in each animal and
progeny performance) will be discussed, and a
methodology (the selection index) that combines
multiple sources of information into a single pre-
diction for each animal will be presented.

When multiple measurements of the same trait
are recorded (e.g., milk yield in multiple lacta-
tions), breeding values can be predicted using
the average of observations yið Þ from each animal
as âi ¼ bai�yi yi � mð Þ . However, to derive the
genetic regression of breeding value on average
phenotypic value, Model (3) must be expanded to
include an additional term, which is
discussed next.

It can be empirically shown that the covariance
(or resemblance) between repeated measurements
on the same animal is larger than s2a, which is what
would be expected under the assumptions of
Model (2). This additional source of covariance
between records for the same animal refers to
environmental factors that affect all records simi-
larly, the so-called permanent environmental
effects [1, 4]. Under these circumstances, the
Model (2) can be extended to:

yij ¼ mþ ai þ ci þ pi þ eij ð4Þ

where yij represents the observation j ( j ¼
1, . . ., ni) on animal i, with ni being the total
number of records on animal i; m, ai ~ N 0,s2a

� �
and ci ~ N 0,s2c

� �
are as defined previously; pi

refers to the permanent environmental effects
affecting records on animal i, assumed

pi ~ N 0, s2p
� �

; and eij ~ N 0,s2e
� �

represents resid-

ual effects (temporary environmental effects)
associated with observation yij. In addition, it is
assumed that all random terms in Model (4) are
independent from each other, i.e., Cov(ai, ci) ¼
Cov(ai, pi) ¼ Cov(ci, pi) ¼ 0 and
Cov eij, ei j0

� � ¼ 0, for any i, j, and j0 ( j 6¼ j0).
Under these settings, the average phenotypic

value of an animal is given by yi ¼ mþ ai þ
ci þ pi þ ei , where ei ¼ 1

ni

Pni
i¼1

eij , such that its

variance is given by Var yi½ � ¼ s2a þ s2c þ s2p þ

Quantitative Methods Applied to Animal Breeding 9



s2e=ni , and the covariance between ai and yi is
Cov ai, yið Þ ¼ s2a . In this case, the regression of
breeding values on phenotypic means is given by:

bai�yi ¼
Cov ai, yi½ �
Var yi½ � ¼ s2a

s2a þ s2c þ s2p þ s2e=ni
:

An important definition related to repeated
measurements refers to repeatability (r), which is
given by the intraclass correlation, i.e., the ratio of
the within-individual (or between repeated mea-
surements) to the phenotypic variances [1, 4]:

r ¼ s2a þ s2c þ s2p
s2y

¼ s2a þ s2c þ s2p
s2a þ s2c þ s2p þ s2e

,

and measures the correlation between records on
the same animal.

Noting that r ¼ 1� s2e
s2aþs2cþs2pþs2e

, the variance

of the average phenotypic value of an animal can
be expressed as a function of the repeatability as
Var yi½ � ¼ r þ 1� rð Þ=ni½ �s2y, such that the genetic
regression becomes:

bai�yi ¼
s2a

r þ 1� rð Þ=ni½ �s2y
¼ nih

2

1þ ni � 1ð Þr :

The prediction accuracy in this case, i.e., the
correlation between an animal’s estimated breed-
ing value using repeated records and its true
breeding value is given by:

râi ,ai ¼ ryi ,ai ¼
Cov yi, aið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var yið ÞVar aið Þp

¼ s2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ 1� rð Þ=ni

p
sysa

¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni

1þ ni � 1ð Þr
r

¼ ffiffiffiffiffiffiffiffiffi
bai�yi

p
:

Hence, it can be seen that compared with single
record phenotypic selection, there is a gain in
accuracy when predictions are based on repeated
records, and that the gain will depend on the
values of r and ni; higher gain in accuracy is
obtained when r is low and when ni is high.

Another alternative to predict breeding values is
to use progeny performance, which is often
employed for predicting breeding values of males
for traits for which records can be obtained only on
females, such as milk yield. For example, let yi be
the average of single records on ni progeny of sire i,
and assume that the sire was mated to a random
sample of females not related to him. In this case,
each progeny record can be expressed as:

yij ¼ mþ 1

2
ai þ 1

2
dij þ dij þ eij,

where ai is the breeding value of a specific sire i;
dij is the breeding value of dam j ( j ¼ 1, . . ., ni)
mated with sire i; and δij and εij refer to the Men-
delian sampling and residual (non-additive
genetic and environmental) components associ-
ated with the observation yij. Using this notation,
the following model can be used to describe the
progeny average of sire i:

yi ¼ mþ 1

2
ai þ 1

2
di þ di þ ei ð5Þ

where yi ¼ 1
ni

Pni
i¼1

yij , di ¼ 1
ni

Pni
i¼1

dij , di ¼ 1
ni

Pni
i¼1

dij ,

and ei ¼ 1
ni

Pni
i¼1

eij.

Given that E di
� � ¼ 0 and E di

� � ¼ 0, the breed-
ing value of sire i can be then predicted by âi ¼
bai�yi yi � mð Þ, where bai�yi ¼ Cov ai, yi½ �=Var yi½ �. It
is shown that:

Cov ai, yið Þ ¼ Cov ai, ai=2ð Þ ¼ s2a=2

and

Var yi½ � ¼ Var
1

2
ai þ 1

2
di þ di þ ei

h i
¼ 1

4
s2a þ

1

4

s2a
ni

þ s2a
2ni

þ s2e
ni

¼ ni þ 3ð Þs2a þ 4s2e
4ni

¼ ni þ 3ð Þh2 þ 4 1� h2
� �

4ni
s2y

¼ k þ 1� k
ni

	 

s2y ,

10 Quantitative Methods Applied to Animal Breeding



where k ¼ h2/4 is the intraclass correlation
between half-sibs, such that the genetic regression
coefficient is given by:

bai�yi ¼
s2a=2

k þ 1� kð Þ=ni½ �s2y
¼ h2s2y=2

h2=4þ 1� h2=4
� �

=ni
� �

s2y

¼ 2nih
2

4þ ni � 1ð Þh2 ,

and the prediction accuracy, by:

rai ,yi ¼
Cov ai,yi½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ai½ �Var yi½ �p ¼ h2s2y=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2s2y kþ 1� kð Þ=ni½ �s2y
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nih
2=4

1þ ni� 1ð Þk

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nih
2

4þ ni� 1ð Þh2
s

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bai�yi=2

p
,

which approaches unity (one) as the number of
progeny records increases.

Up to this point, it has been discussed how
breeding values can be predicted using different
sources of information, such as an animal’s own
performance (either a single record or multiple
measurements) or progeny performance. Other
sources of information that could also be used
are the performance of parents, sibling, or other
kinds of relatives. However, in practice, what
generally happens is that multiple sources of
information are available simultaneously, so that
the question becomes how to best combine all the
information available in order to maximize pre-
diction accuracy. Here, a classical approach will
be discussed, the “selection index,” and later on in
this chapter a more general and modern alterna-
tive, based on mixed model methodology, will be
presented.

Consider, for example, that there are three
sources of information available on animal
i (represented here as yi1, yi2, and yi3, and
expressed as deviations from their means). The

goal is to predict the animal’s breeding value with
a linear combination of such information, i.e.:

âi ¼ bi1yi1 þ bi2yi2 þ bi3yi3,

so that the prediction accuracy (i.e., correlation
between predicted and true breeding value) is
maximized.

Maximization of râi ,ai is equivalent to the max-
imization of log râi ,aið Þ, which is generally easier
to accomplish. The log correlation can be
expressed as (here, to simplify the notation, the
index i indicating the animal is dropped):

log râ,að Þ ¼ log
sâ,affiffiffiffiffiffiffiffiffiffi
s2âs

2
a

q
2
64

3
75

¼ log sâ,að Þ � 1

2
s2â �

1

2
s2a,

where the covariance between â and a, and the
variance of â are given respectively by:

sâ,a ¼ b1sy1,a þ b2sy2,a þ b3sy3,a

and

s2â ¼ b21s
2
y1
þ 2b1b2sy1,y2 þ 2b1b3sy1,y3 þ b22s

2
y2

þ 2b2b3sy2,y3 þ b23s
2
y3
:

Substituting these expressions into log râ,að Þ ,
taking the partial derivatives of log râ,að Þ with
respect to each of the regression coefficients bj
( j ¼ 1, 2, 3), and setting them to zero, gives the
following set of equations:

@ log râ,að Þ
@b1

¼ sy1,a
sâ,a

� b1s2y1 þ b2sy1,y2 þ b3sy1,y3
s2â

@ log râ,að Þ
@b2

¼ sy2,a
sâ,a

� b1sy1,y2 þ b2s2y2 þ b3sy2,y3
s2â

@ log râ,að Þ
@b3

¼ sy3,a
sâ,a

� b1sy1,y3 þ b2sy2,y3 þ b3s2y3
s2â

8>>>>>>>>><
>>>>>>>>>:
which can be rearranged as:
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b1s2y1 þ b2sy1,y2 þ b3sy1,y3 ¼ ksy1,a

b1sy1,y2 þ b2s2y2 þ b3sy2,y3 ¼ ksy2,a

b1sy1,y3 þ b2sy2,y3 þ b3s2y3 ¼ ksy3,a

8>><
>>:

where k ¼ s2â=sâ,a.
Extending the system for any number m of

components (i.e., sources of information), these
equations can be expressed in matrix notation as:

Pb ¼ kc,

where P ¼

s2y1 sy1,y2 � � � sy1,ym
sy1,y2 s2y2 � � � sy2,ym
⋮ ⋮ ⋱ ⋮

sy1,ym sy2,ym � � � s2ym

2
66664

3
77775 is the

variance-covariance matrix of the vector y ¼ [y1,
y2, . . ., ym]

0, b ¼ [b1, b2, . . ., bm]
0 is the vector of

regression coefficients (weights) of each source of
information, and c ¼ sy1,a,sy2,a, . . . ,sym,a

� �0
is

the vector of covariances between each piece of
information and the breeding value of the animal,
such that the weights b of the index â ¼ b0y are
given by b ¼ kP�1c.

It should be noted that the constant k does not
change the relative size of the regression coeffi-
cients b or the value of râ,a, so it can be set to 1. In
fact, if instead of maximizing râ,a , the average
square prediction error E â� a½ �2 is minimized,
then s2â ¼ sâ,a and the system (usually called
selection index equations) becomes:

b ¼ P�1c:

The correlation between the index and the true

breeding value is given by râ,a ¼ sâ,a=
ffiffiffiffiffiffiffiffiffiffi
s2âs

2
a

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sâ,a=s2a

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
s2a

Pm
j¼1

b jsy j,a

s
.

Multiple-Trait Selection
Usually more than one trait is considered in a
selection program, as multiple traits may be eco-
nomically (or societally) important in a produc-
tion system (e.g., [9]). There are many strategies

for multi-trait selection, including the tandem
approach (which selects rotationally one trait at a
time) and the independent culling levels strategy
(which sets minimum performance levels for each
of the traits of interest), but they are generally
sub-optimal.

Here, the selection of a combination of multi-
ple traits evaluated in economic terms will be
discussed. Such a combination of traits is gener-
ally called “aggregate breeding value” or “breed-
ing objective”, and can be expressed as [3]:

T ¼ w0a ¼ w1a1 þ w2a2 þ � � � þ wkak,

where w ¼ (w1, w2, . . ., wk)
0 is the vector of eco-

nomic weights (expressed as net economic value
per unit of trait) for k traits of linear economic
value, and a ¼ (a1, a2, . . ., ak)

0 is a vector of
breeding values relative to the k traits defining T.
Here again, to simplify the notation, the subscript
indexing the animal is suppressed.

Suppose records are available for m traits,
which may or may not be included in the k traits
describing the breeding objective. The goal then is
to predict T based on the m traits observed, using
the so-called economic selection index. The the-
ory of selection index was introduced in the pre-
vious subsection as a means of combining
multiple sources of information to predict breed-
ing values for a specific trait. Here, similar meth-
odology will be considered, but it will be used
instead to combine information from multiple
traits to predict an overall economic merit for
each animal. i.e.:

T̂ ¼ I ¼ v0y ¼ v1y1 þ v2y2 þ � � � þ vmym,

where T̂ is the predicted overall economic merit of
an animal, v ¼ (v1, v2, . . ., vm)

0 is the vector of
weighting factors, and y ¼ (y1, y2, . . ., ym)

0 is the
vector of phenotypic measurements.

An alternative for determining the weights v¼
(v1, v2, . . ., vm)

0 is to first predict separately the
breeding values aj, j ¼ 1, 2, . . ., k, for each trait
involved in the breeding objective, using informa-
tion from all traits with measurements, y ¼ (y1,
y2, . . ., ym)

0. Afterward, such predictions are
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substituted for the true breeding values in the
breeding objective equation, and then coefficients
are grouped accordingly.

The breeding values aj for each trait can be
predicted by â j ¼ b j1y1 þ b j2y2 þ � � � þ bjmym ,
in which the weights are obtained as usual, to
maximize râ j ,a j

or minimize E â j � a j

� �2
. The

equations that define the weights for the predic-
tion of aj are then given by:

b j1s2y1þ b j2sy1,y2þ � � �þ bjmsy1,ym ¼ sy1 ,a j

b j1sy1,y2þ b j2s2y2þ � � �þ bjmsy2,ym ¼ sy2 ,a j

⋮ ⋮ ⋮ ⋮
b j1sy1,ymþ b j2sy2,ymþ � � �þ bjms2ym ¼ sym ,a j

8>>>><
>>>>:

This procedure is repeated for all k traits in the
breeding objective, and the predictions â ¼
â1, â2, . . . , âkð Þ0 are then substituted for the true
values a ¼ (a1, a2, . . ., ak)

0 in the aggregate
breeding value, i.e.:

T̂ ¼ w1â1 þ w2â2 þ � � � þ wkâk:

This overall index estimating T can be rewrit-
ten as I ¼ v1y1 þ v2y2 þ � � � þ vmym, by using
appropriate multiplications and grouping of coef-
ficients, with each coefficient vi given by vi ¼
w1b1i þ w2b2i þ � � � þ wkbki, with i¼ 1, 2, . . ., m.

Another way of deriving the weights v ¼ (v1,
v2, . . ., vm)

0 defining the economic selection index
I ¼ v0y is to maximize the correlation rT, I, which
will generate the following equations:

v1s2y1þ v2sy1,y2þ � � � þ vmsy1,ym ¼ sy1,T

v1sy1,y2þ v2s2y2þ � � � þ vmsy2,ym ¼ sy2,T
⋮ ⋮ ⋮ ⋮

v1sy1,ymþ v2sy2,ymþ � � � þ vms2ym ¼ sym,T

8>>>><
>>>>:
where syi ,T is the covariance between each mea-
sured trait i (i ¼ 1, 2, . . ., m) and the linear func-
tion T ¼w0a, i.e., the aggregate breeding value. It
can be shown that both approaches for determin-
ing the weights v ¼ (v1, v2, . . ., vm)

0 are
equivalent.

Mixed Model Methodology

Introduction
Many statistical methods for analysis of genetic
data are specific (or more appropriate) for pheno-
typic measurements obtained from planned exper-
imental designs with balanced data sets. While
such situations may be possible within laboratory
or greenhouse experimental settings, data from
natural populations and agricultural species are
generally highly unbalanced and fragmented by
numerous kinds of relationships. Culling of data
to accommodate conventional statistical tech-
niques (such as those discussed to this point)
may introduce bias and/or lead to a substantial
loss of information. The mixed model methodol-
ogy, on the other hand, allows efficient estimation
of genetic parameters (such as variance compo-
nents and heritability) and breeding values while
accommodating extended pedigrees, unequal
family sizes, overlapping generations, sex-limited
traits, assortative mating, and natural or artificial
selection.

The single trait prediction methods discussed
in the previous section use only a single source of
information or, when multiple sources of informa-
tion are available, they require them to be split
into independent subgroups, i.e., specific groups
of relatives such as half-sibs, full-sibs, progeny,
etc. However, in practice the data may be
extremely complex due to the intricate pedigree
structure commonly found in livestock species,
e.g., beef and dairy cattle populations. Other
drawbacks of the selection index include an
inability to account for genetic trend over time,
and that the phenotypes must be pre-adjusted for
environmental effects, which can be done, for
example, using the average of contemporary
groups of animals. However, contemporary
group effects can be inferred only under the unre-
alistic assumption that they are genetically equal.
Hence, a selection index can be reliably applied
only to individual animals within same herd and
born in same year.
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In view of such limitations, linear mixed
models (models including both fixed and random
effects) and best linear unbiased prediction
(BLUP) of breeding values were developed [10–
12]. The BLUP methodology uses performance
information from all known relatives to estimate
breeding values, and it can be applied to whole
herds or large populations using data from many
years, and can also accommodate genetic differ-
ences between contemporary groups. Presently,
mixed models are widely used in many fields of
science as a flexible tool for the analysis of data
where responses are clustered around some ran-
dom effects, such that there is a natural depen-
dence between observations in the same cluster
[13]. Examples of applications of mixed models
in genetics and genomics include gene mapping
and association analysis (e.g., [14, 15]), and gene
expression assays using microarrays [16, 17] or
RT-PCR [18], to name a few.

In some applications of mixed models, the
central objective is the estimation and hypothesis
testing regarding fixed effects (e.g., treatment
effects in an experimental study), in which case
the random effects (e.g., block effects) are nui-
sance effects. In animal breeding, however, the
main goal is the prediction of realized values of
random effects (e.g., breeding values of animals),
and the fixed effects are generally environmental
factors that must be considered to adjust the
observed phenotypic values. A third application
or goal of mixed models is the estimation of
variance components, such as genetic and envi-
ronmental variances, or functions of them, such as
heritability and repeatability.

In this section, some basics regarding mixed
models are briefly reviewed, with some emphasis
toward the prediction of random effects, and sub-
sequently some specific applications of the mixed
model methodology in animal breeding and
genetics are presented.

A linear mixed effects model is defined as:

y ¼ Xbþ Zuþ « ð6Þ

where y is the vector of responses (observations),
β is a vector of fixed effects, u is a vector of
random effects, X and Z are known design or

incidence matrices relating y to the vectors β and
u, respectively, and ε is a vector of residual terms.
Generally, it is assumed that u and ε are indepen-
dent from each other and normally distributed
with zero-mean vectors and variance-covariance
matrices G and S, respectively.

As mentioned before, in animal breeding a
central goal refers to the prediction of random
effects (breeding values). In linear (Gaussian)
models as in (6), such predictions are given by
the conditional expectation of u given the data,
i.e., E[u| y]. Given the model specifications
above, the joint distribution of y and u is:

y

u

	 

~MVN

Xb

0

	 

,

V ZG

GZ0 G

	 
� �
,

where V ¼ ZGZ0 þ S.
From the properties of multivariate normal dis-

tributions, E[u| y] is given by:

E ujy½ � ¼ E u½ � þ Cov u, y0½ �Var�1 y½ � y� E y½ �ð Þ,

so that in this case:

E ujy½ � ¼ GZ0V�1 y� Xbð Þ
¼ GZ0 ZGZ0 þ Sð Þ�1 y� Xbð Þ:

This expression, however, depends on the
fixed effects values β, which also need to be
inferred from the data. The fixed effects are then
typically replaced by their estimates, such that
predictions are made based on the following
expression:

û ¼ GZ0V�1 y� Xb̂
� �

:

To estimate the fixed effects β, all random
effects in Model (6) can be combined into a single
vector j ¼ Zu þ ε, such that the following fixed
effects model is obtained y¼ Xβ þ j. It is shown
that the expectation of the j term is E[j] ¼ E
[Zu þ ε] ¼ ZE[u] þ E[ε] ¼ 0, and that its
variance is Var[j] ¼ Var[Zu þ ε] ¼ ZVar[u]Z0 þ
Var[ε]¼ZGZ0 þS¼V. Under these settings, the
distribution of y is multivariate normal with mean
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vector Xβ and covariance matrix V, i.e., y~MVN
(Xβ, V), and the maximum likelihood estimator
of β can be shown to be:

b̂ ¼ X0V�1X
� ��1

X0V�1y,

which is distributed as

b̂ ~ MVN b, X0V�1X
� ��1

� �
. If the design matrix

X is not full column rank, a generalized inverse of
X0V�1X must be used to obtain a solution β0 ¼
(X0V�1X)�X0V�1y of the system, from which esti-
mable functions θ¼ Lβ are estimated as û ¼ Lb0.

The solutions b̂ and û discussed before require
V�1. As V can be of huge dimensions, especially
in animal breeding applications, its inverse is gen-
erally computationally demanding if not
unfeasible. However, Henderson [19] presented
the mixed model equations (MME) to estimate β
and u simultaneously, without the need for com-
puting V�1. The MME were derived by maximiz-
ing (for β and u) the joint density of y and u,
expressed as:

p y,uð Þ / Sj j�1=2 Gj j�1=2exp � 1

2
y� Xb� Zuð Þ0



S�1 y� Xb� Zuð Þ � 1

2
u0G�1ug:

The logarithm of this function is:

‘ ¼ log p y,uð Þ½ � /j S j þ j G j þ y� Xb� Zuð Þ0S�1

y� Xb� Zuð Þ þ u0G�1u

¼j S j þ j G j þy0S�1y� 2y0S�1Xb� 2y0S�1Zu

þb0X0S�1Xbþ 2b0X0S�1Zu

þu0Z0S�1Zuþ u0G�1u

The derivatives regarding β and u are:

@‘
@b

@‘
@u

2
64

3
75¼ X0S�1y�X0S�1Xb̂�X0S�1Zû

Z0S�1y�Z0S�1Xb̂�Z0S�1Zû�G�1û

" #
:

Equating them to zero gives the following system:

X0S�1Xb̂þ X0S�1Zû

Z0S�1Xb̂þ Z0S�1ZûþG�1û

" #

¼ X0S�1y

Z0S�1y

" #
,

which can be expressed as:

X0S�1X X0S�1Z

Z0S�1X Z0S�1ZþG�1

" #
b̂

û

" #

¼ X0S�1y

Z0S�1y

" #
,

known as the mixed model equations (MME).
Using the second part of the MME,

Z0S�1Xb̂þ Z0S�1ZþG�1
� �

û ¼ Z0S�1y,

such that:

û ¼ Z0S�1ZþG�1
� ��1

Z0S�1 y� Xb̂
� �

:

It can be shown that this expression is equiva-

lent to û ¼ GZ0 ZGZ0 þ Sð Þ�1 y� Xb̂
� �

and,

more importantly, that û is the best linear unbiased
predictor (BLUP) of u. Using this result into the
first part of the MME,

X0S�1Xb̂þ X0S�1Zû ¼ X0S�1y

X0S�1Xb̂þ X0S�1Z Z0S�1ZþG�1
� ��1

Z0S�1 y� Xb̂
� �

¼ X0S�1y

b̂ ¼ X0 S�1 � S�1Z Z0S�1ZþG�1
� ��1

Z0S�1

	 

X

 ��1

X0 S�1 � S�1Z Z0S�1ZþG�1
� ��1

Z0S�1

	 

y:

Similarly, it is shown that this expression is

equivalent to b̂ ¼ X0V�1X
� ��1

X0V�1y, which is
the best linear unbiased estimator (BLUE) of β.

It is important to note that b̂ and û require
knowledge of G and S, or at least some function
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of them. As these matrices are rarely known, the
practical approach is to replace G and S by some
sort of point estimates Ĝ and Ŝ into the MME.

Many methods have been proposed to estimate
variance components in mixed effects models.
The simplest is the analysis of variance
(ANOVA) method, which works well for simple
models (such as a one-way structure) or balanced
data (such as data from designed experiments with
no missing data), but they are not indicated for
more complex models and data structures such as
those generally found in the animal breeding
context.

Alternative methods proposed for estimating
variance components in more complex scenarios
include the expected mean squares approach of
Henderson [20] and the minimum norm quadratic
unbiased estimation [21]. However, maximum
likelihood-based methods are currently the most
popular (see, for example, [22], especially the
restricted (or residual) maximum likelihood
(REML) approach [23], which attempts to correct
for the well-known bias in the classical maximum
likelihood (ML) estimation of variance compo-
nents. Additional literature on variance compo-
nent estimation and mixed model methodology
can be found, for example, in [24–28].

The Animal Model
The advent of mixed effect models has undoubt-
edly revolutionized the animal breeding field, and
today they are widely used in the genetic improve-
ment of many livestock and companion animal
species. In this sub-section some of the applica-
tions of mixed models for the genetic evaluation
of populations using phenotypic and pedigree
information will be presented. In the following
section, applications incorporating molecular
maker information will be discussed as well.

As a first application of mixed models in ani-
mal breeding, the so-called animal model is con-
sidered here, for the specific situation of a single
trait and a single phenotypic observation
(including missing values) per animal. The animal
model can be described as:

y ¼ Xbþ Zaþ «,

where y is an (n � 1) vector of observations
(phenotypic scores), β is a ( p � 1) vector of
fixed effects (e.g., herd-year-season effects in cat-
tle evaluations), and ε represents residual effects,
assumed ε~N(0, S) as before. In most applica-
tions of animal models, however, residuals are
assumed independent across animals, such that
the residual covariance structure can be expressed
as R ¼ Is2e , where I is an identity matrix of
appropriate order, and s2e is the residual variance.
In the case of animal models, the random effects
u represent the breeding values, i.e., u ¼ a,
assumed to be a~N(0, G). The vector a, of dimen-
sion (q � 1), may include breeding values of all
animals with record or in the pedigree file, such
that q is generally bigger than n.

The matrix G, which in this case describes the
covariances among the breeding values, follows
from standard results for the covariances between
relatives. It can be shown that the additive genetic
covariance between two relatives i and i0 is given
by 2yii0s2a , where yii0 is the coefficient of
co-ancestry between individuals i and i0, and s2a
is the additive genetic variance in the base popu-
lation [29]. Hence, under the animal model, G ¼
As2a , where A is the “additive genetic
(or numerator) relationship matrix,” having ele-
ments given by aii0 ¼ 2yii0.

As mentioned earlier, in animal breeding the
usual main interest is prediction of breeding
values – for selection of superior individuals–
and on estimation of variance components. The
fixed effects are, in some sense, nuisance factors
with no central interest in terms of inferences, but
which need to be taken into account (i.e., they
need to be corrected for when inferring breeding
values).

Because under the animal model G�1 ¼
A�1s�2

a and R�1 ¼ Is�2
e , the mixed model equa-

tions reduce to:

X0X X0Z
Z0X Z0Zþ lA�1

	 

b̂

â

" #
¼ X0y

Z0y

	 

,

where l ¼ s2e
s2a
¼ 1�h2

h2
, such that:
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b̂

â

" #
¼ X0X X0Z

Z0X Z0Zþ lA�1

	 
�1 X0y
Z0y

	 

:

It is worth mentioning that A�1 can be
obtained directly from the pedigree, without set-
ting up A [30, 31], which is computationally very
convenient.

Conditionally on the variance components
ratio l, the BLUP of the breeding values are then

given by â ¼ Z0Zþ lA�1
� ��1

Z0 y� Xb̂
� �

,

which are the EBVs. Alternatively, some
breeders’ associations express their results as pre-
dicted transmitting abilities (PTA) or expected
progeny differences (EPD), which are equal to
half the EBVs, representing the portion of an
animal’s breeding values that is passed to its
offspring.

The amount of information contained in an
animal’s genetic evaluation depends on the avail-
ability of its own record, and of phenotypic infor-
mation from its relatives (including how many
and how closely related). As a measure of amount
of information in livestock genetic evaluations,
EBVs are typically reported with their associated
accuracies, i.e., the correlation between true and
estimated breeding values, ri ¼ râi ,ai . Instead of
accuracy, some livestock species genetic evalua-
tions use reliability, which is the squared accuracy
(r2i ).

A model-derived calculation of ri requires the
diagonal elements of the inverse of the MME
coefficient matrix, represented as:

C ¼ X0X X0Z
Z0X Z0Zþ lA�1

	 
�1

¼ Cbb Cba

Cab Caa

" #
:

It is shown that the prediction error variance
(PEV) of EBV âi is given by:

PEV ¼ Var âi � aið Þ ¼ caai s2e ,

where caai is the i-th diagonal element of Caa,
relative to animal i. The PEV can be interpreted
as the fraction of additive genetic variance not
accounted for by the prediction. Therefore, PEV
can also be expressed as:

PEV ¼ 1� r2i
� �

s2a,

such that caai s2e ¼ 1� r2i
� �

s2a , from which the
reliability is obtained as r2i ¼ 1� caai s2e=s

2
a ¼

1� lcaai .

Extensions and Variations of the Animal
Model
The animal model discussed above can be
extended also to multiple (correlated) traits
[32, 33]. For instance, consider as an example
the analysis of k traits, in which the model for
each trait is expressed as:

y j ¼ X jb j þ Z ja j þ « j,

where yj,Xj, βj,Zj, aj, and εj are defined as before,
but here have an additional index to indicate the
trait ( j ¼ 1, 2, . . ., k).

For a joint analysis of the k traits, the single
trait models can be combined as:

y ¼ Xbþ Zaþ «,

where y ¼ [y1
0 y2

0 . . . yk
0]0, b ¼

b1
0 b2

0 . . . bk
0½ �0 , a ¼

a10 a20 . . . ak 0½ �0 , and « ¼
«1

0 «2
0 . . . «k

0½ �0 , and the design matrices
in this case are:

X ¼

X1 0 � � � 0

0 X2 � � � 0

⋮ ⋮ ⋱ ⋮
0 0 � � � Xk

2
6664

3
7775 and Z

¼

Z1 0 � � � 0

0 Z2 � � � 0

⋮ ⋮ ⋱ ⋮
0 0 � � � Zk

2
6664

3
7775:

It is assumed that Var
a

«

	 

¼

G
N

A 0

0 S
N

I

	 

, where
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G ¼

s2a1 sa1a2 � � � sa1ak
sa1a2 s2a2 � � � sa2ak
⋮ ⋮ ⋱ ⋮
sa1ak sa2ak � � � s2ak

2
66664

3
77775 and S

¼

s2e1 se1e2 � � � se1ek
se1e2 s2e2 � � � se2ek
⋮ ⋮ ⋱ ⋮
se1ek se2ek � � � s2ek

2
66664

3
77775

are the genetic and residual variance-covariance
matrices, respectively, A and I are the numerator
relationship matrix and an identity matrix, and

N
represents the direct (Kronecker) product.

The MME for multi-trait analyses are of the
same form as before, i.e.:

X0 S�1N I
� �

X X0 S�1N I
� �

Z

Z0 S�1N I
� �

X Z0 S�1N I
� �

ZþG�1
N

A�1

2
64

3
75 b̂

â

" #

¼
X0 S�1N I
� �

y

Z0 S�1N I
� �

y

2
64

3
75,

from which the BLUEs and BLUPs of β and a can
be obtained, respectively.

The dimensionality of such multi-trait MME,
however, can become a hurdle for solving it when
more than two or three traits are considered. An
alternative for the analysis of multiple traits is to
use a canonical transformation of the traits [34–
36], which consists of transforming the vectors of
correlated traits into a new vector of uncorrelated
variables. In such case, each transformed variable
can be analyzed independently using standard
single trait models, and subsequently the esti-
mated breeding values are transformed back to
the original scale of measurement.

Some other interesting applications of mixed
models in animal breeding involve multiple ran-
dom effects, as in the cases of repeated measure-
ments of the same trait or traits with maternal
effects. For the analysis of repeated measure-
ments, as discussed in subsection “Selection
Index” (Model 4), environmental effects can be

partitioned into permanent and temporary effects.
In this case, the mixed model, usually called
“repeatability model,” can be written as:

y ¼ Xbþ ZaþWpþ «,

where all terms are as previously defined for a
single trait animal model, and p is the vector of
permanent environmental effects, with each level
pertaining to a common effect to all observations
of each animal, and W is a known incidence
matrix relating y to the vector p.

It is often assumed that a ~ N 0,As2a
� �

,

p ~ N 0, Is2p
� �

, and « ~ N 0, Is2e
� �

, which are inde-

pendent from each other. Under these assump-
tions, the MME becomes:

X0X X0Z X0W
Z0X Z0Zþ laA�1 Z0W
W0X W0Z W0Wþ lpI

2
64

3
75 b̂

â

p̂

2
64

3
75

¼
X0y
Z0y
W0y

2
64

3
75,

where la ¼ s2e=s
2
a and lp ¼ s2e=s

2
p.

There are some traits of interest in livestock,
such as weaning weight in beef cattle, in which
progeny performance is affected by the dam’s
ability to affect the calf’s environment, such as
in the form of nourishment through her milk pro-
duction, the quantity and quality of which is in
part genetically determined. In some cases, there
can be also a paternally provided environmental
component. In such cases, parents contribute to
the performance of their progeny not only through
the genes passed to the progeny (the “direct
genetic effects”) but also through their ability to
provide a suitable environment (the “indirect
genetic effects”).

Here, maternally influenced traits are consid-
ered, for which the mixed model can be written as
[37]:

y ¼ Xbþ ZaþKmþWpþ «,
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where all terms are as before, except that the
model now includes a vector m of random mater-
nal genetic effects, and a vector p of random
maternal permanent environmental effects, with
K andW as their respective incidence matrices. It
is assumed that a ~ N 0,As2a

� �
, m ~ N 0,As2m

� �
,

p ~ N 0, Is2p
� �

, and « ~ N 0, Is2e
� �

, and quite often

a covariance structure between direct and mater-
nal additive genetic effects is considered, assumed
equal to Asa, m.

Some other variations of the animal model,
which are computationally convenient, include
the “sire model” and the “reduced animal
model” [38]. In the sire models, only sires are
evaluated, using progeny records under the
assumption of randomly selected mates. In the
reduced animal model, instead of having equa-
tions set up for every animal (i.e., parents and
progeny), it allows equations to be set up only
for parents in theMME, making the dimensions of
the system greatly reduced. The breeding values
of the parents are estimated directly from the
MME, and the progeny breeding values are then
inferred by back solving from the predicted paren-
tal breeding values.

As a final note regarding the use of mixed
models in animal breeding, it is important to men-
tion that solving the MME does not necessary
require the inversion of the coefficient matrix C.
More computationally convenient alternatives for
solving high dimensional systems of linear equa-
tions include methods based on iteration on the
MME, such as the Jacobi or Gauss-Seidel iteration
[39], and the “iteration on the data” strategy [40],
which is the commonly used methodology in
national genetic evaluations involving millions
of records.

Marker-Assisted Selection

Introduction

The advent of molecular markers has created
opportunities for a better understanding of genetic
inheritance and for developing novel strategies for

genetic improvement in agriculture. Molecular
markers are used, for example, to study quantita-
tive trait loci (QTL), which are defined as
chromosomic regions contributing to variation in
phenotypic traits. The location and effects of QTL
can be inferred by combining information from
marker genotypes and phenotypic scores of indi-
viduals, and by exploring genetic linkage [41–44]
and linkage disequilibrium [45, 46] information
between marker loci and QTL, such as in experi-
mental or mapping populations (e.g., backcross or
F2, or granddaughter designs) or in complex ped-
igrees in outbred populations. Information on
markers associated with QTL can be used to
enhance prediction of genetic merit of animals
[47]. This is especially useful for low heritability
traits, traits that are expensive or difficult to mea-
sure, or traits expressed in only one sex [48].

Classical Approaches with Few Markers
The application of molecular information for
genetic improvement of animals and plants, or
marker-assisted selection (MAS), requires that
candidate-for-selection individuals are genotyped
for specific markers. For MAS purposes, there are
three types of genetic markers, and for each type
there are specific statistical approaches for incor-
porating their information into selection programs
[48]. A first type of marker refers to situations in
which the functional polymorphism itself can be
genotyped. These markers are called “direct
markers,” as they indicate exactly the genotype
an animal has at specific causative loci.

A second type of marker refers to those that are
in population-wide linkage disequilibrium
(LD) with the causative or functional mutations.
In such cases, although the marker genotype of an
animal does not unambiguously indicate the geno-
type at a specific functional locus, it still provides
information regarding how likely an animal
carries a specific allele or genotype at such a
locus. Finally, a third kind of molecular marker
refers to those loci that are in population linkage
equilibrium with the functional mutations, which
are often called “indirect markers”. In such cases,
although the marker information on a single ani-
mal in a population does not provide any infor-
mation regarding the genetic merit of that animal,
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it still can useful in exploring family (pedigree)
structure when genotyped animals are related to
each other.

While direct markers are the simplest and most
efficient in MAS programs, their identification is
much more difficult and generally involves a pre-
screening step using QTL mapping methods to
identify promising chromosomic regions,
followed by fine mapping (often using functional
and positional candidate gene strategies),
followed by validation (using some strategy such
as a knock-out approach). On the other extreme,
indirect markers are extensively available for
most livestock species, but their use in MAS is
more complex and the results are generally
modest.

Statistical models to incorporate direct and/or
LD markers in the genetic evaluations of animals
are relatively straightforward. For example, a
marker can be included into an animal model
context with the following specification:

y ¼ Xbþ Za� þMgþ «,

where all terms are as defined before, except that
a� ~ N 0,As2a�

� �
represents now the random addi-

tive (non-marker) polygenic effects, and g and
M are the (fixed) QTL effects and an incidence
matrix, respectively. In the case of direct markers,
the matrixM represents the marker genotypes and
is obtained directly from the genotyping of ani-
mals. In the case of LD markers, the incidence
matrix M will represent genotype probabilities at
each QTL locus, which can be derived using
segregation analysis. The overall genetic merit of
the animals are then given by the sum of their a�

and g components. Other strategies for combining
the infinitesimal and the QTL components to
increase long-term genetic gain have also been
proposed (e.g., [49–51]); a review of MAS strat-
egies can be found, for example, in [48]).

In the case of indirect markers, however, the
within-family LD between QTL and linked
markers must be explored. One approach is to
determine the marker effects or the marker-QTL
linkage phases separately for each family. Alter-
natively, more general MAS models have been

proposed to incorporate marker data in genetic
evaluations for complex pedigrees [14, 52],
which can be represented as:

y ¼ Xbþ Za� þMqþ «,

where the terms are as before, but here the QTL
effects q are assumed random and normally dis-
tributed, such that:

a�

q

	 

~ N 0,

As2a� 0

0 Gls2q

" # !
,

whereGl is the gametic relationship matrix for the
QTL, and s2q is the additive variance of the QTL

allelic effects. The gametic relationship matrix
gives the probabilities of identity between each
of the two alleles in each individual, and it can be
derived based on the QTL position l and the
marker information.

Genomic Selection

As most quantitative traits are influenced by many
genes, tracking a small number of them using
molecular markers (as in the MAS approaches
discussed above) will explain only a small frac-
tion of the total genetic variance. Moreover, indi-
vidual genes are likely to have small effects and so
a large amount of data is needed to accurately
estimate their effects [53]. Genome-wide Marker-
Assisted Selection (GWMAS), or simply Geno-
mic Selection (GS), on the other hand, makes use
of a very dense set of markers covering the entire
genome, which potentially explain all genetic var-
iance. In addition, given the LD between the
dense markers and the QTL, estimated marker
effects pertain across the population [54].

Meuwissen et al. [55] were the first to propose
GS and suggested a model that can be described
as:

y ¼ 1mþ
Xp
j¼1

m jq j þ «,
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where y is a vector of phenotypic observations; m
is an intercept and 1 is a vector of ones; qj repre-
sents the genetic effect captured by each of a large
number ( j¼ 1, 2, . . ., p) of biallelic markers (e.g.,
SNP loci); and mj represents the vector of geno-
types for each genetic marker (coded for example
as 0, 1 and 2), which present different levels of LD
with QTL affecting the phenotypic trait of interest
(y). Here, it is assumed that the QTL affecting the
trait act additively, and that qj refers to per-allele
effects; non-additive effects as well as effects
relative to non-marked QTL are lumped together
into the residual term of the model.

Fitting such GS model using standard regres-
sion approaches is not trivial, as the number p of
markers (and so the number of genetic effects to
be estimated) may easily exceed the number n of
individuals available. The “large p small n para-
digm” is central in many applications of genomic
technologies, including expression profiling and
association analysis, and various statistical strate-
gies have been proposed in the literature to over-
come this problem, such as dimension-reduction
techniques, stepwise fitting procedures, ridge
regression [56], and least absolute selection and
shrinkage operator – LASSO [57].

Alternatively, GS regression models can be
implemented using some sort of hierarchical
Bayesian modeling, given its flexibility and
good statistical properties. Within this approach,
the genetic effects qj are assumed random and
distributed according to some pre-specified distri-
bution [55]. For example, qj may be assumed
normally distributed with mean 0 and variance
s2j, and the hierarchy can be extended by assuming

a prior distribution for the variances s2j [55, 58–
60]. Alternative distributions can be adopted for
qj, such as double exponential or mixture distri-
butions including a mass point at zero. It is inter-
esting to notice the connection between the ridge
regression approach and a Bayesian model with
normal priors with common variances s2j ¼ s20, as
well as the LASSO methodology and a Bayesian
model with double exponential priors for the
genetic effects [61].

Another approach to fit a GS model is to use
the genetic marker information to build a genomic

relationship matrix G describing genetic related-
ness among individuals, and replace G for the
pedigree-based relationship matrix A used in the
animal model discussed previously. This
approach is called GBLUP, and the genomic rela-
tionship matrix G is generally computed as G ¼
c�1 � MM0, where M is an (n � p) matrix of
genotypes with each column (i.e., each marker)

centered on zero, and c ¼ 2
Pp
j¼1

p j 1� p j

� �
, in

which pi represents the frequency of a reference
allele in each marker [62]. Moreover, some other
recent methods aim to combine all available phe-
notypic, pedigree, and genomic information for
prediction of genetic merit of animals [63].

The potential of GS to accelerate genetic pro-
gress has been demonstrated through many simu-
lation studies (e.g., [55, 64, 65]), and more
recently confirmed with real data applications.
The first use of GS using thousands of markers
in livestock has been in dairy cattle [66, 67],
followed by some breeds of beef cattle and more
recently in poultry and pigs. Table 1 shows some
early results with dairy cattle obtained by the
USDA over 10 years ago. Since then GS has
been implemented in commercial breeding pro-
grams across various livestock and crop species.

Future Directions

As shown here, the mixed model methodology is
extremely flexible and can be used in a wide
variety of applications in quantitative genetics
and genomics. Other extensions of the methods
discussed here include models with non-additive
genetic effects (e.g., [68, 69]), mixed models for
the analysis of non-Gaussian traits such as binary
and categorical (e.g., [70, 71]) or counting data
(e.g., [72]), robust models [73, 74], survival traits
[75], nonlinear models to study, e.g., growth
curves (e.g., [76, 77]), among others. However,
such models can get extremely complex and
asymptotic statistical methods are generally
required. Alternatively, Bayesian analysis
employing Markov Chain Monte Carlo
(MCMC) methods can be used, given their
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exceptional flexibility and the possibility of incor-
porating prior information regarding the model
parameters [78]. Bayesian analysis has been
increasingly used in genetics and animal breed-
ing; for a review the reader can refer, for example,
to [79–81]. A comprehensive treatment of Bayes-
ian MCMC approaches in animal breeding is pre-
sented in [24]. As discussed earlier, Bayesian
hierarchical modeling has been extensively used
also in genomic selection [55, 82–84]. In addition,
non-parametric and semi-parametric methods,
and machine learning techniques based on artifi-
cial intelligence have been used for the analysis of
high-density marker panels in the context of ani-
mal breeding, such as in [85–91].

As indicated in the beginning of this chapter,
the genetic improvement observed in many live-
stock and companion animal species over the
years is truly remarkable. Most of this genetic
progress has been accomplished through selec-
tion, using the methods discussed here. Two tech-
nological and methodological developments,
however, must be mentioned as turning points in
the genetic trends observed in some species; these
are the advent of artificial insemination and the
mixed models. Seemingly, the development of
high-density SNP panels and, more recently,
next generation sequencing technologies and
their application in genomic selection strategies
promise to be the next turning point. Another new
area of research and interest to commercial breed-
ing programs refers to the genetic improvement of
novel (and hard to measure) traits, such as feed

intake and feed efficiency, methane emission,
product quality (e.g., meat and milk fatty acids,
and milk protein profile), and even animal behav-
ior traits. Such phenotypic traits are generally
measured or monitored using high-throughput
phenotyping (HTP) techniques based on digital
sensor technologies [92, 93], such as image anal-
ysis and computer vision [94], and infrared
spectroscopy [95].

This new era of animal breeding and genetics
demands a multidisciplinary approach for both the
development and the deployment of modern tools
and techniques for efficient genetic improvement
of livestock populations to enhance its sustain-
ability, especially in terms of customers’ require-
ments regarding animal welfare standards and
product quality, and also environmental steward-
ship of animal production. As such, an efficient
and contemporary breeding program requires
nowadays not only expertise on population and
quantitative genetics, and traditional statistical
and computational methods, but also on
biosystems engineering and on modern data min-
ing techniques [61, 96, 97] suitable for large data-
bases including multiple sources of information
(phenotypic, genomic, and environmental vari-
ables) and data structures (tabular data, images,
text, etc.). It is indeed a very exciting time to work
in animal breeding!

Quantitative Methods
Applied to Animal
Breeding,
Table 1 Comparison of
April 2010 genomic and
traditional evaluations for
bulls with an AI status of
active or foreign

Trait

Average reliability (%)

Genomic Traditional Difference

Net merit 87 81 +6

Milk yield 93 91 +2

Fat yield 93 91 +2

Protein yield 93 91 +2

Productive life 81 71 +9

Somatic cell score 88 83 +5

Daughter pregnancy rate 79 69 +10

Final score 89 85 +4

Sire calving ease 90 84 +6

Daughter calving ease 80 67 +13

Source: AIPL – USDA; http://www.aipl.arsusda.gov/

22 Quantitative Methods Applied to Animal Breeding

http://www.aipl.arsusda.gov/


Bibliography

Primary Literature
1. Lush JL (1994) The genetics of populations. Prepared

for publication by A. B. Chapman and R. R. Shrode,
with an addendum by J. F. Crow. Special Report
94, College of Agriculture, Iowa State University,
Ames, IA

2. Bulmer MG (1985) The mathematical theory of quan-
titative genetics. Clarendon, Oxford

3. Falconer DS, Mackay TFC (1996) Introduction to
quantitative genetics, 4th edn. Longmans Green,
Harlow

4. Lynch M, Walsh B (1998) Genetic analysis of quanti-
tative traits. Sinauer Associates, Sunderland

5. Hill WG (1969) On the theory of artificial selection in
finite populations. Genet Res 13:143–163

6. Havenstein B, Ferket PR, Qureshi MA (2003) Growth,
livability, and feed conversion of 1957 versus 2001
broilers when fed representative 1957 and 2001 broiler
diets. Poult Sci 82:1509–1518

7. Bourdon RM (2000) Understanding animal breeding,
2nd edn. Prentice Hall, Upper Saddle River

8. Crow J, Kimura M (1970) An introduction to
populations genetics theory. Haraper and Row,
New York

9. Shook GE (2006) Major advances in determining
appropriate selection goals. J Dairy Sci:1349–1361

10. Henderson CR (1949) Estimation of changes in herd
environment. J Dairy Sci 32:709

11. Henderson CR (1975) Best linear unbiased estimation
and prediction under a selection model. Biometrics 31:
423–447

12. Henderson CR (1984) Applications of linear models in
animal breeding. University of Guelph, Guelph

13. Gianola D, Rosa GJM (2015) One hundred years of
statistical developments in animal breeding. Book Ser
Annu Rev Anim Biosci 3:19–56

14. Fernando RL, Grossman M (1989) Marker-assisted
selection using best linear unbiased prediction. Genet
Sel Evol 21:467–477

15. Yu J et al (2006) A unified mixed-model method for
association mapping that accounts for multiple levels
of relatedness. Nat Genet 38:203–208

16. Wolfinger RD, Gibson G, Wolfinger ED, Bennett L,
Hamadeh H, Bushel P, Afshari C, Paules RS
(2001) Assessing gene significance from cDNA
microarray expression data via mixed models.
J Comput Biol 8:625–637

17. Rosa GJM, Steibel JP, Tempelman RJ
(2005) Reassessing design and analysis of two-color
microarray experiments using mixed effects models.
Comp Funct Genomics 6:123–131

18. Steibel JP, Poletto R, Coussens PM, Rosa GJM
(2009) A powerful and flexible linear mixed model
framework for the analysis of relative quantification
RT-PCR data. Genomics 94:146–152

19. Henderson CR (1950) Estimation of genetic parame-
ters. Ann Math Stat 21:309

20. Henderson CR (1953) Estimation of variance and
covariance components. Biometrics 9:226

21. Rao CR (1971) Estimation of variance and covariance
components MINQUE theory. J Multivar Anal 1:
257–275

22. Harville DA (1977) Maximum likelihood approaches
to variance component estimation and to related prob-
lems. J Am Stat Assoc 72(358):320–338

23. Patterson HD, Thompson R (1971) Recovery of inter-
block information when block sizes are unequal.
Biometrika 58(3):545–554

24. Sorensen D, Gianola D (2002) Likelihood, Bayesian,
and MCMC methods in quantitative genetics.
Springer, New York

25. Littell RC, Miliken GA, Stroup WW, Wolfinger RD
(2006) SAS system for mixed models, 2nd edn. SAS
Institute Inc., Cary

26. Pinheiro JC, Bates DM (2000) Mixed-effects models
in S and S-plus. Springer, New York

27. Searle SR, Casella G, McCulloch CE (1992) Variance
components. Wiley, New York

28. Verbeke G, Molenberghs G (1997) Linear mixed
models in practice: a SAS-oriented approach. Lecture
notes in statistics 126. Springer, New York

29. Wright S (1921) Systems of mating. I. The biometric
relations between parents and offspring. Genetics 6:
111–123

30. Henderson CR (1976) A simple method for computing
the inverse of a numerator relationship matrix used in
prediction of breeding values. Biometrics 32:69–83

31. Quaas RL (1976) Computing the diagonal elements of
a large numerator relationship matrix. Biometrics 32:
949–953

32. Henderson CR, Quaas RL (1976) Multiple trait eval-
uation using relatives’ records. J Anim Sci 43:
1188–1197

33. Schaeffer LR (1984) Sire and cow evaluation under
multiple trait models. J Dairy Sci 67:1567–1580

34. Thompson R (1977) Estimation of quantitative genetic
parameters. In: Pollak E, Kempthorne O, Bailey TB
(eds) Proceedings of the international conference on
quantitative genetics. Iowa State University Press,
Ames, pp 639–657

35. Meyer K (1985) Maximum-likelihood estimation of
variance-components for a multivariate mixed model
with equal design matrices. Biometrics 41(153):1985

36. Ducrocq V, Besbes B (1993) Solution of multiple trait
animal models with missing data on some traits.
J Anim Breed Genet 110:81–92

37. Quaas RL, Pollak EJ (1981) Modified equations for
sire models with groups. J Dairy Sci 64:1868–1872

38. Quaas RL, Pollak EJ (1980) Mixed model methodol-
ogy for farm and ranch beef cattle testing programs.
J Anim Sci 51:1277–1287

39. Misztal I, Gianola D (1988) Indirect solution of mixed
model equations. J Dairy Sci 77(Suppl. 2):99–106

40. Schaeffer LR, Kennedy BW (1986) Computing solu-
tions to mixed model equations. In: 3rd world congr
genet appl livest prod, vol XII, pp 382–393

Quantitative Methods Applied to Animal Breeding 23



41. Lander ES, Botstein D (1989) Mapping Mendelian
factors underlying quantitative traits using RFLP link-
age maps. Genetics 121:185–199

42. Haley CS, Knott SA (1992) A simple regression
method to for mapping quantitative trait loci in line
crosses using flanking markers. Heredity 69:315–324

43. Haley CS, Knott SA, Elsen J-M (1994) Mapping
quantitative trait loci in crosses between outbred
lines using least squares. Genetics 136:1195–1207

44. Pérez-Enciso M, Misztal I (2004) Qxpak: a versatile
mixed model application for genetical genomics and
QTL analyses. Bioinformatics 20(16):2792–2798

45. Meuwissen THE, Goddard ME (2000) Fine mapping
of quantitative trait loci using linkage disequilibria
with closely linked marker loci. Genetics 155:
421–430

46. Pérez-Enciso M (2003) Fine mapping of complex trait
genes combining pedigree and linkage disequilibrium
information: a Bayesian unified framework. Genetics
163:1497–1510

47. Lande R, Thompson R (1990) Efficiency of marker-
assisted selection in the improvement of quantitative
traits. Genetics 124:743–756

48. Dekkers JCM, Hospital F (2002) The use of molecular
genetics in the improvement of agricultural
populations. Nat Rev Genet 3(1):22–32

49. Dekkers JCM, van Arendonk JAM (1998) Optimizing
selection for quantitative traits with information on an
identified locus in outbred populations. Genet Res
71(3):257–275

50. Manfredi E, Barbieri M, Fournet F, Elsen JM
(1998) A dynamic deterministic model to evaluate
breeding strategies under mixed inheritance. Genet
Selet Evol 30:127–148

51. Chakraborty R, Moreau L, Dekkers JCM
(2002) A method to optimize selection on multiple
identified quantitative trait loci. Genet Sel
Evol 34(2):145–170

52. Goddard ME (1992) A mixed model for analyses of
data on multiple genetic-markers. Theor Appl Genet
83:878–886

53. Goddard ME, Hayes BJ (2007) Genomic selection.
J Anim Breed Genet 124(6):323–330

54. Schaeffer LR (2006) Strategy for applying genome-
wide selection in dairy cattle. J Anim Breed Genet
123:218–223

55. Meuwissen THE, Hayes BJ, Goddard ME (2001) Pre-
diction of total genetic value using genome-wide
dense marker maps. Genetics 157:1819–1829

56. Whittaker JC, Thompson R, Visscher PM
(2000) Marker-assisted selection using ridge regres-
sion. Genet Res 75:249–252

57. Tibshirani R (1996) Regression shrinkage and selec-
tion via the Lasso. J R Stat Soc Ser B 58:267–288

58. Gianola D, Perez-Enciso M, Toro MA (2003) On
marker-assisted prediction of genetic value: beyond
the ridge. Genetics 163:347–365

59. Xu S (2003) Estimating polygenic effects using
markers of the entire genome. Genetics 163(2):
789–801

60. ter Braak CJF, Boer MP, Bink MCAM
(2005) Extending Xu’s Bayesian model for estimating
polygenic effects using markers of the entire genome.
Genetics 170(3):1435–1438

61. Hastie T, Tibshirani R, Friedman JH (2001) The ele-
ments of statistical learning: data mining, inference,
and predictions. Springer

62. VanRaden PM (2008) Efficient methods to compute
genomic predictions. J Dairy Sci 91:4414–4423

63. Misztal I, Legarra A, Aguilar I (2009) Computing
procedures for genetic evaluation including pheno-
typic, full pedigree, and genomic information.
J Dairy Sci 92:4648–4655

64. Calus MPL, Veerkamp RF (2007) Accuracy of breed-
ing values when using and ignoring the polygenic
effect in genomic breeding value estimation with a
marker density of one SNP per cM. J Anim Breed
Genet 124:362–368

65. Muir WM (2007) Comparison of genomic and tradi-
tional BLUP-estimated breeding value accuracy and
selection response under alternative trait and genomic
parameters. J Anim Breed Genet 124:342–355

66. VanRaden PM, Van Tassell CP, Wiggans GR,
Sonstegard TS, Schnabel RD, Taylor J, Schenkel FS
(2009) Reliability of genomic predictions for North
American dairy bulls. J Dairy Sci 92:16–24

67. Weigel KA, de los Campos G, González-Recio O,
Naya H, Wu XL, Long N, GJM R, Gianola D (2009)
Predictive ability of direct genomic values for lifetime
net merit of Holstein sires using selected subsets of
single nucleotide polymorphism markers. J Dairy Sci
92:5248–5257

68. Henderson CR (1985) Best linear unbiased prediction
of non-additive genetic merits in non-inbred
populations. J Anim Sci 60:111–117

69. Hoeschele I, VanRaden PM (1991) Rapid inverse of
dominance relationship matrices for noninbred
populations by including sire and dam subclass
effects. J Dairy Sci 74:557–569

70. Gianola D (1982) Theory and analysis of threshold
characters. J Anim Sci 54:1079–1096

71. Gianola D, Foulley JL (1983) Sire evaluation for
ordered categorical-data with a threshold-model.
Genet Sel Evol 15(2):201–223

72. Tempelman RJ, Gianola D (1996) A mixed effects
model for overdispersed count data in animal breed-
ing. Biometrics 52:265–279

73. Strandén I, Gianola D (1998) Attenuating effects of
preferential treatment with Student-t mixed linear
models: a simulation study. Genet Sel Evol 31:25–42

74. Rosa GJM, Padovani CR, Gianola D (2003) Robust
linear mixed models with normal/independent distri-
butions and Bayesian MCMC implementation. Biom
J 45(5):573–590

75. Ducrocq V, Casella G (1996) A Bayesian analysis of
mixed survival models. Genet Sel Evol 28(6):505–529

24 Quantitative Methods Applied to Animal Breeding



76. Varona L (1997) Multiple trait genetic analysis of
underlying biological variables of production func-
tions. Livest Prod Sci 47:201–209

77. Forni S, Piles M, Blasco A et al (2009) Comparison of
different nonlinear functions to describe Nelore cattle
growth. J Anim Sci 87(2):496–506

78. Gianola D, Fernando RL (1986) Bayesian methods in
animal breeding theory. J Anim Sci 63:217–244

79. Shoemaker JS, Painter IS, Weir BS (1999) Bayesian
statistics in genetics – a guide for the uninitiated.
Trends Genet 15:354–358

80. Blasco A (2001) The Bayesian controversy in animal
breeding. J Anim Sci 79(8):2023–2046

81. Beaumont MA, Rannala B (2004) The Bayesian rev-
olution in genetics. Nat Rev Genet 5:251–261

82. Yi N, Xu S (2008) Bayesian Lasso for quantitative trait
loci mapping. Genetics 179:1045–1055

83. Gianola D, de los Campos G, Hill WG et al
(2009) Additive genetic variability and the Bayesian
alphabet. Genetics 183(1):347–363

84. De los Campos G, Naya H, Gianola D, Crossa J,
Legarra A, Manfredi E, Weigel K, Cotes J (2009)
Predicting quantitative traits with regression models
for dense molecular markers and pedigrees. Genetics
182:375–385

85. Gianola D, Fernando RL, Stella A (2006) Genomic-
assisted prediction of genetic value with semi-
parametric procedures. Genetics 173:1761–1776

86. Gianola D, van Kaam JBCHM (2008) Reproducing
kernel Hilbert spaces regression methods for genomic
assisted prediction of quantitative traits. Genetics 178:
2289–2303

87. Long N, Gianola D, Rosa GJM,Weigel KA, Avendaño
S (2007) Machine learning procedure for selecting
SNPs in genomic selection: application to early mor-
tality in broilers. J Anim Breed Genet 124(6):377–389

88. González-Recio O, Gianola D, Long N, Weigel KA,
Rosa GJM, Avendano S (2008) Nonparametric
methods for incorporating genomic information into
genetic evaluations: an application to mortality in
broilers. Genetics 178(4):2305–2313

89. De los Campos G, Gianola D, Rosa GJM (2009) The
linear model of quantitative genetics is a reproducing
kernel Hilbert spaces regression. J Anim Sci 87:
1883–1887

90. Gianola D, Okut H,Weigel KA, RosaGJM (2011) Pre-
dicting complex quantitative traits with Bayesian

neural networks: a case study with Jersey cows and
wheat. BMC Genet 12:87

91. Okut H, Gianola D, Rosa GJM,Weigel KA (2011) Pre-
diction of body mass index in mice using dense molec-
ular markers and a regularized neural network. Genet
Res 93:189–201

92. Koltes JE, Cole JB, Clemmens R et al (2019) Avision
for development and utilization of high-throughput
phenotyping and big data analytics in livestock.
Front Genet 10:1197

93. Silva FF, Morota G, Rosa GJM (2021) High-
throughput phenotyping in the genomic improvement
of livestock. Front Genet 12:707343. https://doi.org/
10.3389/fgene.2021.707343

94. Fernandes AFA, Dórea JRR, Rosa GJM (2020) Image
analysis and computer vision applications in animal
sciences: an overview. Front Vet Sci 7:551269

95. Bresolin T, Dórea JRR (2020) Infrared spectrometry as
a high-throughput phenotyping technology to predict
complex traits in livestock systems. Front Genet 11:
923. https://doi.org/10.3389/fgene.2020.00923

96. Bishop CM (2006) Pattern recognition and machine
learning. Springer, New York

97. KuhnM, Johnson K (2013) Applied predictive model-
ing. Springer, New York

Books and Reviews
Chapman AB (1980) General and quantitative genetics.

World animal science series. Elsevier, Amsterdam
GelmanA, Carlin JB, SternHS, Rubin DB (2004) Bayesian

data analysis, 2nd edn. Chapman & Hall, London
Gondro C, van der Werf J, Hayes B (2013) Genome-wide

association studies. Springer, New York
Lange K (2002) Mathematical and statistical methods for

genetic analysis, 2nd edn. Springer, New York
Liu BH (1998) Statistical genomics. CRC Press, Boca

Raton
Mrode R (2005) Linear models for the prediction of animal

breeding values, 2nd edn. CAB Int, New York
Ott J (1991) Analysis of human genetic linkage. Johns

Hopkins
Sham P (1998) Statistics in human genetics. Arnold
Van Vleck LD (1993) Selection index and introduction to

mixed model methods for genetic improvement of ani-
mals. CRC Press, Boca Raton

Quantitative Methods Applied to Animal Breeding 25

https://doi.org/10.3389/fgene.2021.707343
https://doi.org/10.3389/fgene.2021.707343
https://doi.org/10.3389/fgene.2020.00923

	Quantitative Methods Applied to Animal Breeding
	Glossary
	Definition of the Subject
	Introduction
	Principles of Selection
	Basic Genetic Model for Quantitative Traits
	Phenotypic Selection
	Correlated Response and Indirect Selection
	Selection Index
	Multiple-Trait Selection

	Mixed Model Methodology
	Introduction
	The Animal Model
	Extensions and Variations of the Animal Model

	Marker-Assisted Selection
	Introduction
	Classical Approaches with Few Markers
	Genomic Selection

	Future Directions
	Bibliography
	Primary Literature
	Books and Reviews



